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Rumors in a Network: Who’s the Culprit?
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Abstract—We provide a systematic study of the problem of
finding the source of a rumor in a network. We model rumor
spreading in a network with the popular susceptible-infected (SI)
model and then construct an estimator for the rumor source. This
estimator is based upon a novel topological quantity which we
term rumor centrality. We establish that this is a maximum like-
lihood (ML) estimator for a class of graphs. We find the following
surprising threshold phenomenon: on trees which grow faster than
a line, the estimator always has nontrivial detection probability,
whereas on trees that grow like a line, the detection probability
will go to 0 as the network grows. Simulations performed on
synthetic networks such as the popular small-world and scale-free
networks, and on real networks such as an internet AS network
and the U.S. electric power grid network, show that the estimator
either finds the source exactly or within a few hops of the true
source across different network topologies. We compare rumor
centrality to another common network centrality notion known
as distance centrality. We prove that on trees, the rumor center
and distance center are equivalent, but on general networks, they
may differ. Indeed, simulations show that rumor centrality out-
performs distance centrality in finding rumor sources in networks
which are not tree-like.

Index Terms—Complex networks, detection algorithms, graph
theory, inference algorithms, maximum likelihood (ML) detection,
probability.

I. INTRODUCTION

I N the modern world the ubiquity of networks has made us
vulnerable to new types of network risks. These network

risks arise in many different contexts, but share a common struc-
ture: an isolated risk is amplified because it is spread by the net-
work. For example, as we have witnessed in the recent financial
crisis, the strong dependencies or ’network’ between institutions
have led to the situation where the failure of one (or few) insti-
tution(s) have led to global instabilities. In an electrical power
grid network, an isolated failure could lead to a rolling blackout.
Computer viruses utilize the Internet to infect millions of com-
puters everyday. Finally, malicious rumors or misinformation
can rapidly spread through existing social networks and lead to
pernicious effects on individuals or society. In all of these situ-
ations, a policy maker, power network operator, Internet service
provider or victim of a malicious rumor, would like to identify
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the source of the risk as quickly as possible and subsequently
quarantine its effect.

In essence, all of these situations can be modeled as a rumor
spreading through a network, where the goal is to find the source
of the rumor in order to control and prevent these network risks
based on limited information about the network structure and
the “rumor infected” nodes. In this paper, we shall take impor-
tant initial steps towards a systematic study of the question of
identifying the rumor source based on the network structure and
rumor infected nodes, as well as understand the fundamental
limitations on this estimation problem.

A. Related Work

Prior work on rumor spreading has primarily focused on viral
epidemics in populations. The natural (and somewhat standard)
model for viral epidemics is known as the susceptible-infected-
recovered or SIR model [1]. In this model, there are three types
of nodes: (i) susceptible nodes, capable of being infected; (ii)
infected nodes that can spread the virus further; and (iii) recov-
ered nodes that are cured and can no longer become infected.
Research in the SIR model has focused on understanding how
the structure of the network and rates of infection/cure lead to
large epidemics [2]–[5]. This motivated various researchers to
propose network inference techniques for learning the relevant
network parameters [6]–[10]. However, there has been little (or
no) work done on inferring the source of an epidemic.

The primary reason for the lack of such work is that it is quite
challenging. To substantiate this, we briefly describe a closely
related (and much simpler) problem of reconstruction on trees
[11], [12], or more generally, on graphs [13]. In this problem one
node in the graph, call it the root node, starts with a value, say
0 or 1. This information is propagated to its neighbors and their
neighbors recursively along a breadth-first-search (BFS) tree of
the graph (when the graph is a tree, the BFS tree is the graph).
Now each transmission from a node to its neighbor is noisy—a
transmitted bit is flipped with a small probability. The question
of interest is to estimate or reconstruct the value of the root node,
based on the “noisy” information received at nodes that are far
away from root. Currently, this problem is well understood only
for graphs that are trees or tree-like, after a long history. Now the
rumor source identification problem is, in a sense harder, as we
wish to identify the location of the source among many nodes
based on the infected nodes—clearly a much noisier situation
than the reconstruction problem. Therefore, as the first step, we
would like to understand this problem on trees.

B. Our Contributions

In this paper, we take initial steps towards understanding the
question of identifying the rumor source in a network based on
(rumor) infected nodes. Specifically, we start by considering a
probabilistic model of rumor spreading in the network as the
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ground truth. This model is based on the SIR model which
is well studied in the context of epidemiology, as mentioned
earlier. It is the natural rumor spreading model with minimal
side information. Therefore, such a model provides the perfect
starting point to undertake the systematic study of such infer-
ence problems.

The question of interest is to identify the source of the
rumor based on information about the infected nodes as well
as the underlying network structure using the prior information
about the probabilistic rumor spreading model. In the absence
of additional information (i.e., a uniform prior), clearly the
maximum likelihood (ML) estimator minimizes the estimation
error. Therefore, we would like to identify: (a) a computation-
ally tractable representation of the ML estimator if possible;
and (b) evaluate the detection probability of such an estimator.

Now obtaining a succinct, useful characterization of an ML
estimator for a general graph seems intractable. Therefore, fol-
lowing the philosophical approach of researchers working on
the reconstruction problem mentioned above and on the efficient
graphical model based inference algorithm (i.e., Belief Propa-
gation), we address the above questions for tree networks.

We are able to obtain a succinct and computationally efficient
characterization of the ML estimator for the rumor source when
the underlying network is a regular tree. We are able to charac-
terize the correct detection probability of this ML estimator for
regular trees of any given node degree . We find the following
phase transition. For , i.e., when the network is a linear
graph (or a path), the asymptotic detection probability is 0. For

, i.e., when the network is an expanding tree, the asymp-
totic detection probability is strictly positive. For example, for

, we identify it to be .
As the next step, we consider nonregular trees. The ML es-

timator of regular trees naturally extends to provide a rumor
source estimator for nonregular trees. However, it is not nec-
essarily the ML estimator. We find that when a nonregular tree
satisfies a certain geometric growth property (see IV-E for the
precise definition), then the asymptotic detection probability of
this estimator is 1. This suggests that even though this compu-
tationally simple estimator is not the ML estimator, its asymp-
totic performance is as good as any other (and hence the ML)
estimator.

Motivated by results for trees, we develop a natural, computa-
tionally efficient heuristic estimator for general graphs based on
the ML estimator for regular trees. We perform extensive sim-
ulations to show that this estimator performs quite well on a
broad range of network topologies. This includes synthetic net-
works obtained from the small-world model and the scale-free
model as well as real network topologies such as the U.S. elec-
tric power-grid and the Internet. In summary, we find that when
the network structure (irrespective of being a tree) is not too ir-
regular, the estimator performs well.

