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This paper provides an overview of the resource sharing networks
introduced by Massoulié and Roberts [20] to model the dynamic be-
havior of Internet flows. Striving to separate the model class from
the applications that motivated its development, we assume no prior
knowledge of communication networks. The paper also presents an
open problem, along with simulation results, a formal analysis, and a
selective literature review that provide context and motivation. The
open problem is to devise a policy for dynamic resource allocation
that achieves what we call hierarchical greedy ideal (HGI) perfor-
mance in the heavy traffic limit. The existence of such a policy is
suggested by formal analysis of an approximating Brownian control
problem, assuming that there is “local traffic” on each processing
resource.

1. Introduction. We consider the resource sharing networks, also called
bandwidth sharing models, connection-level models, or flow-level models,
that were introduced by Massoulié and Roberts [20] to study the dynamic
behavior of Internet flows. This elegant model class may also prove useful in
other application domains, and is of mathematical interest in its own right,
so we shall avoid terminology that is specific to communication networks.
In particular, we refer to the entities being processed in the model as jobs,
rather than files or documents or flows, and speak of processing resources

rather than links or servers. Verloop et al. [23] introduced the context-neutral
term “resource sharing networks” to describe the Massoulié-Roberts model
class, and we shall follow that usage.

Following [14], we assume that job sizes are exponentially distributed
except where more general distributions are explicitly mentioned, and we
assume that there is “local traffic” on each of the network’s processing re-
sources. We imagine a system manager who dynamically allocates resource
capacities to jobs whose processing is not yet complete. The performance
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measure on which we focus is the steady-state expected total job count, or
equivalently, the steady-state average delay experienced by arriving jobs,
irrespective of their type.

Following a standard recipe, we formulate a Brownian control problem
(BCP) that formally approximates the system manager’s dynamic allocation
problem under heavy traffic conditions. Given our local traffic assumption,
there exists a control policy for the approximating BCP that has the follow-
ing two properties: first, the backlog of work for each resource is minimal at
each point in time, which is equivalent to saying that no resource’s capacity
is ever underutilized while there is work for that resource in the system;
and second, the total number of jobs waiting at each point in time is the
minimum number consistent with the vector of workloads for the various
resources. This is called the hierarchical greedy (HG) policy for the approx-
imating BCP, and its associated performance measure is referred to as HG
performance. In the context of our original resource sharing network, we
define an analogous performance target and call it hierarchical greedy ideal

(HGI ) performance. Loosely phrased, the open problem referred to above is
the following: to formulate a control policy for the resource sharing network
that achieves HGI performance in the heavy traffic limit.

We study three small but representative examples in which all resources
have identical load factors, treating the common load factor as a variable
parameter. For each example, HGI performance is estimated via simulation,
and compared against the performance of proportionally fair (PF) resource
allocation, which is the most commonly cited and most thoroughly studied
dynamic allocation scheme for resource sharing networks. For load factors
ranging from 0.80 to 0.95, HGI performance represents a 20–40 percent
improvement over PF performance in our examples. A dynamic allocation
scheme called UFOS (mnemonic for utilization first, output second) approx-
imates HGI performance quite well in our three examples, but a fourth
example due to R. Srikant shows that UFOS is not viable in general as a
means of approaching the hierarchical greedy ideal.

The remainder of the paper is organized as follows. Sections 2 through
4 identify the model class under study, introduce our three examples, and
establish notation and terminology. Sections 5 and 6 are devoted to pro-
portional fairness and its relationship to what we call baseline performance,
and Section 7 develops some basic theory related to workload. Ideas related
to HGI performance are developed in Sections 8 through 11, including a
recapitulation of the approximating Brownian control problem in Section 9.
Section 12 explains the UFOS algorithm by which HGI performance is ap-
proximated in our small examples. Sections 13 and 14 discuss the inadequacy
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of UFOS as a general method, and summarize our current state of knowl-
edge. The paper concludes with two short technical appendices.

2. Resource sharing networks. In the general model to be consid-
ered, jobs of types 1, . . . , J arrive according to independent Poisson processes
at rates λ1, . . . , λJ , and for concreteness we assume that the system under
study is initially empty. Each type j arrival has a size that is drawn from
a type-specific distribution with mean mj > 0 (j = 1, . . . , J), and the job
sizes for the different types form J mutually independent sequences of inde-
pendent and identically distributed random variables. In the usual way, let
µj = m−1

j (j = 1, . . . , J). Unless something is explicitly said to the contrary,
we assume the job size distribution to be exponential for each type.

The processing system is composed of resources numbered 1, . . . , I, with
associated capacities C1, . . . , CI (The significance of resource capacities will
be explained shortly.) The processing of a job is accomplished by allocating
a flow rate to it over time: a job departs from the system when the integral of
its allocated flow rate equals its size. In general, the processing of a job con-
sumes the capacity of several different resources simultaneously, as follows.
There is given a non-negative I × J matrix A = (Aij), and each unit of flow
allocated to type j jobs consumes the capacity of resources 1, . . . , I at rates
A1j , . . . , AIj , respectively. Thus, denoting by x = (x1, . . . , xJ) the vector of
total flow rates allocated to the various job types at a given time, Ax is the
corresponding vector of capacity consumption rates for the various resources,
and x must satisfy the capacity constraint Ax ≤ C = (C1, . . . , CI). We use
the terms “capacity allocation” and “flow rate allocation” interchangeably.
The former term is standard in the literature, where the system manager’s
task is usually described as one of dynamic capacity allocation.

In the canonical application to Internet modeling, the job types corre-
spond to files that require transmission over different routes, the resources
correspond to transmission links, the job sizes are interpreted as file sizes,
and the capacity consumption rate Aij is either 1 or 0, depending on whether
or not link i is part of the route used by jobs of type j. Positive values of
Aij other than 1 may also be meaningful, specifically in the reduced repre-
sentation of systems with multi-path routing; see Section 5.5 of [14].

As in [14], we assume the following throughout this paper: for each i ∈
{1, . . . , I} there is a j ∈ {1, . . . , J} such that Aij > 0 and Akj = 0 for k 6= i.
That is, for each resource i there is a type j whose processing consumes the
capacity of resource i but not that of any other resource. In the context of
communication networks, this is referred to as a “local traffic” assumption,
for obvious reasons. Readers will see that the local traffic assumption plays
a crucial role in our analysis.
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We denote by nj (t) the number of type j jobs residing in the system
at time t, calling n (t) = (n

1
(t) , . . . , nJ (t)) the job count vector or state

vector and calling {n (t) , t ≥ 0} the job count process. A control takes the
form of a flow rate vector x = (x1, . . . , xJ) for each time t ≥ 0. Of course,
controls must be suitably non-anticipating. For our purposes it will suffice
to consider only stationary Markov control policies, meaning that the flow
rate vector employed at each time t is a deterministic function of n(t). That
is, we define an admissible control as a function x (n) = (x1 (n) , . . . , xJ (n))
such that x (n) ∈ Φ (n) for each state n, where

(2.1) Φ (n) = {x ≥ 0 : Ax ≤ C and xj = 0 if nj = 0}.

A number of other terms, including “dynamic allocation scheme” and “re-
source sharing policy,” will be used as synonyms for “control” later in the
paper.

In the definition of a control that we have advanced, xj(n) is interpreted
as the total flow rate allocated to type j jobs when the system is in state n,
without regard to how that total flow is divided among the type j jobs
residing in the system. That finer information is irrelevant for our purposes,
because the performance measures on which we focus are expressed solely
in terms of job counts, and we assume exponential (memoryless) job size
distributions, so the division of the total flow rate among individual jobs
of a given type does not affect the probabilistic evolution of the job count
process {n (t) , t ≥ 0}. Also, because the flow rate vector chosen at each
time t is only allowed to depend on the state vector n (t), we implicitly
assume that the system manager either cannot observe job sizes or else is
not allowed to base capacity allocations on that information.

At some points in this paper mention will be made of resource sharing
networks with general (non-exponential) job size distributions, and in such
models it is necessary to specify how the flow rate allocated to a job type is
divided among individual jobs of that type. In all such cases we assume an
equal sharing rule, which means that the type j flow rate is divided equally
among all type j jobs residing in the system. This assumption is standard
in the literature. (With one resource and one job type, it corresponds to the
usual processor sharing discipline.)

