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ABSTRACT
Spinal codes are a recently proposed capacity-achieving rateless
code. While hardware encoding of spinal codes is straightforward,
the design of an efficient, high-speed hardware decoder poses signif-
icant challenges. We present the first such decoder. By relaxing data
dependencies inherent in the classic M-algorithm decoder, we obtain
area and throughput competitive with 3GPP turbo codes as well as
greatly reduced latency and complexity. The enabling architectural
feature is a novel “α-β” incremental approximate selection algo-
rithm. We also present a method for obtaining hints which anticipate
successful or failed decoding, permitting early termination and/or
feedback-driven adaptation of the decoding parameters.

We have validated our implementation in FPGA with on-air test-
ing. Provisional hardware synthesis suggests that a near-capacity im-
plementation of spinal codes can achieve a throughput of 12.5 Mbps
in a 65 nm technology while using substantially less area than com-
petitive 3GPP turbo code implementations.
Categories and Subject Descriptors: B.4.1 [Data Communica-
tions Devices]: Receivers; C.2.1 [Network Architecture and Design]:
Wireless communication
General Terms: Algorithms, Design, Performance
Keywords: Wireless, rateless, spinal, decoder, architecture

1. INTRODUCTION
At the heart of every wireless communication system lies a chan-

nel code, which incorporates methods for error correction. At the
transmitter, an encoder takes a sequence of message bits (e.g., be-
longing to a single packet or link-layer frame) and produces a se-
quence of coded bits or coded symbols for transmission. At the re-
ceiver, a decoder takes the (noisy or corrupted) sequence of received
symbols or bits and “inverts” the encoding operation to produce its
best estimate of the original message bits. If the recovered message
bits are identical to the original, then the reception is error-free;
otherwise, the communication is not reliable and additional actions
have to be taken to achieve reliability (these actions may be taken at
the physical, link, or transport layers of the stack).

The search for good, practical codes has a long history, starting
from Shannon’s fundamental results that developed the notion of
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channel capacity and established the existence of capacity-achieving
codes. Shannon’s work did not, however, show how to construct
and decode practical codes, but it set the basis for decades of work
on methods such as convolutional codes, low-density parity check
(LDPC) codes, turbo codes, Raptor codes, and so on. Modern
wireless communication networks use one or more of these codes.

Our interest is in rateless codes, defined as codes for which any
encoding of a higher rate is a prefix of any lower-rate encoding (the
“prefix property”). Rateless codes are interesting because they offer a
way to achieve high throughput over time-varying wireless networks:
a good rateless code inherently sends only as much data as required
to communicate reliably under any given channel conditions. As
conditions change, a good rateless code adapts naturally.

In recent work, we proposed and evaluated in simulation the
performance of spinal codes, a new family of rateless codes for
wireless networks. Theoretically, spinal codes are the first rateless
code with an efficient (i.e., polynomial-time) encoder and decoder
that essentially achieve Shannon capacity over both the additive
white Gaussian noise (AWGN) channel and the binary symmetric
channel (BSC).

In practice, however, polynomial-time encoding and decoding
complexity is a necessary, but hardly sufficient, condition for high
throughput wireless networks. The efficacy of a high-speed channel
code is highly dependent on an efficient hardware implementation.
In general, the challenges include parallelizing the required com-
putation, and reducing the storage requirement to a manageable
level.

This paper presents the design, implementation, and evaluation
of a hardware architecture for spinal codes. The encoder is straight-
forward, but the decoder is tricky. Unlike convolutional decoders,
which operate on a finite trellis structure, spinal codes operate on
an exponentially growing tree. The amount of exploration the de-
coder can afford has an effect on throughput: if a decoder computes
sparingly, it will require more symbols to decode and thus achieve
lower throughput. This effect is shown in Figure 1. A naïve decoder
targeted to achieve the greatest possible coding gain would require
hardware resources to store and sort upwards of a thousand tree
paths per bit of data, which is beyond the realm of practicality.

Our principal contribution is a set of techniques that enable the
construction of a high-fidelity hardware spinal decoder with area
and throughput characteristics competitive with widely-deployed
cellular error correction algorithms. These techniques include:

1. a novel method to select the best B states to maintain in
the tree exploration at each stage, called “α-β” incremental
approximate selection, and

2. a method for obtaining hints to anticipate successful or failed
decoding, which permits early termination and/or feedback-
driven adaptation of the decoding parameters.
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Figure 1: Coding efficiency achieved by the spinal decoder in-
creases with the width of the explored portion of the tree. Hard-
ware designs that permit wide exploration are desirable.

We have validated our hardware design with an FPGA implemen-
tation and on-air testing. A provisional hardware synthesis suggests
that a near-capacity implementation of spinal codes can achieve a
throughput of 12.5 Megabits/s in a 65 nm technology while using
substantially less area than competitive 3GPP turbo code implemen-
tations.

2. BACKGROUND & RELATED WORK
Wireless devices taking advantage of ratelessness can transmit at

more aggressive rates and achieve higher throughput than devices
using fixed-rate codes, which suffer a more substantial penalty in the
event of a retransmission. Hybrid automatic repeat request (HARQ)
protocols reduce the penalty of retransmission by puncturing a fixed-
rate “mother code”. These protocols typically also require the use of
ad hoc channel quality indications to choose an appropriate signaling
constellation, and involve a demapping step to convert I and Q values
to “soft bits”, which occupy a comparatively large amount of storage.

Spinal codes do not require constellation adaptation, and do not
require demapping, instead operating directly on I and Q values.
Spinal codes also impose no minimum rate, with encoding and de-
coding complexity polynomial in the number of symbols transmitted.
They also retain the sequentiality, and hence potential for low latency,
of convolutional codes while offering performance comparable to
iteratively-decoded turbo and LDPC codes.