The estimator, which is ML for regular trees, can be thought
of as assigning a nonnegative value to each node in a tree. We
call this value the rumor centrality of the node. In essence, the
estimator chooses the node with the highest rumor centrality
as the estimated source, which we call the rumor center of the
network. There are various notions of network centralities that
are popular in the literature (cf. [14] and [15]). Therefore, in

principle, each of these network centrality notions can act as
rumor source estimators. Somewhat surprisingly, we find that
the source estimator based on the popular distance centrality no-
tion is identical to the rumor centrality based estimator for any
tree. Therefore, in a sense our work provides theoretical justi-
fication for distance centrality in the context of rumor source
detection.

Technically, the method for establishing nontrivial asymp-
totic detection for regular trees with is quite different
from that for geometric trees. Specifically, for regular trees with

, we need to develop a refined probabilistic estimation of
the rumor spreading process to establish our results. Roughly
speaking, this is necessary because the rumor process exhibits
high variance on expanding trees (due to exponential growth
in the size of the neighborhood of a node with distance) and
hence standard concentration based results are not meaningful
(for establishing the result). On the other hand, for geometric
trees the rumor process exhibits sharp enough concentration
(due to subexponential growth in the size of the neighborhood
of a node with distance) for establishing the desired result. This
also allows us to deal with heterogeneity in the context of geo-
metric trees. Similar technical contrasts between geometric and
expanding structures are faced in analyzing growth processes
on them. For example, in the classical percolation literature pre-
cise ’shape theorems’ are known for geometric structures (e.g.,

-dimensional grids) [16]–[21]. However, little is known in the
context of expanding structures. Indeed, our techniques for an-
alyzing regular (expanding) trees do overcome such challenges.
Developing them further for general expanding graphs (nonreg-
ular trees and beyond) remain an important direction for future
research.

Finally, we note that calculating the rumor centrality of a node
is equal to computing the number of possible linear extensions
of a given partial order represented by the tree structure rooted
at that particular node. Subsequently, our algorithm leads to the
fastest known algorithm for computing the number of possible
linear extensions in this context (see [22] for the best known
algorithm in the literature).

C. Organization

In Section II, the probabilistic model for rumor spreading and
the derivation of the source estimator is presented. Section III
studies properties of this estimator and presents an efficient al-
gorithm for its evaluation. Section IV presents results about the
effectiveness of the estimator for tree networks in terms of its
asymptotic detection probability. Section V shows the effective-
ness of the estimator for general networks by means of extensive
simulations. Section VI provides detailed proofs of the results
presented in Section IV. We conclude in Section VII with direc-
tions for future work.

II. RUMOR SOURCE ESTIMATOR

In this section we start with a description of our rumor
spreading model and then we define the maximum likelihood
(ML) estimator for the rumor source. For regular tree graphs,
we equate the ML estimator to a novel topological quantity
which we call rumor centrality. We then use rumor centrality to
construct rumor source estimators for general graphs.
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A. Rumor Spreading Model

We consider a network of nodes modeled as an undirected
graph , where is a countably infinite set of nodes and

is the set of edges of the form for some and in .
We assume the set of nodes is countably infinite in order to avoid
boundary effects. We consider the case where initially only one
node is the rumor source.

We use a variant of the common SIR model for the rumor
spreading known as the susceptible-infected or SI model which
does not allow for any nodes to recover, i.e., once a node has
the rumor, it keeps it forever. Once a node has the rumor, it
is able to spread it to another node if and only if there is an
edge between them, i.e., if . Let be the time it
takes for node to receive the rumor from node once has the
rumor. In this model, are independent and have exponential
distribution with parameter (rate) . Without loss of generality,
assume .

B. Rumor Source Estimator: Maximum Likelihood (ML)

Let us suppose that the rumor starting at a node, say at
time 0 has spread in the network . We observe the network
at some time and find infected nodes. By definition, these
nodes must form a connected subgraph of . We shall denote
it by . Our goal is to produce an estimate, which we shall
denote by , of the original source based on the observation

and the knowledge of . To make this estimation, we know
that the rumor has spread in as per the SI model described
above. However, a priori we do not know from which source
the rumor started. Therefore, we shall assume a uniform prior
probability of the source node among all nodes of . With
respect to this setup, the maximum likelihood (ML) estimator of

with respect to the SI model given minimizes the error
probability, i.e., maximizes the correct detection probability. By
definition, the ML estimator is

(1)

where is the probability of observing under the
SI model assuming is the source, . Thus, ideally we would
like to evaluate for all and then select the
one with the maximal value (ties broken uniformly at random).

C. Rumor Source Estimator: ML for Regular Trees

In general, evaluation of may not be computa-
tionally tractable. Here we shall show that for regular trees,

becomes proportional to a quantity which
we define later and call rumor centrality. The is a
topological quantity and is intimately related to the structure of

.
Now to evaluate when the underlying graph is a

tree, essentially we wish to find the probability of all possible
events that result in after nodes are infected starting with

as the source under the SI model. To understand such events,
let us consider a simple example as shown in Fig. 1 with .
Now, suppose node 1 was the source, i.e., we wish to calcu-
late . Then there are two disjoint events or node orders
in which the rumor spreads that will lead to with 1 as the

Fig. 1. Example network where the rumor graph has four nodes.

source: and . However, due to the struc-
ture of the network, infection order is not possible.
Therefore, in general to evaluate , we need to find all
such permitted permutations and their corresponding probabil-
ities. Because permitted permutations are an important concept
in this paper, we now define this notion precisely.

Definition 1 (Permitted Permutation): Given a connected tree
and a source node , consider any permution

of its nodes where denotes the
position of node in the permutation . We call a per-
mitted permutation for tree with source node if

1) .
2) For any , if , then

. Here denotes the shortest path distance from
to .

Let be the set of all permitted permutations starting
with node and resulting in rumor graph . We wish to de-
termine the probability for each . To that
end, let . Let us define, as the
subgraph (of ) containing nodes for

. Then

(2)
Each term in the product on the right-hand side (RHS) in (2),

can be evaluated as follows. Given (and source ), the
next infected node could be any of the neighbors of nodes in

which are not yet infected. For example, in Fig. 1
is when the source is assumed to be 1. In that case, the
next infected node could be any one of the 4 nodes: 3, 4, 5 and
6. Now due to the memoryless property of exponential random
variables and since all infection times on all edges are indepen-
dent and identically distributed (i.i.d.), it follows that each of
these nodes is equally likely to be the next infected node. There-
fore, each one of them has probability . More generally, if

has uninfected neighboring nodes, then each
one of them is equally likely to be the next infected node with
probability . Therefore, (2) reduces to

(3)

Given (3), now the problem of computing boils down
to evaluating the size of the rumor boundary for
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. To that end, suppose the added node to
is with degree . Then it contributes new
edges (and hence nodes in the tree) to the rumor boundary. This
is because, new edges are added but we must remove
the edge along which the recent infection happened, which is
counted twice. That is, . Subse-
quently

(4)

Therefore

(5)

For a regular tree, since all nodes have the same degree
, it follows from (5) that every permitted permutation has

the same probability, independent of the source. Specifically, for
any source and permitted permutation

From above, it follows immediately that for a regular tree, for
any and candidate source , is proportional to

. Formally, we shall denote the number of distinct
permitted permutations by .