For future purposes let

(2.2) M = diag(m1, . . . ,mJ) and ρi =
1

Ci

J
∑

j=1

Aijλjmj for i = 1, . . . , I.

The sum in the definition of ρi is the expected amount of resource i capacity
needed to process jobs of all types that arrive during one time unit, and we
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Fig 1. Two-Link Linear Network (2LLN).
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Fig 2. Three-Link Linear Network (3LLN).

divide that by the amount of resource i capacity that is available per time
unit. Thus we call ρi the load factor for resource i. (Such ratios are also
called traffic intensity parameters in queuing theory.)

In the basic network model that we have described here, the collection of
resources required to process any given job type is fixed. In the language of
communication networks, it is a model with single-path routing. In contrast,
one may consider a more general model in which several different processing
modes exist for a given job type, with each mode involving a different com-
bination of resources. In communication networks, the term multi-path rout-

ing is used to describe that more general setup. Remarkably, any resource
sharing model with multi-path routing is exactly equivalent, not just ap-
proximately equivalent or asymptotically equivalent, to another model with
only single path routing; that equivalence is explained in Section 5.5 of [14].

3. Three examples. Figures 1 through 3 portray three examples of
resource sharing networks that will be discussed later in this paper, each
of which satisfies the local traffic assumption enunciated in Section 2. The
first two examples are what Massoulié and Roberts [20] call linear networks,
involving local traffic on each of the I resources plus another job type that
uses all of the resources; to state the obvious, I = 2 and I = 3 in Figures
1 and 2, respectively. Our third example (Figure 3) is a more complicated
version of the second one, involving two additional job types that each re-
quire two of the three resources for their processing. Using Internet modeling
language, we call the first two examples the two-link linear network (2LLN)
and three-link linear network (3LLN), respectively; in parallel fashion, the
final example is called the complex three-link network (C3LN).
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Fig 3. Complex Three-Link Network (C3LN).

In Figures 1 through 3 the Poisson arrival rates for the various job types
are expressed as multiples of a variable parameter ρ, and as noted in the
figures, we take Ci = 1 for each resource i as well. Finally, in each example
we assume that the job size distribution is exponential with mean 1 for each

job type. Defining A as the obvious matrix of zeros and ones for each of the
examples (A is 2× 3 in the first example, 3× 4 in the second one, and 3× 6
in the third), readers can easily verify that

(3.1) ρi = ρ for all i = 1, . . . , I in all of our three examples.

4. Stability and system performance. Because we restrict atten-
tion to stationary Markov controls (see Section 2), the job count process
{n (t) , t ≥ 0} evolves under any admissible control as a continuous-time
Markov chain with stationary transition probabilities: transitions that in-
crement nj by one occur at rate λj(j = 1, . . . , J), transitions that decre-
ment nj by one occur at rate µjxj(n) (j = 1, . . . , J), and all other transition
intensities are zero. An admissible control will be called stable if the associ-
ated Markov chain is positive recurrent. It is known that there exist stable
controls if and only if

(4.1) ρi < 1 for all i = 1, . . . , I,

and (4.1) will be referred to hereafter as the usual traffic condition. For a
proof that (4.1) is necessary for existence of a stable control, see page 1060
of [18]; with regard to sufficiency, we shall describe in Section 7 a specific
control policy (proportional fairness) that is known to be stable when (4.1)
holds. Attention will be restricted hereafter to resource sharing networks that

satisfy the usual traffic condition (4.1). Throughout most of this paper, we
use the term heavy traffic to mean that ρi is close to 1 for every resource i,
but at the very end (Section 14), attention is directed to the broader scenario
where ρi is close to 1 for some, but not necessarily all, resources i.
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Given a stable admissible control, let n(∞) be a random variable whose
distribution is the stationary distribution of the associated job count process.
The performance measure on which we focus is

(4.2) E (Tot) = E





J
∑

j=1

nj(∞)



 .

In words, E (Tot) is the steady-state expected total job count (under the
specified control). By Little’s law, the steady-state average delay for arriv-
ing jobs (that is, the average elapsed time in steady-state, between arrival
of a job and completion of its processing) equals E (Tot) divided by the
total arrival rate λ1 + · · · + λJ . Thus minimizing the steady-state average
delay is equivalent to minimizing E (Tot), and a given percentage reduc-
tion in E (Tot), by one control versus another, ensures the same percentage
reduction in steady-state average delay.

5. Proportional fairness. Given a job count vector n, the vector x of
proportionally fair (PF) flow rate allocations solves the following problem:

(5.1) choose x ∈ Φ(n) to maximize
∑

j

nj log xj,

where Φ(n) is defined by (2.1). PF allocations are non-extremal: every job
type that is currently represented in the backlog of work gets some flow rate
allocation, regardless of system status. The idea of proportional fairness orig-
inated in work by Kelly [16] and was raised to prominence by the influential
paper [17]. A more general concept of α-fair allocations was advanced and
analyzed by Mo and Walrand [21], but discussion will be restricted here to
the original notion of proportional fairness.

Explaining the rationale for proportional fairness in digital communica-
tions is rather complicated, and we shall not attempt to do so. But a reader
may reasonably ask in what sense does (5.1) lead to “fair” flow rate al-
locations, and there is no good answer to that question in the setting we
consider, as indicated by the following quotations from [20]: “In this paper
we argue that fairness should be of secondary concern and that the network
should be designed rather to fulfill minimal quality of service requirements
. . . [Q]uality of service is manifested essentially by the time it takes to com-
plete the document transfer. (p. 186). . . User perceived quality of service
may be measured by the response time of a given document transfer. . .
The fact that this [transfer was achieved] ‘fairly’ is largely irrelevant and,
moreover, totally unverifiable by the user (pp. 189–190).”
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Fig 4. Store-and-forward analog of the 2LLN.

We shall take the view that “proportional fairness” is simply a name
attached to a particular method for dynamic resource allocation. To evalu-
ate this method, one must analyze the delay performance of PF and make
comparisons against the delay performance of other allocation schemes. As-
suming exponential job size distributions (as we do), [8] showed that PF
allocations are stable whenever (4.1) holds. Of course, a stable control pol-
icy can still have undesirable delay characteristics, but results reviewed in
the next section justify calling delay performance under PF at least “good.”

In the context of communication networks, an important virtue of pro-
portional fairness is that it can be implemented, at least approximately,
by means of a distributed algorithm, requiring only local information for
purposes of local decision making; see [17] for elaboration.

6. Baseline performance. The salient feature of resource sharing net-
works, relative to conventional queueing networks, is simultaneous resource
possession. Conceptually, arriving jobs of any given type are stored in a
type-specific buffer upon arrival, and are processed by means of a capacity
“pipeline” (generally involving several resources) that completes the pro-
cessing in a single hop.

If we think of the network resources as communication links that are
combined to transmit jobs over different routes, then a potential alternative
arrangement, commonly called store-and-forward processing, is to transmit
the entire job over the first link on its route, store the job in an intermediate
buffer, then transmit the job over the second link on its route, store it in
another intermediate buffer, and so on to completion. This is illustrated for
our two-link linear network in Figure 4, assuming that resource 1 is traversed
first in the routing of type 3 jobs.

In Figure 4 there are three “external” buffers where arriving jobs of dif-
ferent types are stored, plus one “internal” buffer where partially completed
jobs of type 3 are stored. For our complex three-link network (C3LN), orig-
inally pictured in Figure 3, the analogous store-and-forward representation
would include six “external” buffers for newly arriving jobs of different types,
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plus a total of four “internal buffers” for storing jobs of types 4 through 6 at
intermediate stages of their routes. In our specification of a resource sharing
network, no ordering is given for the resources involved in the processing of
a given job type, so one could specify the “route” of any given type in sev-
eral different ways, each of which gives rise to a different store-and-forward
analog. However, the result cited below (Proposition 6.1) is invariant to the
ordering.

Each of the buffers in a store-and-forward network is associated with a
specific resource, namely, the resource from which the jobs stored in that
buffer need processing next. Before we can analyze the delay performance
of a store-and-forward network, a method must be specified for dividing the
capacity of each resource among the jobs waiting in the resource’s associated
buffers. In communications modeling, the method widely viewed as “stan-
dard” is processor sharing (PS), in which the capacity of each resource is
shared equally among all the individual jobs residing in the resource’s asso-
ciated buffers. Under PS, then, the capacity of a resource is divided among
its associated buffers in proportion to the job counts in those buffers; to
repeat an earlier point, it is irrelevant for our purposes how the capacity
allocated to a given buffer is divided among the individual jobs in that
buffer, because (a) the performance measures on which we focus are ex-
pressed solely in terms of job counts, and (b) we assume exponential job
size distributions, so the division of the total flow rate among individual
jobs of a given type does not affect the probabilistic evolution of the job
count process.

With store-and-forward processing, our system has the structure of a
multi-class queueing network, with each resource functioning as a single-
server station, and with one “customer class” defined for each buffer (that
is, one customer class defined for each job type at each stage on its route),
but with the following non-standard feature: the size of a job, which is drawn
from a type-specific exponential distribution upon arrival to the network, re-
mains the same at each stage of its processing, so the “service times” of an
individual job at successive processing stages are perfectly correlated. To
get a queueing network model of standard type, we shall treat the service
times of a single job at successive processing stages as independent random
variables, each of them having the appropriate type-specific exponential dis-
tribution. This is a version of what is called Kleinrock’s independence as-

sumption, or Kleinrock’s independence approximation, in the literature of
communication networks; see, for example, page 115 of [19]. Section 4.1 of
[15] contains a persuasive but non-rigorous argument that the independence
approximation does not actually affect the product-form result cited below
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(that is, that the network’s steady-state distribution is the same whether a
job’s successive service times are perfectly correlated or are independent).

Hereafter, when we refer to the SFPS analog of a resource sharing net-

work, this means the store-and-forward system described at the beginning
of this section, with processor sharing used to dynamically allocate the ca-
pacity of each resource, and with the added independence approximation
explained in the previous paragraph. Such a multi-class queueing network is
known to have a product form stationary distribution, because each of its
single-server stations is what Kelly [15] called a “symmetric queue.” To be
specific, it follows from Theorems 3.7 and 3.8 of [15] that the steady-state
distribution of the SFPS analog can be specified via the constructive pro-
cedure immediately below; the same result can be found in [1], Chapter 2
of [6], and Chapter 4 of [7].

For the construction, let us denote by N1, . . . , NI the numbers of indi-
viduals that belong to “populations” numbered 1, . . . , I and suppose that
each individual is given a “label” that belongs to the set {1, . . . , J}. (These
“individuals” correspond to jobs being served in our multi-class queueing
network. One interprets Ni as the total number of jobs occupying station
i in steady state, and the label given to an individual is interpreted as the
type of the corresponding job.) The probabilistic assumptions are as follows:

(a) the population sizes N1, . . . , NI are independent random variables;
(b) Ni is geometrically distributed with mean ρi/(1 − ρi) for i = 1, . . . , I;

and
(c) the probability that an individual belonging to population i is given

label j equals Aijλjmj/
∑J

k=1Aiλkmk(i = 1, . . . , I and j = 1, . . . , J),
independent of how other individuals are labeled.

Denoting by Lj the total number of individuals that are given label j, we
see that Lj is the sum of I independent geometrically distributed random
variables (j = 1, . . . , J), and that L1, . . . , LJ are generally not independent.
For the store-and-forward analog of a resource sharing network, let us denote
by n (t) = (n

1
(t) , . . . , nJ (t)) the job count vector at time t, each component

of which involves a sum over buffers containing a given job type, and let
n(∞) be a random vector having the associated stationary distribution. The
first statement of the following proposition articulates the “product form”
result referred to above, and the second statement follows from the fact that
L1 + · · ·+ LJ = N1 + · · ·+NI .

Proposition 6.1. For the SFPS analog of a resource sharing network,

n(∞) is distributed as the vector L = (L1, . . . , LJ) constructed above, and
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hence

(6.1) E (Tot) =
I
∑

i=1

(

ρi
1− ρi

)

.

As noted earlier, processor sharing is widely viewed as a fair and rea-
sonable mechanism for allocating resource capacities in store-and-forward
networks, and there is no a priori reason to think that resource sharing
(that is, simultaneous resource possession mandated by an absence of in-
ternal buffering) is either more or less favorable than a store-and-forward
protocol with regard to delay performance, so we shall refer to (6.1) here-
after as baseline performance. Recent results by Kang et al. [14] and Shah
et al. [22] show that, in heavy traffic, the delay performance of a resource
sharing network with flow rate allocation via proportional fairness (see Sec-
tion 5) is approximately baseline performance; the next paragraph explains
their results in more detail.

For a resource sharing network of the kind considered here, with propor-
tionally fair resource allocation, [14] proves that a properly scaled version
of the job count process converges weakly in heavy traffic to a particular
diffusion limit. That limit is a semi-martingale reflected Brownian motion
(SRBM) with what are called skew-symmetric data, and so its stationary
distribution has a product form. More specifically, the stationary distribu-
tion of the SRBM is the heavy traffic limit of the product form stationary
distribution for the original network’s SFPS analog (see Proposition 6.1).
Kang et al. [14] do not deal directly with convergence of stationary distri-
butions, but [22] shows that their heavy traffic limit can be interchanged
with the t → ∞ limit. That is, if one considers a sequence of networks in
heavy traffic, assuming that each of them satisfies the usual traffic condition
(4.1), their normalized stationary distributions converge to the stationary
distribution of the SRBM that is their heavy traffic process limit.

Table 1 presents simulation results which are consistent with that theoret-
ical analysis, focusing exclusively on the bottom-line performance measure
E(Tot). For each of the three examples introduced in Section 3, figures in
the column labeled “PF simulation” were derived using Monte Carlo simula-
tion and proportionally fair resource allocation, and figures in the “baseline”
column were computed using formula (6.1).

Table 1 reports only the aggregate performance measure E(Tot) for our
three examples, but the theoretical results cited above establish the follow-
ing stronger conclusion: in heavy traffic, the entire stationary distribution

of job counts for a resource sharing network with PF allocations is well ap-
proximated by the stationary job count distribution of the network’s SFPS
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Table 1

E(Tot) comparison: Baseline versus proportional fairness for our three examples

Load E(Tot) Values Baseline − PF
BaselineExample Factor ρ Baseline PF Simulation

2LLN
0.80 8.00 7.33 8%
0.90 18.00 17.17 5%
0.95 38.00 37.11 2%

3LLN
0.80 12.00 10.56 12%
0.90 27.00 25.2 7%
0.95 57.00 53.97 5%

C3LN
0.80 12.00 10.34 14%
0.90 27.00 24.75 8%
0.95 57.00 54.29 5%

Table 2

Detailed comparison: Baseline versus proportional fairness for the 3LLN

Comparisons for ρ = 0.80
E(n1) E(n2) E(n3) E(n4) σ(n1) σ(n2) σ(n3) σ(n4) E(Tot)
2.00 2.00 2.00 6.00 2.45 2.45 2.45 4.24 12.00 Baseline
2.00 1.97 1.98 4.62 2.46 2.40 2.44 3.95 10.56 PF Simulation

Comparisons for ρ = 0.90
E(n1) E(n2) E(n3) E(n4) σ(n1) σ(n2) σ(n3) σ(n4) E(Tot)
4.50 4.50 4.50 13.50 4.97 4.97 4.97 8.62 27.00 Baseline
4.52 4.45 4.45 11.77 5.02 4.93 4.94 8.37 25.20 PF Simulation

Comparisons for ρ = 0.95
E(n1) E(n2) E(n3) E(n4) σ(n1) σ(n2) σ(n3) σ(n4) E(Tot)
9.50 9.50 9.50 28.50 9.99 9.99 9.99 17.30 57.00 Baseline
9.37 9.27 9.28 26.05 9.88 9.66 9.66 16.53 53.97 PF Simulation

analog. Table 2 presents more detailed simulation results for the 3LLN exam-
ple (see Figure 2) which give credence to that view. In that table, simulation
estimates are provided for both the mean and the standard deviation of the
stationary job count distribution for each of the network’s four job types,
along with baseline values for each of those quantities; in the obvious way,
the baseline values are computed from the product form stationary distri-
bution of the SFPS analog (see Proposition 6.1). The simulation estimates
agree quite well generally with the baseline values, and the agreement tends
to improve as the system load factor increases.