Definition 2: Given a graph and vertex of , we define
as the total number of distinct permitted permutations

of nodes of that begin with node and respect the graph
structure of .

In summary, the ML estimator for a regular tree becomes

(6)

with ties broken uniformly at random.

D. Rumor Source Estimator: General Trees

As (6) suggests, the ML estimator for a regular tree can be
obtained by simply evaluating for all . However, as
indicated by (5), such is not the case for a general tree with het-
erogeneous degree. This is because in the regular tree, all per-
mitted permutations were equally likely, whereas in a general
tree, different permitted permutations have different probabili-
ties. To form an ML estimator for a general tree we would need
to keep track of the probability of every permitted permutation.
This could be computationally quite expensive because of the

Fig. 2. Example network where rumor centrality with the BFS heuristic equals
the likelihood��� ���. The rumor infected nodes are in gray and labeled with
numbers.

exponential number of terms involved. Therefore, we construct
a simple heuristic to take into account the degree heterogeneity.

Our heuristic is based upon the following simple idea. The
likelihood of a node is a sum of the probability of every per-
mitted permutation for which it is the source. In general, these
will have different values, but it may be that a majority of them
have a common value. We then need to determine this value of
the probability of the common permitted permutations. To do
this, we assume the nodes receive the rumor in a breadth-first
search (BFS) fashion. Roughly speaking, this corresponds to the
fastest or most probable spreading of the rumor.

To calculate the BFS permitted permutation probability, we
construct a sequence of nodes in a BFS fashion, with the source
node fixed. For example, consider the network in Fig. 2. If we
let node 2 be the source, then a BFS sequence of nodes would
be and the probability of this permitted permutation
is given by (5).

If we define the BFS permitted permutation with node as
the source as , then the rumor source estimator becomes (ties
broken uniformly at random)

(7)

We now consider an example to show the effect of the BFS
heuristic. For the network in Fig. 2, the corresponding estimator
value for node 1 is

and for node 2 it is

For comparison, the exact likelihood of node 1 is
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and for node 2 it is

In this case we find that the BFS heuristic equals the true
likelihood for both nodes. Second, node 1 is only twice as likely
as node 2 to be the source. However, if we look at the ratio of
the rumor centralities of the nodes we find

Thus, the rumor centrality of node 1 is four times as large
as that of node 2. What is happening is that without the BFS
heuristic, rumor centrality is being fooled to always select
higher degree nodes because it assumes all nodes have the same
degree. Therefore, if a node only has a few infected neighbors
(such as node 2), rumor centrality assumes that the node was
not immediately infected and consequently did not have time
to infect its neighbors. However, the BFS heuristic tries to
compensate for the tendency of rumor centrality to favor higher
degree nodes.

Indeed, as we shall see in Section V, this heuristic is an im-
provement over the naive extension of the estimator(6) for net-
works with very heterogeneous degree distributions. That is, bi-
asing as per in (7) is better than the unbiased version
of it.

E. Rumor Source Estimator: General Graphs

The ML estimator for a general graph, in principle can be
computed by following a similar approach as that for general
trees. Specifically, it corresponds to computing the summa-
tion of the likelihoods of all possible permitted permutations
given the network structure. This could be computationally
prohibitive. Therefore, we propose a simple heuristic.

To that end, note that even in a general graph the rumor
spreads along a spanning tree of the observed graph cor-
responding to the first time each node receives the rumor.
Therefore, a reasonable approximation for computing the like-
lihood is as follows. First, suppose we know which
spanning tree was involved in the rumor spreading. Then, using
this spanning tree, we could apply the previously developed
tree estimator. However, it is the lack of knowledge of the
spanning tree that makes the rumor source estimation problem
complicated.

We circumvent the issue of not knowing the underlying span-
ning tree as follows. We assume that if node was the
source, then the rumor spreads along a breadth first search (BFS)
tree rooted at , . The intuition is that if was the source,
then the BFS tree would correspond to the fastest (intuitively,

Fig. 3. Example network with a BFS tree for each node shown. The rumor
infected nodes are shown in gray.

most likely) spread of the rumor. Therefore, effectively we ob-
tain the following rumor source estimator for a general rumor
graph :

(8)

In this, ties are broken uniformly at random as before. Also, like
in (7), the represents the BFS ordering of nodes in the tree

.
For example, consider the network in Fig. 3. The BFS trees

for each node are shown. Using the expression for
from Section III-A, the general graph estimator values for the
nodes are

Node 4 maximizes this value and would be the estimate of the
rumor source for this network. We will show with simulations
that this general graph estimator performs well on different net-
work topologies.

III. RUMOR CENTRALITY: PROPERTIES AND ALGORITHM

The quantity plays an important role in each of the
rumor source estimators (6), (7), and (8). Recall that
counts the number of distinct ways a rumor can spread in the
network starting from source . Thus, it assigns each node
of a nonnegative number or score. We shall call this number,

, the rumor centrality of the node with respect to
. The node with maximum rumor centrality will be called

the rumor center of the network. Indeed, the rumor center is
the ML estimation of the rumor source for regular trees.

This section describes ways to evaluate efficiently
when is a tree. It also describes an important property of
rumor centrality that will be useful in establishing our main re-
sults later in the paper. Further, we discuss a surprising relation
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Fig. 4. Illustration of subtree variable � .

between the rumor center and the so called distance center of
a tree. Finally, we remark on the relation between rumor cen-
trality and the number of linear extensions of a partially ordered
set described by a tree graph.

A. Rumor Centrality: Succinct Representation

Let be a tree graph. Define as the number of nodes
in the subtree rooted at node , with node as the source. To
illustrate this notation, a simple example is shown in Fig. 4. Here

because there are 3 nodes in the subtree with node 2 as
the root and node 1 as the source. Similarly, because
there is only 1 node in the subtree with node 7 as the root and
node 1 as the source.