Kang et al. [14] showed that their heavy traffic diffusion limit under pro-
portional fairness, which has a product form stationary distribution, remains
the same when job size distributions are mixtures of exponentials. Based on
that extension, one may plausibly conjecture that the product form approx-
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imation under proportional fairness, corresponding to what we have called
baseline performance, remains valid with general (non-exponential) job size
distributions.

Thus far we have spoken of “baseline performance” only as an approxi-
mation, or benchmark, but the analysis of Zachary [26] shows that baseline
performance is exactly achievable in any resource sharing network that satis-
fies the usual traffic condition (4). Zachary’s analysis, which generalizes ear-
lier work by Bonald and Proutiére [4, 5], shows that there exists a dynamic
allocation scheme (see below) under which the stationary job count distribu-
tion of the resource sharing network coincides exactly with the product form
distribution of the network’s SFPS analog, and this remains true even with
general (non-exponential) job size distributions. Thus, even if the system
manager’s objective is to minimize E [h (n(∞))] for some arbitrary cost func-
tion h(·), we know that the baseline value of that performance measure (that
is, its value under the product form distribution defined by construction ear-
lier in this section) is an upper bound on the minimum achievable value.

The dynamic allocation scheme referred to in the previous paragraph is
determined as follows. In the final paragraph of his paper, Zachary [26]
observes that a resource sharing network of the kind considered here is an
example of his multi-class network model “with no internal transitions,” and
hence the partial balance equations appearing in his Theorem 2 reduce to
the detailed balance equations numbered (16) in his paper. By specifying
the equilibrium distribution π(·) in those equations to be the product-form
distribution described earlier in this section, and specifying the arrival rates
for jobs of types 1, . . . , n to be the constants λ1, . . . λn, irrespective of the
current state, one can simply solve for the departure rates of the various
job types in various systems states, and those departure rates immediately
determine the state-dependent flow rate allocations (or capacity allocations)
for the various job types. Of course, it must be verified that those allocations
satisfy the capacity constraints for all resources, and doing so is a straight-
forward task.

7. Nominal and actual workload processes. The main question
that we wish to address in the remainder of this paper is the following: Can
one improve significantly on baseline performance, assuming that E(Tot) is
the performance measure of interest? To address that question, some further
basic theory is needed. We first define the nominal workload for resource i
at time t as follows:

(7.1) ŵi (t) =
J
∑

j=1

Aijnj
(t)mj for i = 1, . . . , I.
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In contrast, we denote by wi(t) the actual workload for resource i at time t,
which means the total amount of capacity required from resource i to com-
plete the processing of jobs residing in the system at time t. (It is perhaps
worth noting that in [14] the name “workload” is used for what we call
nominal workload.)

Seeking to express the verbal definition of actual workload in terms of
model primitives (that is, in terms of arrival processes, job size random
variables, resource consumption rates and resource capacities), we proceed
as follows. First, for each resource i and each t ≥ 0, let ℓi(t) denote the total
amount of resource i capacity required to process all jobs that arrive over
[0, t]. (The letter ℓ is mnemonic for load.) This quantity can be expressed in
terms of arrival processes and job size random variables for the various job
types j, plus the resource consumption rates Aij . Then one has

(7.2) wi (t) = ℓi (t)−
J
∑

j=1

Aij

∫ t

0

xj(s)ds = ξi (t) + ui (t) , t ≥ 0,

where

(7.3) ξi (t) = ℓi (t)− Cit and ui (t) =

∫ t

0



Ci −
J
∑

j=1

Aijxj(s)



 ds, t ≥ 0.

We call {ξ(t), t ≥ 0} the netflow process for resource i, and interpret ui (t) as
the total amount of resource i capacity that goes unused over [0, t]. Note that
ξi (t) is a random variable defined directly in terms of model primitives, with-
out reference to the control chosen by the system manager, whereas ui (t)
is dependent on the chosen control. Because {wi(t), t ≥ 0} is by definition a
non-negative process, one has ui(t) ≥ −min{ξi(s), 0 ≤ s ≤ t}, which implies

(7.4) wi(t) ≥ w∗
i (t),

where

(7.5) w∗
i (t) = ξi(t)−min{ξi(s), 0 ≤ s ≤ t}, t ≥ 0.

We call {w∗
i (t) , t ≥ 0} the minimum workload process for resource i, observ-

ing that (7.4) holds with equality if and only if, over the entire time interval
[0,t], resource i is able to work at full capacity whenever there is work for it
to do in the system.

The process w∗ (t) = (w∗
1 (t) , . . . , w

∗
I (t)) is defined directly in terms of

model primitives, and does not depend on the control chosen by the system
manager. Using a standard time reversal argument, as in Section 1.10 of [12],
we have that w∗ (t) ∼ M (t) for each fixed t > 0, where “∼” denotes equality
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in distribution, M (t) = (M1 (t) , . . . ,MI (t)), and

(7.6) Mi(t) = max{ξi (s) , 0 ≤ s ≤ t} for t ≥ 0 and i = 1, . . . , I.

(The time-reversal argument requires only that the process ξ(t) = (ξ1(t), . . . ,
ξI(t)), t ≥ 0, have stationary independent increments and ξ(0) = 0.) It
follows that the random vectors w∗ (t) increase stochastically to a finite limit
w∗(∞) as t ↑ ∞. Also, under any stable admissible control, the workload
vector w (t) = (w1 (t) , . . . , wI (t)) converges in distribution as t ↑ ∞ to a
finite limit (see Appendix A) that we shall denote w(∞), and by (7.4) we can
define w(∞) and w∗(∞) on a common probability space in such a way that

(7.7) w(∞) ≥ w∗(∞).

Given a stable admissible control, let w (t) be the associated I-dimensional
actual workload process, and let ŵ (t) be the associated I-dimensional nom-
inal workload process. We can rewrite (7.1) in vector-matrix form as

(7.8) ŵ (t) = AMn(t), t ≥ 0.

Also, from the memoryless property of the exponential distribution, we have
that ŵi (t) = E [wi (t) |n (t)] for all i and t, which can be expressed in vector
form as

(7.9) ŵ (t) = E [w (t) |n (t)] , t ≥ 0.

8. Minimum possible cost rate given nominal workload. Here-
after we denote by e the J-vector of ones, and by Rk

+ the non-negative
orthant of k-dimensional Euclidean space. Formula (8.1) below defines a
function f : RI

+ → RJ
+ for which an interpretation will be provided shortly.

Proposition 8.1. For each w ∈ RI
+ the set {z ∈ RJ

+ : AMz = w} is

non-empty, and so it is meaningful to define

(8.1) f (w) = min{e · z : AMz = w, z ∈ RJ
+} for w ∈ RI

+.

Moreover, there exists a continuous function g : RI
+ → RJ

+ such that

(8.2) g (w) = argmin{e · z : AMz = w, z ∈ RJ
+} for w ∈ RI

+.

Proof. Restated in different terms, our local traffic assumption says that
there exist I columns of the capacity consumption matrix A that constitute
an I × I diagonal sub-matrix with strictly positive diagonal elements. The
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same is then true for AM, from which the first statement of the proposition
is immediate. The second statement of the proposition says that the optimal
solution of a certain linear program can be chosen as a continuous function of
the right-hand side values. It follows from the Basis Decomposition Theorem
in Section 3 of [25], as those authors explain immediately before the theorem
statement.

For an interpretation of f (w), it is useful to think of e · n as the cost rate
associated with a job count vector n, so our performance measure E(Tot)
represents the steady-state average cost rate under a given policy. Because
n (t) ≥ 0 for any t ≥ 0, the definitions (7.8) and (8.1) imply

(8.3) e · n (t) ≥ f(ŵ(t)) for all t ≥ 0.

That is, no job count vector which yields a given nominal workload vector
w can achieve a cost rate smaller than f (w). Moreover, if one ignores the
distinction between integer and non-integer job counts (which is a minor
distinction in heavy traffic), then the function value f (w) in (8.1) can be
described as the minimum possible cost rate given that the nominal work-
load vector is w. (This interpretation ignores the fact that not all w ∈ RI

+

can occur as nominal workload vectors.) Perhaps surprisingly, f(·) is not
necessarily monotone in all of its arguments; see below for elaboration.