We now can count the permitted permutations of with
as the source. In the following analysis, we will abuse nota-

tion and use to refer to both the subtrees and the number of
nodes in the subtrees. Recall that we are looking for permitted
permutations of nodes of . That is, we have slots in
a given permitted permutation, the first of which must be the
source node . The question is, how many distinct ways can we
fill the remaining slots. The basic constraint is due to
the causality induced by the tree graph that a node must come
before all the nodes in its subtree . Given a slot assignment
for all nodes in subject to this constraint, there are
different ways in which these nodes can be ordered. This sug-
gests a natural recursive relation between the rumor centrality

and the rumor centrality of its immediate children’s
subtrees with . Here represents
the set of all children of in tree assuming as its root.
Specifically, there is no constraint between the orderings of the
nodes of different subtrees with . This leads to

(9)

To understand the above expression, note that the number of
ways to partition slots for different subtrees is

, and the partition corresponding to
leads to distinct orderings, thus resulting in

(9).
If we expand this recursion (9) to the next level of depth in

we obtain

Fig. 5. Example network for calculating rumor centrality.

A leaf node will have have 1 node and 1 permitted permutation,
so . If we continue this recursion until we reach
the leaves of the tree, then we find that the number of permitted
permutations for a given tree rooted at is

(10)

In the last line, we have used the fact that . We thus end
up with a simple expression for rumor centrality in terms of the
size of the subtrees of all nodes in .

As an example of the use of rumor centrality, consider the
network in Fig. 5. Using the rumor centrality formula, we find
that the rumor centrality of node 1 is

Indeed, there are 8 permitted permutations of this network with
node 1 as the source, which we list here.

B. Rumor Centrality via Message-Passing

In order to find the rumor center of an node tree , we
need to first find the rumor centrality of every node in . To
do this we need the size of the subtrees for all and in .
There are of these subtrees. Therefore, a naive algorithm can
lead to operations. We shall utilize a local relation be-
tween the rumor centrality of neighboring nodes in order to cal-
culate it in computation in a distributed, message-passing
manner.

To this end, consider two neighboring nodes and in .
All of their subtrees will be the same size except for those rooted
at and . In fact, there is a special relation between these two
subtrees

(11)

For example, in Fig. 4, for node 1, has 3 nodes, while for
node 2, has or 4 nodes. Because of this relation, we
can relate the rumor centralities of any two neighboring nodes

(12)

This result is the key to our algorithm for calculating the rumor
centrality for all nodes in . We first select any node as
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the source node and calculate the size of all of its subtrees
and its rumor centrality . This can be done by

having each node pass two messages up to its parent. The
first message is the number of nodes in ’s subtree, which
we call . The second message is the cumulative
product of the size of the subtrees of all nodes in ’s subtree,
which we call . The parent node then adds the

messages together to obtain the size of its own
subtree, and multiplies the messages together to
obtain its cumulative subtree product. These messages are then
passed upward until the source node receives the messages. By
multiplying the cumulative subtree products of its children, the
source node will obtain its rumor centrality, .

With the rumor centrality of node , we then evaluate the
rumor centrality for the children of using (12). Each node
passes its rumor centrality to its children in a message we de-
fine as for . Each node can calculate its
rumor centrality using its parent’s rumor centrality and its own
subtree size . We recall that the rumor centrality of a node is
the number of permitted permutations that result in . Thus,
this message-passing algorithm is able to count the (exponen-
tial) number of permitted permutations for every node in
using only computations. The pseudocode for this mes-
sage-passing algorithm is included for completeness.

Algorithm 1 Rumor Centrality Message-Passing Algorithm

1:Choose a root node

2:for in do

3:if u is a leaf then

4:

5:

6:else

7:if u is root v then

8:

9:else

10:

11:

12:

13:end if

14:end if

15:end for

C. A Property of Rumor Centrality

The following is an important characterization of the rumor
center in terms of the sizes of its local subtrees. As we shall
see, this will play a crucial role in establishing our main results
about the performance of rumor centrality as an estimator for
tree graphs.

Proposition 1: Given an node tree, if node is the rumor
center, then any subtree with as the source must have the
following property:

(13)

If there is a node such that for all

(14)

then is a rumor center. Furthermore, a tree can have at most 2
rumor centers.

Proof: We showed that for a tree with total nodes, for
any neighboring nodes and

(15)

For a node one hop from , we find

When is two hops from , all of the subtrees are the same
except for those rooted at , , and the node in between, which
we call node 1. Fig. 6 shows an example. In this case, we find

Continuing this way, we find that in general, for any node in

(16)

where is the set of nodes in the path between and
, not including . Now imagine that is the rumor center.

Then we have

(17)

For a node one hop from , this gives us that

(18)

For any node in subtree , we will have .
Therefore, (18) will hold for any node . This proves the
first part of Proposition 1.

Now assume that the node satisfies (18) for all .
Then the ratios in (16) will all be less than or equal to 1. Thus,
we find that

(19)
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Fig. 6. � variables for source nodes 2 hops apart.

Thus, is the rumor center, as claimed in the second part of
Proposition 1.

Finally, assume that is a rumor center and that all of its
subtrees satisfy . Then, any other node will have
at least one subtree that is larger than , so is the unique
rumor center. Now assume that has a neighbor such that

. Then, also, and all other subtrees
, so is also a rumor center. There can be at most 2

nodes in a tree with subtrees of size , so a tree can have at
most 2 rumor centers.

D. Rumor Centrality versus Distance Centrality

Here we shall compare rumor centrality with distance cen-
trality that has become popular in the literature as a graph based
score function for various other applications. To start with, we
recall the definition of distance centrality. For a graph , the
distance centrality of node , , is defined as

(20)

where is the shortest path distance from node to node
. The distance center of a graph is the node with the smallest

distance centrality. Intuitively, it is the node closest to all other
nodes. On a tree, we will show the distance center is equivalent
to the rumor center. Therefore, by establishing correctness of
rumor centrality for tree graphs, one immediately finds that such
is the case for distance centrality.

We will prove the following proposition for the distance
center of a tree.

Proposition 2: On an node tree, if is the distance center,
then, for all

(21)

Furthermore, if there is a unique rumor center on the tree, then
it is equivalent to the distance center.

Proof: Assume that node is the distance center of a tree
which has nodes. The distance centrality of is less than

any other node. We consider a node which is hops from
, and label a node on the path between and which

is hops from by . Now, because we are dealing with
a tree, we have the following important property. For a node

which is in subtree but not in subtree , we have
. Using this, we find

(22)

If we consider a node adjacent to , we find the same con-
dition we had for the rumor center. That is,

(23)

For any node in subtree , we will have .
Therefore, (23) will hold for any node . This proves the
first half of Proposition 2.

If is a rumor center, then, it also satisfies (23) as previously
shown. Thus, when unique, the rumor center is equivalent to
the distance center on a tree. This proves the second half of
Proposition 2.