It is instructive to consider the form of the function f(·) for the first two
examples specified in Section 3. For our two-link linear network (Figure 1)
one has

A =

(

1 0 1
0 1 1

)

,

and M is the 3 × 3 identity matrix, from which one obtains the following:
for any workload vector w = (w1, w2), the minimizing choice of z in (8.1) is

z =
(

(w1 − w2)
+, (w2 − w1)

+, w1 ∧ w2

)

, which gives f(w) = w1 ∨ w2. That

is, to minimize the cost rate z1 + z2 + z3 given w, one takes z3 (the number
of waiting jobs that require both resources for their processing) as large
as possible. In this case we see that f(·) is monotone increasing in both
arguments. For our three-link linear network (Figure 2), one has

A =







1 0 0 1
0 1 0 1
0 0 1 1






,

and M is the 4× 4 identity matrix, from which one obtains

f(w) =
3∧

i=1
wi +

3
∑

i=1

(wi −
3∧

k=1
wk).
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In this case f(·) is not monotone, as shown by the following: for w = (2, 2, 1)
the minimizing choice of z in (8.1) is (1,1,0,1), and for w = (2, 2, 2) it is
(0,0,0,2), implying that f(2, 2, 1) = 3 but f(2, 2, 2) = 2. That is, a lower
cost rate (lower total job count) can be achieved with a higher workload for
resource 3, because then it becomes possible to hold all work in the form of
jobs that need processing by all three resources.

9. Approximating Brownian system model. In Section 1 it was
said that we follow a “standard recipe” in formulating a Brownian approx-
imation of the system manager’s dynamic allocation problem. To be more
specific, we adopt the framework developed in Section 5 of Harrison [11],
referred to hereafter as H2000. The general resource sharing network de-
scribed in Section 2 of this paper is a straightforward example of what is
called a “stochastic processing network” in H2000: in a resource sharing
network we have I processing resources, J different “materials” being pro-
cessed (namely, jobs of the J different types), and J “processing activities”
(namely, the processing of the J different job types). At any given time t, it
is the flow rate allocated to type j jobs that constitutes the “activity level”
for activity j. In our context, the input-output matrix R identified in H2000
is the J × J diagonal matrix M−1, because the stock of material j on hand
(that is, the number of type j jobs residing in the system) is decreased at
an average rate of µjxj when activity j is conducted at level xj . Finally, the
capacity of resource i is consumed at rate Aijxj when activity j is conducted
at level xj.

Conforming to the framework of H2000, we state our heavy traffic as-
sumption in the following form: there exist nominal arrival rates λ∗

1, . . . , λ
∗
J

and a small parameter ε > 0 such that

(9.1) θj = (λj − λ∗
j )/ε is of moderate size (order 1) for each j = 1, . . . , J,

and moreover,

(9.2) AMλ∗ = C.

Conditions (9.1) and (9.2) can be expressed verbally as follows: the nomi-
nal arrival rates are close to the actual arrival rates, and taken in aggregate,
they load each resource to exactly its capacity. (Given our local traffic as-
sumption, the H2000 notion of “heavy traffic” holds if and only if all of
the actual load factors ρ1, . . . , ρJ are close to 1.) The nominal activity lev-

els defined in H2000 are simply x∗j = λ∗
j/µj for j = 1, . . . , J and then we

re-express the system manager’s chosen control in the following form, using



RESOURCE SHARING NETWORKS 541

the simplified notation x(t) = (x1(t), . . . , xJ (t)) to denote the vector of flow
rate allocations chosen at time t:

(9.3) yj (t) = x∗j t−
∫ t

0

xj(s)ds for j = 1, . . . , J and t ≥ 0.

Elements of the vector y(t) re-express the system manager’s allocations to
the various job types as cumulative decrements from the nominal allocations.
Now the small parameter ε is used as a scaling constant in the following
definitions:

(9.4) Z(t) = εn(ε−2t), Y (t) = εy(ε−2t), and U(t) = εu(ε−2t)

for t ≥ 0. That is, we define Z, Y and U as diffusion-scaled versions of the
job count process n, the chosen control y, and the unused capacity process u,
respectively.

It follows from (9.3), (9.4), the definition of u(·) in (7.3), and the defining
characteristics of the nominal arrival rates λ∗

j that

(9.5) U(t) = AY (t) for t ≥ 0.

The key relationship for the approximate system model developed in Sec-
tion 5 of H2000 is

(9.6) Z(t) = X(t) +RY (t) = X(t) +M−1Y (t), t ≥ 0,

where X is a J-dimensional Brownian motion having drift vector θ = (θ1,
. . . , θJ) and a particular covariance matrix Σ that need not concern us here.
We also have the obvious requirements that

(9.7) U(·) is non-decreasing with U(0) = 0,

and

(9.8) Z(t) ≥ 0 for all t ≥ 0.

In the approximating Brownian system model, the Brownian motion X
is taken as primitive, and the system manager must choose a control Y
that is non-anticipating with respect X, subject to the constraints (9.7) and
(9.8), where U(·) and Z(·) are defined by (9.5) and (9.6), respectively. Up
to now nothing has been said about the system manager’s objective, but let
us suppose it is to

(9.9) minimize E[e · Z(∞)].
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That is, we restrict attention to control policies under which Z has a steady-
state distribution, denoting by Z(∞) a random variable which has that
distribution, and seek to minimize the analog of E(Tot) for the Brownian
model. The addition of this objective to the system equations (9.5)–(9.8)
gives us a Brownian control problem (BCP) that approximates the dynamic
control problem discussed earlier for the original resource sharing network.

10. Hierarchical greedy control in the Brownian model. The
Brownian approximation of a stochastic processing network is invariably
simpler than the original, “exact” model that it replaces, and one manifesta-
tion of that simplicity is the existence of an equivalent workload formulation

of the approximating BCP, the general theory of which was developed by
Harrison and Van Mieghem [13]. Rather than recapitulate all of that the-
ory, a few simple observations will suffice for our purposes here. First, let us
define

(10.1) W (t) = AMZ(t), t ≥ 0.

Recall that Z is interpreted as a diffusion-scaled version of the job count
process in our resource sharing network. Thus, comparing (7.8) and (10.1),
one is led to interpret W as a diffusion-scaled version of the nominal work-
load process ŵ that was defined in Section 8. However, given our assumption
of exponential job size distributions, the diffusion-scaled difference between
nominal and actual workload processes vanishes in the heavy traffic limit;
see Appendix A for a sketch of the standard argument supporting that con-
clusion. Expressing that state of affairs more loosely, one may say that the
distinction between nominal and actual workloads is negligible in heavy traf-
fic, so W will be called simply the workload process (without any modifier)
for our approximating Brownian system model. Multiplying both sides of
(9.6) by AM , then substituting (9.5) and (10.1), we have the key relation-
ship

(10.2) W (t) = B(t) + U(t), t ≥ 0, where B(t) = AMX(t), t ≥ 0.

Now (10.1) implies that W (·) ≥ 0, so for each i = 1, . . . , I and each t ≥ 0,
the smallest possible value for Ui (t) is

(10.3) U∗
i (t) = − min

0≤s≤t
Bi(s),

which corresponds to the minimum workload process

(10.4) W ∗
i (t) = B(t) + U∗

i (t).
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Defining W ∗(t) = (W ∗
1 (t), . . . ,W

∗
I (t)) in the obvious way, we can invoke

Proposition 8.1 to define a continuous process

(10.5) Z∗(t) = g(W ∗(t)), t ≥ 0,

which gives us Z∗(·) ≥ 0 and

(10.6) e · Z∗(t) = f(W ∗(t)), t ≥ 0.

Inverting the fundamental system equation (9.6), the corresponding control
is

(10.7) Y ∗(t) = M [X(t)− Z∗(t)] , t ≥ 0.