Now in contrast with trees, in a general nontree network, the
rumor center and distance center need not be equivalent. Specif-
ically, we shall define rumor centrality for a general graph to be
the node with maximal value of rumor centrality on its own BFS
tree. Stated more precisely, the rumor center of a general graph
is the node with the following property (ties broken uniformly
at random):

(24)

In a general graph, as can be seen in Fig. 7, this general graph
rumor center is not always equivalent to the distance center as
it was for trees. We will see later that the general graph rumor
center will be a better estimator of the rumor source than the
distance center. The intuition for this is that the distance center
is evaluated using only the shortest paths in the graph, whereas
the general graph rumor centrality utilizes more of the network
structure for estimation of the source.

E. Rumor Centrality and Linear Extensions of Posets

The rumor graph on a network can be viewed as a partially
ordered set, or poset, of nodes if we fix a source node as the root
and consider the network to be directed, with edges pointing
from the node that had the rumor to the node it infected. These
directed edges impose a partial order on the nodes. We have re-
ferred to any permutation of the nodes which satisfies this par-
tial order as a permitted permutation. However, it is also known
as a linear extension of the poset. It is known that counting the
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Fig. 7. A network where the distance center does not equal the general graph
rumor center.

number of linear extensions of a poset is in general a very hard
problem (specifically, it falls in the complexity class #P-com-
plete [23]). However, on trees, counting linear extensions be-
comes computationally tractable. To the best of our knowledge,
the fastest known algorithm for counting linear extensions on
a tree requires computation [22]. In contrast, the mes-
sage-passing algorithm we presented in Section III-B required
only computation.

IV. MAIN RESULTS: THEORY

This section examines the behavior of the detection proba-
bility of the rumor source estimators for different graph struc-
tures. We establish that the asymptotic detection probability has
a phase-transition effect: for linear graphs it is 0, while for trees
which grow faster than a line it is strictly greater than 0. We
will use different proof techniques to establish these results for
trees with different rates of expansion. Throughout this section,
we will be interested in the rumor source detection probability,
which we formally define now.

Definition 3: Define to be the event of correct rumor source
detection using the rumor centrality based estimator after the
rumor has spread for a time on a graph .

A. Linear Graphs: No Detection

We first consider the detection probability for a linear graph,
which is a regular tree of degree 2. We will establish the fol-
lowing result.

Theorem 1: Suppose the rumor starts spreading on a linear
graph at time 0 as per the SI model. Then we have that

As can be seen, the linear graph detection probability scales
as , which goes to 0 as goes to infinity. The intuition for
this result is that the estimator provides very little information
because of the linear graph’s trivial structure.

B. Regular Expander Trees: Nontrivial Detection

We next consider detection on a regular degree expander tree.
We assume each node has degree . For , the tree is
a line, and we have seen that the detection probability goes to 0
as the network grows in size. For a regular tree with , we
obtain the following result.

Theorem 2: Suppose the rumor starts spreading on a regular
expander tree with degree at time 0 as per the SI model.
Then there exists a constant for all so that

Unlike linear graphs, when then there is enough “com-
plexity” in the network that allows us to perform detection of
the rumor source with strictly positive probability irrespective
of (or size of the rumor network). The above result also says
that the detection probability is always upper bounded by
for any .

C. Degree 3 Regular Expander Trees: Exact Detection
Probability

For regular trees of arbitrary degree , Theorem 2 states
that the detection happens with strictly positive probability irre-
spective of the size of the network. However, we are unable to
evaluate the exact asymptotic detection probability as .
For , however we are able to obtain the exact value.

Theorem 3: Suppose the rumor starts spreading on a regular
expander tree with degree at time 0 as per the SI model.
Then

D. Geometric Trees: Correct Detection

The above stated results cover the case of regular trees.
We now consider the detection probability of our estimator in
nonregular trees. As a candidate class of such trees, we consider
trees that grow polynomially. We shall call them geometric
trees. These nonregular trees are parameterized by constants ,
, and , with . We fix a source node and consider

each neighboring subtree of . Let be the degree of .
Then there are subtrees of , say . Consider the
th such subtree , . Let be any node in and let

be the number of nodes in at distance exactly from
the node . Then we require that for all and

(25)

The condition imposed by (25) states that each of the neigh-
boring subtrees of the source should satisfy polynomial growth
(with exponent ) and regularity properties. The parameter

characterizes the growth of the subtrees and the ratio
describes the regularity of the subtrees. If then the sub-
trees are somewhat regular, whereas if the ratio is much greater
than 1, there is substantial heterogeneity in the subtrees.
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Fig. 8. Rumor centrality detection probability for regular trees (left) and geometric trees (right) versus number of nodes� . The dotted lines are plots of� .

We note that unlike in regular trees, in a geometric tree the
rumor centrality is not necessarily the ML estimator due to the
heterogeneity. Nevertheless, we can use it as an estimator. In-
deed, as stated below we find that the rumor centrality based
estimator has an asymptotic detection probability of 1. That is,
it is as good as the best possible estimator.

Theorem 4: Consider a geometric tree as described above
with parameters , that satisfy (25) for a node

with degree . Let the following condition be satisfied

Suppose the rumor starts spreading from node at time 0 as
per the SI model. Then

This theorem says that and serve as a threshold
for nontrivial detection: for , the graph is essentially a line
graph, so we would expect the detection probability to go to 0
as based on Theorem 1, but for the detection
probability converges to 1 as .

V. SIMULATION RESULTS

This section provides simulation results for our rumor source
estimators on different network topologies. These include syn-
thetic topologies such as the popular scale-free and small-world
networks, and also real topologies such as the Internet and the
U.S. electric power grid.

A. Tree Networks

The detection probability of rumor centrality versus network
size for different trees is show in Fig. 8. As can be seen, the
detection probability decays as as predicted in Theorem
1 for the graphs which grow like lines ( and ).

For regular degree trees we see that the detection probability
is less than and for it does not decay to 0, as pre-
dicted by Theorem 2. In fact, the detection probabilities appear
to converge to asymptotic values. This value is for
as predicted by Theorem 3, and seems to increase by smaller
amounts for .

For geometric trees with , we see that the detection
probability does not decay to 0 and is very close to 1 as predicted
by Theorem 4.

B. Synthetic Networks

We performed simulations on synthetic small-world [24] and
scale-free [25] networks. These are two very popular models
for networks and so we would like our rumor source estimator
to perform well on these topologies. For both topologies, the
underlying graph contained 5000 nodes and in the simulations
we let the rumor spread to 400 nodes.

Figs. 9 and 10 show an example of rumor spreading in a
small-world and a scale-free network. The graphs show the
rumor infected nodes in white. Also shown are the histograms
of the estimator error for three different estimators. The esti-
mators are distance centrality, rumor centrality on a BFS tree,
and rumor centrality on a BFS tree with the BFS heuristic. For
comparison, we also show with a dotted line a smooth fit of
the histogram for the error from randomly choosing the source
from the 400 node rumor network. As can be seen, for both
networks, the histogram for the random guessing is shifted to
the right of the estimator histograms. Thus, the centrality based
estimators are a substantial improvement over random guessing
for both small-world and scale-free networks.

The distance centrality estimator performs very similarly to
the rumor centrality estimator. However, we see that on the
small-world network, rumor centrality is better able to correctly
find the source (0 error) than distance centrality (16% correct
detection versus 2%). For the scale-free network used here, the
average ratio of edges to nodes in the 400 node rumor graphs is
1.5 and for the small-world network used here, the average ratio
is 2.5. For a tree, the ratio would be 1, so the small-world rumor
graphs are less tree-like. This may explain why rumor centrality
does better than distance centrality at correctly identifying the
source on the small-world network.

The BFS heuristic leads to two visible effects. First, as can
be seen for the scale-free network, we have a larger correct de-
tection probability. Scale-free networks have power-law degree
distributions, and thus contain many high degree hubs. The BFS
heuristic works well in these types of networks because it was
precisely designed for networks with heterogeneous degree dis-
tributions.

The second effect of the BFS heuristic is that larger errors
become more likely. For both networks, the histograms spread
out to higher errors. We see that for networks with less hetero-
geneous degree distributions, such as the small-world network,
the BFS heuristic is actually degrading performance. It may be
that for more regular networks, the BFS heuristic amplifies the
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Fig. 9. Histograms of the error for distance centrality, rumor centrality, and
rumor centrality with BFS heuristic estimators on a 400 node rumor network
on a small-world network. The dotted line is a smooth fit of the histogram for
randomly guessing the source in the rumor network. An example of a rumor
graph (infected nodes in white) is shown on the right.

Fig. 10. Histograms of the error for distance centrality, rumor centrality, and
rumor centrality with BFS heuristic estimators on a 400 node rumor network
on a scale-free network. The dotted line is a smooth fit of the histogram for
randomly guessing the source in the rumor network. An example of a rumor
graph (infected nodes in white) is shown on the right.

effect any slight degree heterogeneity and causes detection er-
rors.

C. Real Networks

We performed simulations on an Internet autonomous system
(AS) network [26] and the U.S electric power grid network [25].
These are two important real networks so we would like our
rumor source estimator to perform well on these topologies. The
AS network contained 32,434 nodes and the power grid net-
work contained 4,941 nodes. In the simulations we let the rumor
spread to 400 nodes.

Figs. 11 and 12 show an example of rumor spreading in both
of these networks. Also shown are the histograms of the esti-
mator error for three different estimators. The estimators are
distance centrality, rumor centrality on a BFS tree, and rumor

Fig. 11. Histograms of the error for distance centrality, rumor centrality, and
rumor centrality with BFS heuristic estimators on a 400 node rumor network
on the U.S. electric power grid network. The dotted line is a smooth fit of the
histogram for randomly guessing the source in the rumor network. An example
of a rumor graph (infected nodes in white) is shown on the right.

Fig. 12. Histogram of the error for distance centrality, rumor centrality, and
rumor centrality with BFS heuristic estimators on a 400 node rumor network
on an Internet autonomous system (AS) network. The dotted line is a smooth
fit of the histogram for randomly guessing the source in the rumor network. An
example of a rumor graph (infected nodes in white) is shown on the right.

centrality on a BFS tree with the BFS heuristic. For comparison,
we also show with a dotted line a smooth fit of the histogram for
the error from randomly choosing the source from the 400 node
rumor network. As with the synthetic networks, the histogram
for the random guessing is shifted to the right of the estimator
histograms. Thus, on these real networks, the centrality based
estimators are a substantial improvement over random guessing
for both small-world and scale-free networks.

We see that rumor centrality and distance centrality have sim-
ilar performance, but for the power grid network, rumor cen-
trality is better able to correctly find the source than distance
centrality (3% correct detection versus 0%). For the power grid
network, the average ratio of edges to nodes in the 400 node
rumor graphs is 4.2, and for the AS network the average ratio
is 1.3. Thus, the rumor graphs on the power grid network are
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less tree-like. Similar to the small-world networks, this may ex-
plain why rumor centrality outperforms distance centrality on
the power grid network.

The BFS heuristic improves the correct detection probability
for the AS network. This is due to the fact that the AS net-
work has many high degree hubs, similar to scale-free networks.
However, in the powergrid network, the BFS heuristic spreads
out the histogram to higher errors. Again, this may be due to the
fact that the powergrid network does not have as much degree
heterogeneity as the AS network, and the BFS heuristic is am-
plifying weak heterogeneities, similar to small-world networks.

VI. PROOFS

This section establishes the proofs of Theorems 1–4. All of
them utilize rumor centrality as the estimator to obtain the de-
sired conclusion. To study the property of the rumor centrality,
we shall utilize the property of rumor center as established in
Proposition 1 crucially.

A. Proof of Theorem 1

We consider the spread of the rumor in a line network starting
from a source, say . We shall establish that for any time ,
the probability of the rumor center being equal to decays as

. Since a line is a regular graph and hence the rumor
center is the ML estimator, it follows that the detection proba-
bility of any estimator decays as . This is because in
the absence of any prior information (or uniform prior) the ML
estimator minimizes the detection error (c.f see [27]).

Now rumor spreading in a line graph is equivalent to 2 inde-
pendent Poisson processes with rate 1 beginning at the source
and spreading in opposite directions. We refer to these processes
as and with .

It follows from results of Section III -C that the rumor center
of a line is the center of the line: if the line has an odd number
of nodes then the rumor center is uniquely defined, else there
are two rumor centers. Thus, we will correctly detect the source
with probability 1 if the two Poisson processes on each side of
the source have exactly the same number of arrivals and with
probability if one of the Poisson processes is one less than
the other. Then, the probability of the event of correct detection
at time , is given by

Let and . Then

We shall show that both and are bounded as
. This will conclude the proof of Theorem 1.

To that end, first we consider summation of . Let us con-
sider the ratios of the successive terms:

This ratio will be greater than 1 as long as and beyond
that it will be less than 1. Thus, is maximum for . By
Stirling’s approximation, it follows that:

Therefore . Given this, we shall bound all
relative to to obtain bound of on .