Equations (10.3), (10.4), (10.5) and (10.6) together define an admissible
control Y ∗ for the approximating BCP that has two distinguishing features.
First, it minimizes cumulative unused capacity of all resources simultane-
ously at all points in time, thus achieving the minimum workload process
W ∗. The proof of Proposition 8.1 shows that our local traffic assumption
is essential for existence of such a control: it ensures that any non-negative
workload vector w satisfies w = AMz for some non-negative job count
vector z; expressing the same thing in different words, it ensures that the
potential state space for the workload process W in the Brownian system
model is the entire orthant RI

+.
The second distinguishing feature of the control Y ∗ is the following: at ev-

ery time t it achieves the lowest cost rate e·Z(t) that is possible given the con-
straints imposed by maximum resource utilization. We call Y ∗ the hierarchi-
cal greedy (HG) control, or hierarchical greedy policy, for our approximating
BCP, because it first focuses myopically (greedily) on maximizing resource
utilization, and then, given the constraints imposed by that dominant con-
cern, configures the backlog of work so that the associated cost rate is mini-
mized. That is, the control Y ∗ represents or embodies a hierarchical strategy
in which resource utilization is primary and job count is secondary. The as-
sociated steady-state performance measure E [e · Z∗(∞)] = E [f(W ∗(∞))]
will be referred to hereafter as HG performance for our approximating BCP.

It should be emphasized that HG performance is not necessarily optimal
performance in the BCP, because the minimum-possible-cost-rate mapping
f(·) is not necessarily monotone (see Section 8). That is, greedily maximizing
resource utilization may actually be inconsistent with minimizing steady-
state total job count, but one feels intuitively that reducing workload will
tend to have a favorable effect on job count as well.

The maximum-utilization aspect of the HG control is pictured in the right
panel of Figure 5 for two-dimensional (that is, two-resource) systems: under
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Figure 5. Baseline versus HG workload state space
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Fig 5. Baseline versus HG workload state space.

HG control the workload process W is reflected only at the boundary of the
quadrant, which is interpreted to mean that capacity of each resource is fully
utilized as long as there is any work in the system for that resource. The
left panel of Figure 5 reproduces a figure from [14], showing the workload
state space for the baseline diffusion process which those authors obtain as
a heavy traffic limit under proportionally fair resource allocation; reflection
occurs along two rays that lie strictly inside the non-negative quadrant,
which corresponds to the occurrence of unused capacity under circumstances
where it is avoidable.

11. Hierarchical greedy ideal (HGI) performance for the orig-
inal model. In the foregoing discussion of Brownian approximations, we
identified a hierarchical greedy control Y ∗ with associated performance mea-
sure E[e ·Z∗(∞)] = E[f(W ∗(∞))], where W ∗ is the minimum workload pro-
cess defined by (10.3) and (10.4). For our original resource sharing network,
we define an analogous hierarchical greedy ideal (HGI) performance goal as
follows:

(11.1) HGI performance goal = E[f(w∗(∞))].

where w∗ is the minimum actual workload process defined via (7.5). Given
the interpretation of f(·) that was provided in Section 8, it might seem more
natural to define HGI performance in terms of nominal workload, rather than
actual workload, but (a) as noted in Section 10, the distinction between
nominal and actual workload is negligible in the heavy traffic parameter
regime on which we focus, and (b) minimum actual workload is a well defined
process in our original model setting, but minimum nominal workload is not.
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Table 3

E(Tot) comparison: Baseline versus HGI for our three examples

Load E(Tot) Values Baseline − HGI
BaselineExample Factor ρ Baseline HGI

2LLN
0.80 8.00 5.89 26%
0.90 18.00 12.75 29%
0.95 38.00 26.61 30%

2LLN
0.80 12.00 8.80 27%
0.90 27.00 19.06 29%
0.95 57.00 39.46 31%

C3LN
0.80 12.00 8.80 27%
0.90 27.00 16.00 41%
0.95 57.00 33.29 42%

In broad terms, the obvious way for a system manager to pursue (11.1) as
a performance goal is to use a hierarchical greedy approach akin to what was
described in Section 10: first focus myopically (greedily) on workload min-
imization, or equivalently, on maximizing resource utilization (minimizing
unused capacity); and then, given the constraints imposed by that dominant
concern, strive to configure the backlog of work so that the associated cost
rate is minimized. Our use of the word “ideal” in reference to (11.1) empha-
sizes the point that neither full resource utilization, nor cost rate minimiza-
tion given workload, can be achieved exactly in a resource sharing network.
On the other hand, the right-had side of (11.1) is not necessarily a lower
bound on achievable performance, because of the non-monotonicity of f(·)
that was demonstrated in Section 8. That is, a control policy that achieves
HGI performance is not necessarily optimal, although one feels intuitively
that (11.1) represents a high standard of performance.

To substantiate that view, Table 3 compares HGI and baseline values
of E(Tot) for our three examples, using three different load factors ρ: the
E(Tot) value in the column labeled “Baseline” is computed via formula (6.1),
and the E(Tot) value in the column labeled “HGI” is a simulation estimate of
E [f (w∗(∞))], in accordance with (11.1); see Appendix B for an explanation
of the simulation logic. In these examples, HGI performance represents a 25–
45% improvement over baseline performance, with greater percentage gains
occurring at higher load factors. Also, the greatest percentage gains occur
in the most complex of the three examples.

The analysis presented in Section 10 of this paper, when combined with
arguments made in H2000 and earlier work referenced there, lead us to con-
jecture the existence of a control policy that achieves HGI performance in
the heavy traffic limit; see Section 14 for elaboration. However, because the
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Brownian system model provides such a highly compressed representation
of the original resource sharing network, there is no obvious general way
of translating achievable behavior in the Brownian model into an imple-
mentable control policy for the original system. That conundrum has been
noted and discussed by various authors, starting with [9]. No general reso-
lution has been found thus far, although [10] describes an approach using
discrete-review policies that has broad potential applicability, and progress
has been made for certain special network structures, such as the parallel
server models studied by [2, 3].

12. Striving for HGI performance via UFOS. For the two-link
linear network (2LLN) portrayed in Figure 1, it is possible to achieve the
minimum workload vector w∗ (t) exactly, at every time t ≥ 0 with prob-
ability 1, as follows. (a) Use one of the allocation vectors x = (1, 1, 0) or
x = (0, 0, 1) whenever possible; the former choice keeps both resources fully
utilized by processing type 1 jobs and type 2 jobs simultaneously, while the
latter choice keeps both resources fully utilized by processing (only) type 3
jobs. (b) If only type 1 jobs are available for processing, choose x = (1, 0, 0),
and if only type 2 is available, choose x = (0, 1, 0).

These rules are sufficient to achieve minimum workload (that is, they
ensure that each resource will be fully utilized whenever there is work for it
in the system), but they leave open the question of what to do when all three
job types are present. In that case, the obvious choice for a system manager
who wants to minimize E(Tot) is x = (1, 1, 0) rather than x = (0, 0, 1),
because the former decreases the total job count n1+n2+n3 at an expected
rate of µ1 + µ2 = 2, whereas the latter decreases n1 + n2 + n3 at expected
rate µ3 = 1. That is, when the primary criterion of maximizing resource
utilization does not fully specify the control action, the remaining freedom
should be used to decrease the instantaneous “cost rate” n1 + n2 + n3 as
rapidly as possible on an expected value basis. This scheme will be referred
to by the acronym UFOS, which is mnemonic for utilization first, output

second.
The UFOS allocation scheme is the obvious way to strive for HGI per-

formance in the 2LLN In fact, [24] shows the following: if µ1, µ2 ≤ µ3 and
µ3 ≤ µ1 + µ2 then UFOS stochastically minimizes n1(t) + n2(t) + n3(t) for
each t ≥ 0 in a two-link linear network, and hence it minimizes E(Tot) as
well The parameter values that we have assumed (µ1 = µ2 = µ3 = 1) satisfy
those inequality constraints, so UFOS is exactly optimal for our 2LLN.