To that end, since is decreasing for , we have that
for any ,

Similary, since for , is increasing we have that for
any ,

Given the above two inequalities, it will suffice to bound
and for all relate to . For this,

consider the following. For
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for . In above (a) follows from , (b)
follows from for and . Similarly,
for

where (c) follows from and (b) from
for . From above, it follows that

Using all of the above discussion, it follows that for

In a very similar manner, it can be shown that
. Therefore, it follows that the probability of correct

detection is bounded as in a line graph. This com-
pletes the proof of Theorem 1.

B. Proof of Theorem 2

We wish to establish that given a regular tree, the prob-
ability of correct detection of the source using rumor centrality,
irrespective of , is uniformly lower bounded by a strictly posi-
tive constant, and upper bounded by .

To find the lower bound on the detection probability, we shall
utilize Proposition 1 which states the following. The source
node has subtrees and let the random variable

, be the number of rumor infected nodes in the th subtree
at time . If all are strictly less than half the total number
of rumor infected nodes at time , then the source is the unique
rumor center. Using this implication of Proposition 1, we obtain
the following bound on the event of correct detection :

(26)

The additional 1 is in the above expression to account for the
source node. Therefore, by lower bounding the probability of the
event on the left in (26), we shall obtain the desired lower bound

. Since are independent and identically distributed
due to regularity of tree, we shall find the marginal distribution
of . Now finding the precise “closed form” expression for
the probability mass function of for all seems
challenging. Instead, we shall obtain something almost close to
that.

To that end, consider . Let denote the time
between the st node getting infected and th getting in-
fected in . Since the source node is connected to the root of
the first subtree via the edge along which rumor starts spreading
as per an exponential distribution of rate 1, it follows that
has an exponential distribution of rate 1. Once the first node
gets infected in the subtree, the number of edges along which
the rumor can spread further is . More gen-
erally, every time a new node gets infected, it brings in new
edges and removes 1 edge along with rumor can spread in the
subtree. Now the spreading time along all edges is independent
and identically distributed as per an exponential distribution of
rate 1 and exponential random variables have the ’memoryless’
property: if is an exponential random variable with rate 1,
then for any .
From above, we can conclude that equals the minimum of

independent exponential random variables
of rate 1. By the property of the exponential distribution, this
equals an exponential random variable of rate .
Now let be the total time for nodes to get infected in the
subtree, that is

(27)

We state the following Lemma which states the precise density
of and some of its useful properties. It’s proof is presented
later in the section.

Lemma 1: The density of for a degree regular tree,
is given by

for
for

(28)
where . Further, let and

. Then
1. for all .
2. For all and ,

3. There exists finite constants so that

4. There exists so that for all
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Next we use Lemma 1 to obtain a lower bound on . For
this, define as the event under which all the subtrees
have between and infected nodes at time . That is,

for (29)

Under for any , it follows that
for all . That is, event holds.

Therefore

(30)

Therefore, to uniformly lower bound and establish The-
orem 2, it is sufficient to find so that
for all large enough. To that end, we shall first study how to
bound . Under , we have
for . Now consider . For ,
it must be that the th node in it must have got infected before

and the st node must have got infected after .
Using this along with the independent and identical distribution
of for , we obtain

(31)

We shall use Lemma 1 to uniformly lower bound (31) by a
strictly positive constant for all large enough. To that
end, consider a large enough and hence large enough so
that using Lemma 1, we have for any given small enough

: (a) , (b) , (c)
and (d)

for all . Then using

Fig. 13. Symmetric 2 node rumor network in a regular tree.

Above we have used the fact that for ,
and . As , the corresponding so that

increases to as well. Since the choice
of is arbitrary, from above along with (30) and(31), it
follows that:

Next, we consider the upper bound of . This bound can be
obtained by using symmetry arguments. First imagine that the
rumor has spread to two nodes. First, because of the memory-
less property of the spreading times, the spreading process es-
sentially resets after the second node is infected, so we can treat
these two nodes as just a single, enlarged rumor source. Second,
because of the regularity of the tree, the rumor boundary is sym-
metric about these two nodes, as shown in Fig. 13. Therefore,
within this enlarged rumor source, the estimator will not be able
to distinguish between these two nodes due to symmetry. For ex-
ample, in Fig. 13, the estimator will select node 1 or node 2 with
equal probability. In the best scenario, the estimator will detect
this enlarged rumor source exactly with probability 1. This hap-
pens for example, when the rumor network only has 2 nodes as
in Fig. 13. Then due to symmetry, the probability of correctly de-
tecting the source is since each node in the enlarged rumor
source is chosen with equal probability. The probability of the
estimator detecting the enlarged source is no greater than 1 ever,
so the correct detection probability can never be greater than

.
This completes the proof of Theorem 2.

Proof of Lemma 1: We derive the density by induction. For
, we trivially have

(32)

Now, inductively assume that has the form as claimed in
Lemma 1. That is
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with . Now ;
is independent of and has exponential distribution with rate

. Therefore

Expanding and inte-
grating, we obtain

From this and above, we obtain

This is precisely the form claimed by Lemma 1. This completes
the induction step and establishes the form of density of as
claimed. Next we establish four properties claimed in Lemma 1.

Property 1: Let . Clearly, as
for . Now for , we have . Therefore,

. Therefore, it follows that .

Property 2: Consider any and with
. Now

In above, we have used the form of established earlier.

Property 3: Our interest is in obtaining uniform upper bound
on and uniform lower bound on . To that end,
let us start with the following standard inequality.

where . Recall that
. Therefore, from above we have

(33)

Recalling and from above, can be lower
bounded as

Now the term is strictly positive constant;

as ; and as . Therefore,
it follows that

Similarly, for

Thus

(34)

Property 4: To establish this property, recall that for
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Therefore (using )

For , and hence

since . Therefore, for we have

where (x) follows from for all
and . Now as ; is a

decreasing function in and for , it is .
Therefore, it follows that there exists a so that for any

This completes the proof of Lemma 1.

C. Proof of Theorem 3

We are interested in degree regular tree. By Proposition
1, the event of correct detection at time , is such that

(35)

and

If we knew the exact form for the distribution of the number of
arrivals at time , for , then we could bound
the probability of explicitly. For regular trees with degree 3,
this is indeed possible. To that end, by Lemma 1 we find that the
distribution of the time for nodes to get rumor infected in the
th subtree, for is given by

Now in order for there to be exactly rumor infected nodes in
the th subtree by time , the th node must get infected before

and st node must get infected after . Therefore, the dis-
tribution of , for , is

for . Indeed,

If we denote by then the above becomes

(36)

That is, has a geometric distribution with parameter
. Next we evaluate lower bound on using (35).

To that end define as

The elements of correspond to the event where there are
infected nodes, and each subtree has less than nodes. Also,
the sets are disjoint because if one occurs for a specific
and , then the others did not occur. We will also define the set

as

The elements of correspond to nonnegative integers , ,
and that sum to and are less than . Then from (35)

(37)

Therefore, using the fact that the spreading on subtrees happens
independently, we obtain

(38)

The sum over the ’s require us to count the number of states
in . It follows that:
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Now when , it must be that
; for a given such , and

. Using these relations, it follows that the
number of such triples are . Therefore,

is at least . Using this, we obtain

Now since , as , . Therefore, we obtain
that

In a very similar manner, using (36) it follows that

where . Therefore

This concludes the proof of Theorem 3.

D. Proof of Theorem 4

The proof of Theorem 4, as before, uses the characterization
of rumor center provided by Proposition 1. That is, we wish to
show that for all large enough, the probability of the event that
the size of the rumor infected subtrees of the source are
essentially “balanced” [c.f (26)] with high enough probability.
To establish this, we shall use coarse estimations on the size of
each of these subtrees using the standard concentration prop-
erty of the Poisson process along with geometric growth. This
will be unlike the proof for regular trees where we had to neces-
sarily delve into very fine detailed probabilistic estimates of the
size of the subtrees to establish the result. This relatively easier
proof for geometric trees (despite heterogeneity) brings out the
fact that it is fundamentally much more difficult to analyze ex-
panding trees than geometric structure as expanding trees do not
yield to generic concentration based estimations as they neces-
sarily have very high variances.

To that end, we shall start by obtaining sharp estimations on
the size of each of the rumor infected subtrees of for any
given time . Now initially, at time 0 the source node has the
rumor. It starts spreading along its children (neighbors). Let

denote the size of the rumor infected subtree, denoted by
, rooted at the th child (or neighbor) of node . Initially,

. The is a Poisson process with time-varying
rate: the rate at time depends on the ’boundary’ of the tree
as discussed earlier. Due to the balanced and geometric growth
conditions assumed in Theorem 4, the following will be satis-
fied: for small enough : (a) every node within a distance

of is in one of the ; and (b) no node beyond
distance of is in any of the . Such a tight char-
acterization of the “shape” of along with the polynomial
growth will provide sharp enough bound on that will re-
sult in establishing Theorem 4. This result is summarized below
with its proof in the Appendix.

Theorem 5: Consider a geometric tree with parameters
and as assumed in Theorem 4 and let the rumor
spread from source starting at time 0. Define for
any small . Let be the set of all rumor infected
nodes in the tree at time . Let be the set of all subtrees rooted
at (rumor graphs) such that all nodes within distance
from are in the tree and no node beyond distance
from is in the tree. Then

Define as the event that . Under event , consider
the sizes of the subtrees for . Due to the
polynomial growth condition and , we obtain the following
bounds on each for all :

Now bounding the summations by Reimann’s integrals, we have

Therefore, it follows that under event , for all

In the most “unbalanced” situation, of these subtrees
have minimal size and the remaining one subtree has
size where
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Since by assumption , there exists
such that . Therefore, for any choice of

for some , we have

for large enough since as the second term in inequality
(i) goes to 1 and the third term goes to 0. From this, it immedi-
ately follows that under event for large enough

Therefore, by Proposition 1 it follows that the rumor center
is unique and equals . Therefore, for large enough .
From above and Theorem 5

VII. CONCLUSION AND FUTURE WORK

This paper has provided, to the best of the authors’ knowl-
edge, the first systematic study of the problem of finding rumor
sources in networks. Using the well known SI model, we con-
structed an estimator for the rumor source in regular trees, gen-
eral trees, and general graphs. We defined the ML estimator for
a regular tree to be a new notion of network centrality which we
called rumor centrality and used this as the basis for estimators
for general trees and general graphs.

We analyzed the asymptotic behavior of the rumor source es-
timator for regular trees and geometric trees. For linear graphs, it
was shown that the detection probability goes to 0 as the network
grows in size. However, for trees which grew faster than lines,
it was shown that there was always nontrivial detection proba-
bility. This analysis highlighted the different techniques which
must be used for networks with expansion versus those with
only polynomial growth. Simulations performed on synthetic
graphs agreed with these tree results and also demonstrated that
the general graph estimator performed well in different net-
work topologies, both synthetic (small-world, scale-free) and
real (AS, power grid).

On trees, we showed that the rumor center is equivalent to the
distance center. However, these were not equivalent in a general
network. Also, it was seen that in networks which are not tree-
like, rumor centrality is a better rumor source estimator than
distance centrality.

The next step of this work would be to better understand the
effect of the BFS heuristic on the estimation error and under
what precise conditions it improves or degrades performance.
Another future direction would be to generalize the estimator to
networks with a heterogeneous rumor spreading rate.

APPENDIX A
PROOF OF THEOREM 5

We recall that Theorem 5 stated that the rumor graph on a
geometric tree is full up to a distance and does not
extend beyond , for for some positive

. To establish this, we shall use the following well
known concentration property of the unit rate Poisson process.
We provide its proof later for completeness.

Theorem 6: Consider a unit rate Poisson process with
rate 1. Then for any and for any

Now we use Theorem 6 to establish Theorem 5. Recall that
the spreading time along each edge is an independent and iden-
tically distributed exponential random variable with parameter
1. Now the underlying network graph is a tree. Therefore for
any node at distance from source node , there is a unique
path (of length ) connecting and . Then, the spread of the
rumor along this path can be thought of as a unit rate Poisson
process, say , and node is infected by time if and only
if . Therefore, from Theorem 6 it follows that for any
node that is at distance for for some

is not rumor infected

Now the number of such nodes at distance from is
at most (follows from arguments similar to those in
the proof of Theorem 4). Therefore, by an application of union
bound it follows that:

a node at distance t isn't infected

Using similar argument and another application of Theorem 6,
it can be argued that

a node at distance t from v is infected

Since the rumor is a ’spreading’ process, if all nodes at distance
from are infected, then so are all nodes at distance

from ; if all nodes at distance from are not infected then
so are all nodes at distance from . Therefore, it follows
that with probability , all nodes at distance up to

from are infected and all nodes beyond distance
from are not infected. This completes the proof of

Theorem 5.
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APPENDIX B
PROOF OF THEOREM 6

We wish to prove bounds on the probability of
and for a unit rate Poisson process . To

that end, for it follows that:

where the last equality follows from the fact that is a
Poisson random variable with parameter . That is

The minimal value of the exponent in the RHS above is achieved
for value of . For this value of , using the fact
that and for ,
it follows that:

Next, to establish the bound on the probability of
, using similar argument it follows that:

The RHS is minimized for . Using
for it follows that:

This completes the proof of Theorem 6.
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