Moving now to the three-link linear network (3LLN) portrayed in Figure 2,
the following analogous UFOS scheme immediately suggests itself: if all of
job types 1, 2 and 3 are available for processing, choose the allocation vector
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Table 4

E(Tot) comparison: HGI versus UFOS for our three examples

Load E(Tot) Values UFOS − HGI
HGIExample Factor ρ Baseline HGI

2LLN
0.80 5.89 6.05 3%
0.90 12.75 13.26 4%
0.95 26.61 27.13 2%

3LLN
0.80 8.80 8.94 2%
0.90 19.06 19.81 4%
0.95 39.46 40.47 3%

C3LN
0.80 8.80 8.12 -8%
0.90 16.00 17.57 10%
0.95 33.29 36.23 9%

x = (1, 1, 1, 0); if one or more of those types is not available, but type 4 is

available, choose x = (0, 0, 0, 1); and if neither of those choices is available,
allocate the capacity of each resource to local traffic in the obvious way. This
UFOS scheme achieves the minimum workload vector w∗ (t) at every time
t, and it maximizes the instantaneous output rate when doing so does not
jeopardize full resource utilization, but it is not necessarily optimal, because
with three links there exist system states where maximizing resource utiliza-
tion requires some sacrifice in terms of the total output rate, and vice versa.

We conjecture that, for both the 2LLN and 3LLN, the UFOS allocation
scheme described above will approach HGI performance asymptotically in
the heavy traffic limit, by which we mean that the percentage difference be-
tween HGI performance and E(Tot) under UFOS will vanish as ρ ↑ 1. That
conjecture is reasonably well supported by the simulation results reported
in Table 4, where the percentage differences fall between 2% and 4% for all
three values of ρ considered.

For the complex three-link network (C3LN) portrayed in Figure 3, the
simulation results reported in Table 4 were derived using the following defini-
tion of UFOS: first, for any given state vector n, identify the set of allocation
vectors x = (xj) that

(12.1) maximize
I
∑

i=1

(Ax)i subject to Ax ≤ C and x ∈ Φ(n),

where Φ(n) is defined by (2.1); and second, among the allocation vectors x
that achieve the maximum in (12.1), choose one to

(12.2) maximize
J
∑

j=1

µjxj .
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Table 5

Summary of E(Tot) comparisons for our three examples

Load E(Tot)V alues PF − UFOS
PFExample Factor ρ Baseline PF Simulation HGI UFOS

2LLN
0.80 8.00 7.33 5.89 6.05 17.5%
0.90 18.00 17.17 12.75 13.26 22.8%
0.95 38.00 37.11 26.61 27.13 26.9%

2LLN
0.80 12.00 10.56 8.80 8.94 15.3%
0.90 27.00 25.2 19.06 19.81 21.4%
0.95 57.00 53.97 39.46 40.47 25.0%

C3LN
0.80 12.00 10.34 8.80 8.12 21.5%
0.90 27.00 24.75 16.00 17.57 29.0%
0.95 57.00 54.29 33.29 36.23 33.3%

The objective function in our first-level optimization (12.1) is simply the sum
of the utilization rates for the various resources, and the equal weighting used
in that objective function is arbitrary: any weighted sum of the utilization
rates having all weights strictly positive would be consistent with our earlier
specification of UFOS for the 2LLN and 3LLN.

A striking feature of Table 4 is that, for the C3LN with load factor ρ =
0.80, the simulation estimate of E(Tot) under UFOS is actually 8% below

HGI performance, which underscores the point that HGI performance is not
necessarily a bound on optimal performance (see Section 11). At higher load
factors, the ordering of UFOS performance and HGI performance is reversed,
and the gap between them is substantial. There is no compelling reason to
believe that the percentage gap between HGI and UFOS will vanish as ρ ↑ 1,
but we have no better scheme to recommend as a means of approaching HGI
performance in the C3LN.

13. Recap and a negative example. Table 5 combines results pre-
sented earlier (specifically, in Tables 1, 3 and 4), in order to underscore
the following points about our three examples. First, the baseline formula
(6.1) closely approximates simulated performance under proportional fair-
ness (PF). Second, the hierarchical greedy ideal (HGI) formula (11.1) rep-
resents a 25–45% improvement relative to baseline. And third, the UFOS
allocation scheme defined by (12.1) and (12.2) gives E(Tot) values reason-
ably close to HGI performance for these examples.

In particular, as shown in the right-most column of Table 5, E(Tot) val-
ues under UFOS are 15–35% lower than those under proportional fairness,
with greater relative improvements achieved at higher load factors. These
are moderate but significant performance gains. We conjecture that similar
gains would be achievable, relative to the performance of proportional fair-
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Fig 6. An example where UFOS fails.

ness and other frequently cited allocation schemes, if a congestion measure
different from E(Tot) were used. For example, if the objective were to min-
imize a quadratic function of the steady-state job counts, rather than the
linear function embodied in E(Tot), the second-stage logic of UFOS could
be altered to drive down that quadratic cost as quickly as possible on an
expected value basis.

Unfortunately, the UFOS allocation scheme (as we have defined it) is not
generally effective. This is illustrated by the example portrayed in Figure 6,
which was suggested by R. Srikant. (This example does not satisfy our local
traffic assumption, but one can add to it a stream of local traffic for each
resource, with each such stream having mean job size 1 and an average arrival
rate of, say, ρ/100. The local traffic will then constitute an insignificant
fraction of the load on any given resource, and everything said here will
remain essentially the same.) In Figure 6 there are three job types, and the
mean job size is assumed to be 1 for each of them. As shown on the figure,
each of the six resources has capacity 1. Average arrival rates are as shown
on the figure, so resources 1 through 4 all have a load factor of 0.5, while
resources 5 and 6 each have a load factor of 0.8.

Job types 1 and 2 both utilize three resources, whereas type 3 utilizes
only two resources. Thus the first-stage UFOS optimization (12.1) effectively
gives priority to types 1 and 2: if there are any jobs of either type 1 or type 2
present in the system, a flow rate of 1 will be allocated to them, while type 3
is given a zero allocation. Because of their priority status, jobs of types 1
and 2 both enter what is effectively an M/M/1 queue with load factor 0.5,
and those two M/M/1 queues operate independently of one another; the
steady-state probability that either n1 or n2 individually equals zero is 0.5,
and the steady-state probability that n1 = n2 = 0 is 0.25. Type 3 jobs
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receive a flow rate allocation of 1 when n1 = n2 = 0, and an allocation of
zero otherwise, which is inadequate to meet the type 3 input rate of 0.3.
Thus the system portrayed in Figure 6 is actually unstable under UFOS as
we have defined it, even though no resource has a load factor larger than 0.8.

The problem, of course, is that UFOS is “distracted” by the lightly loaded
resources numbered 1 through 4, giving just as much weight to keeping them
busy as to keeping busy the critical resources numbered 5 and 6. One ap-
proach to fixing that problem is to use a weighted sum of utilization rates as
the objective function in (12.1), with larger weights for more heavily loaded
resources, or to adjust the weights dynamically depending on the current
workloads of different resources. While that idea is attractive in principle,
we have not been able to devise a provably effective implementation thus far.

14. Open problem. In conclusion, it may be helpful to state more
precisely the “open problem” referred to in the title of this paper. Consider
a general resource sharing network of the kind described in Section 2, with
ρi < 1 for each resource i, viewing the arrival rates λ1, . . . , λJ as variable
parameters. Initially, consider a sequence of values for the arrival rate vec-
tor such that ρi ↑ 1 for each resource i, and moreover, (1 − ρi)/(1 − ρk)
converges to a strictly positive constant for every pair of resources i and k
(that is, the load factors for different resources converge to 1 at the same
rate). This type of formulation, in which all resources are equally “criti-
cal,” is more or less standard in heavy traffic theory. Using the standard
approach to asymptotic optimality, one would then state the problem as
follows: develop a corresponding sequence of dynamic allocation schemes
such that the percentage difference between the E(Tot) values they achieve
and HGI performance vanishes. Presumably that would be accomplished by
constructing controls whose associated job count processes, properly scaled,
converge weakly to the process Z∗ defined in Section 7.

A more stringent version of the problem would require that the dynamic
allocation logic not depend on arrival rates; in the literature of communica-
tion networks, this is commonly cited as a desirable characteristic, because
arrival rates may vary through time and one wants a control scheme that re-
mains effective in the face of such changes. With that constraint, the problem
is effectively to find a single dynamic allocation scheme which, when applied
with the specified sequence of arrival rate vectors, causes the percentage dif-
ference between achieved E(Tot) values and HGI performance to vanish. Of
course, one wants a dynamic allocation scheme which has that property for
any sequence of arrival rate vectors that take the system into heavy traffic.

Finally, it is of interest to consider the broader heavy traffic regime where
ρi ↑ 1 for some resources i but not necessarily for all of them, or where the
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load factors for different resources approach 1 at different rates. Again the
problem is to formulate a control policy such that the percentage difference
between HGI performance and the policy’s achieved E(Tot) value vanishes
in the limit. With this broadened view of “heavy traffic,” there arises the
distinction between “critical” and “sub-critical” resources: the steady-state
minimum workloads for sub-critical resources are eventually insignificant
compared to the steady-state minimum workloads for critical ones, and so
sub-critical resources are eventually irrelevant for computing HGI perfor-
mance values. Still, the preceding discussion of Srikant’s example (Figure 6)
shows that the potential presence of sub-critical resources substantially com-
plicates the task of designing general control logic.

APPENDIX A: MORE ON WORKLOAD PROCESSES

We shall consider in this appendix an ordinary M/M/1 queueing system,
which can be viewed as a special case of the resource sharing network de-
scribed in Section 2. To be specific, it is the special case where I = J = 1
and the capacity consumption matrix A consists of a single 1. Two results
will be developed in that simplified setting, and then their obvious analogs
for general networks will be stated.

Consider an M/M/1 system with service rate µ = 1, arrival rate λ < 1,
and initial state n (0) = 0 We view λ as a variable parameter, define
ε =

√
1− λ, and eventually consider the heavy traffic limit where ε ↓ 0. As-

suming that server capacity is allocated to jobs in a work conserving manner
that does not depend on the jobs’ service times (for example, it could be
FIFO, LIFO or processor sharing) the memoryless property of exponential
service times gives us the following:

(A.1) w(t) ∼ S (n(t)) for each fixed t > 0,

where {n(t), t ≥ 0} is the job count process as in Section 2, {w(t), t ≥ 0} is
the actual workload process as in Section 7, “∼” denotes equivalence in dis-
tribution, Sk = η1+ · · ·+ηk for k = 1, 2, . . . , and η1, . . . , ηk are independent,
exponentially distributed random variables with mean 1, also independent
of n (t). Because the mean service time (mean job size) is 1 by assumption,
the nominal workload process {ŵ(t), t ≥ 0} defined in Section 7 is simply

(A.2) ŵ(t) = n(t), t ≥ 0.

Using the symbol “⇒” to denote convergence in distribution, we have
n(t) ⇒ n(∞) as t → ∞, where n(∞) has a specific distribution that need
not concern us here. From that and (A.1) it follows (using the continuity
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theorem for Laplace transforms, for example) that

(A.3) w(t) ⇒ w(∞) as t → ∞, where w(∞) ∼ S(n(∞)).

If one considers a resource sharing network operating under any stable con-
trol, we have n(t) ⇒ n(∞) as a matter of definition, and then one obtains
w(t) ⇒ w(∞) by precisely similar reasoning. That is, there exists a limiting
actual workload distribution under any stable control strategy, as claimed
in Section 7.

To compare the nominal and actual workload processes in heavy traffic, it
will be useful to define Ŝ(k) = S(k)− k for k = 1, 2, . . . , observing that Ŝ(·)
is the partial sums process for an independent and identically distributed
sequence with zero mean. From (A.1) and (A.2) we have

(A.4) w(t)− ŵ(t) ∼ Ŝ (n(t)) for each fixed t > 0.

Let us now consider the parametric family of M/M/1 systems with ε ↓ 0,
using the notation nε(t) to indicate explicitly the dependence of the job
count process on the parameter ε, and similarly for wε(t) and ŵε(t). For the
diffusion scaled job count process we have

(A.5) εnε(ε−2t) ⇒ Z(t) as ε ↓ 0 for each fixed t > 0,

where{Z(t), t ≥ 0} is a certain one-dimensional reflected Brownian motion.
This is the standard heavy traffic limit theorem for an M/M/1 system; see,
for example, Section 6.4 of [7]. A bit more work gives

(A.6) E
[

εnε(ε−2t)
]

⇒ E[Z(t)] < ∞ as ε ↓ 0 for each fixed t > 0

as well. Let us now consider the difference between the diffusion scaled actual
and nominal workload processes, defining

(A.7) ∆ε(t) = εw(ε−2t)− εŵ(ε−2t), t ≥ 0.

Denoting by σ2 the variance of the service time (job size) random variables
{ηk}, we have from (A.4) that

(A.8) E[∆ε(t)] = 0 and Var [∆ε(t)] = ε2σ2E[nε(ε−2t)] = εσ2E[εnε(ε−2t)].

Combining this with (A.6), we conclude that ∆ε(t) → 0 in the L2 sense, and
hence also in probability, as ε ↓ 0 for fixed t > 0, and the argument is easily
extended to give ∆ε ⇒ 0 in the functional sense.

An argument virtually identical to that in the previous paragraph estab-
lishes a similar conclusion for general resources sharing networks. That is, if
we consider a family of such networks parameterized by ε > 0, operating un-
der a stable control such that (A.5) and (A.6) hold for some limit process Z,
then the difference between the diffusion scaled nominal and actual workload
processes vanishes in the heavy traffic limit, as claimed in Section 10.
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APPENDIX B: ESTIMATING HGI PERFORMANCE VIA MONTE
CARLO SIMULATION

Estimates of the HGI performance goal E[f(w∗(∞))] were obtained, for
each of our three network examples and for each of the ρ values considered
in Section 11, using a two-step procedure. The first step generates a sample
path of the minimum workload process w∗ defined in Section 7, as follows.
Poisson arrivals and exponentially distributed job sizes are generated for
each job type j, from which we construct sample paths of the workload
input processes {ℓi(t), t ≥ 0} that were defined verbally in Section 7: the
sample path of ℓi(·) for a given resource i starts at ℓi(0) = 0, is constant
between arrival epochs, and jumps upward by an amount AijS when a type
j job arrives and that job has size S. Next, the sample path of the mini-
mum workload process {w∗

i (t), t ≥ 0} is constructed independently for each
resource i, exactly as one constructs the content process of a dam with cumu-
lative input process ℓi(·) and constant outflow rate Ci. That is, the sample
path of w∗

i (·) starts at w∗
i (0) = 0, has upward jumps identical to those of

ℓi(·), slopes downward at rate Ci until w
∗
i (·) = 0 again, and then remains at

zero until the next jump of ℓi(·) occurs. A regenerative cycle is completed
at the first time τ , following the first arrival of a job of any type, when we
once again have w∗

i (τ) = 0 for all i = 1, . . . , I.
The second step in our estimation procedure is to calculate, given a piece-

wise linear sample path {w∗(t), 0 ≤ t ≤ τ} of the vector process w∗ over a
regenerative cycle, the integral

(B.1) F =

∫ τ

0

f(w∗(t))dt.

Let 0 = T0 < · · · < TK = τ be a sequence of times such that all components
of w∗(·) are linear over each sub-interval [Tk−1, Tk), k = 1, . . . ,K. That is,
each break point Tk is either the arrival time of some job or else a time
at which some component of w∗ hits zero from above. In all three of our
examples we have Ci = 1 for each resource i, which implies the following: over
each of the subintervals [Tk−1, Tk), each component w∗

i (·) of the minimum
workload process is either identically zero or else linear with slope −1. It
follows from that special structure and the definition of f(·) that f (w∗(t))
is itself linear in t over each of the subintervals [Tk−1, Tk), implying that

(B.2)

∫ Tk

Tk−1

f (w∗ (t)) dt =
1

2
[f (w∗(Tk−1+)) + f(w∗ (Tk−))] (Tk − Tk−1).

Thus, exact computation of the integral in (B.2) requires only that f(·)
be evaluated for finitely many values of its argument, which is easily done:
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explicit formulas for f(·) were given in Section 7 for our 2LLN and 3LLN,
and a similar, more complicated formula was developed for the C3LN.

We generated a large number N of regenerative cycles, recording their
durations τ1, . . . , τN and the corresponding values F1, . . . , FN for the inte-
gral in (B.2). Using the regenerative method, we then estimated the HGI
performance goal as

E [f(w∗(∞))] ≃ (F1 + · · · + FN )/(τ1 + · · ·+ τN ).
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