2.1 Spinal Codes
For context, we review the salient details of spinal codes [21, 20].
The principle of the spinal encoder is to produce pseudo-random

bits from the message in a sequential way, then map these bits
to output constellation points. As with convolutional codes, each
encoder output depends only on a prefix of the message. This enables
the decoder to recover a few bits of the message at a time rather than
searching the huge space of all messages.

Most of the complexity of the encoder lies in defining a suitable
sequential pseudo-random generator. Most of the complexity of
the decoder lies in determining the heuristically best (fastest, most
reliable) way to search for the right message.

Encoder. The encoder breaks the input message into k-bit pieces m̄i,
where typically k = 4. These pieces are hashed together to obtain a
pool of pseudo-random 32-bit words si,j as shown in Figure 2. The

s0,0 1,0 2,0 3,0

1,1 2,1 3,1

1,2 2,2 3,2

m1 m2 m3

s s s

s s s

s s s

m4

Message

Figure 2: Computation of pseudo-random words si,j in the en-
coder, with hash function application depicted by a diamond.
Each m̄i is k message bits.

initial value s0,0 = 0. Note that each hash depends on k message
bits, the previous hash, and the value of j. The hash function need
not be cryptographic.

Once a certain hash si,j is computed, the encoder breaks it into
c-bit pieces and passes each one through a constellation map f(·) to
get "32/c# real, fixed-point numbers. The numbers generated from
hashes si,0, si,1 . . . are indexed by # to form the sequence xi,!.

The xi,! are reordered for transmitting so that resilience to noise
will increase smoothly with the number of received constellation
points. Symbols are transmitted in passes indexed by #. Within a
pass, indices i are ordered by a fixed, known permutation [21].

Decoder. The algorithm for decoding spinal codes is to perform a
pruned breadth-first search through the tree of possible messages.
Each edge in this tree corresponds to k bits of the message, so the
out-degree of each node is 2k, and a complete path from the root
to a leaf has N edges. To keep the computation small, only a fixed
number B of nodes will be kept alive at a given depth in the tree.
B is named after the analogy with beam search, and the list of B
alive nodes is called the beam. At each step, we explore all of
the B · 2k children of these nodes and score each one according
to the amount of signal variance that remains after subtracting the
corresponding encoded message from the received signal. Lower
scores (path metrics) are better. We then prune all but the B lowest-
scoring nodes, and move on to the next k bits. With high probability,
if enough passes have been received to decode the message, one of
the B leaves recovered at the end will be the correct message. Just
as convolutional codes can be terminated to ensure equal protection
of the tail bits, spinal codes can transmit extra symbols from the end
of the message to ensure that the correct message is not merely one
of the B leaves, but the best one.

The decoder operates over received samples yi,! and candidate
messages encoded as x̂i,!. Scores are sums of (yi,!− x̂i,!)

2. For-
mally, this sum is proportional to the log likelihood of the candidate
message. The intuition is that the correct message will have a lower
path metric in expectation than any incorrect message, and the dif-
ference will be large enough to distinguish if SNR is high or there
are enough passes. “Large enough” means that fluctuations do not
cause the correct message to score worse than B other messages.

To make this more concrete, consider the AWGN channel with
y = x+n, where the noise n is independent of x. We see that
Var(y) = Var(x)+Var(n) = P · (1+ 1

SNR ), where P is the power
of the received signal. If x̂= x, then Var(y− x̂) = P

SNR . Otherwise,
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Figure 3: Block diagram of M-algorithm hardware.

Var(y− x̂) = P · (2+ 1
SNR ). The sum of squared differences is an

estimator of this variance and discriminates between the two cases.

2.2 Existing M-Algorithm Implementations
The decoder described above is essentially the M-algorithm

(MA) [2]. A block diagram of MA is shown in Figure 3. In our
notation, the expansion phase grows each of B paths by one edge to
obtain B ·2k new paths, and calculates the path metric for each one.
The selection stage chooses the best B of these, and the last stage
performs a Viterbi-style [18] traceback over a window of survivor
paths to obtain the output bits.

There have been few recent VLSI implementations of MA, in
part because modern commercial wireless error correction codes
operate on a small trellis [1]. It is practical to instantiate a full
Viterbi [9] or BCJR [3] decoder for such a trellis in silicon. MA is
an approximation designed to reduce the cost of searching through a
large trellis or a tree, and consequently it is unlikely to compete with
the optimal Viterbi or BCJR decoders in performance or area for such
codes. As a result, the M-algorithm is not generally commercially
deployed. Existing academic implementations [10] [22] focus on
implementing decoders for rate 1/2 convolutional codes.

These works recognize that the sorting network is the chief bot-
tleneck of the system, and generally focus on various different algo-
rithms for achieving implementations. However, these implementa-
tions deal with very small values of B and k, for instance B = 16
and k = 2, for which a complete sorting network is implementable
in hardware. Spinal codes on the other hand require B and k to be
much larger in order to achieve maximum performance. Much of
the novel work in this paper will focus on achieving high-quality
decoding while minimizing the size of the sort network that must be
constructed.

The M-algorithm implementation in [22] leverages a degree of
partial sorting among the generated B ·2k nodes at the expansion
stage. Although our implementation does not use their technique,
their work is, to the best of our knowledge, the first to recognize
that a full sort is not necessary to achieve good performance in the
M-algorithm.

The M-algorithm is also known as beam search in the AI literature.
Beam search implementations do appear as part of hardware-centric
systems, particularly in the speech recognition literature [15] where
they are used to solve Hidden-Markov Models describing human
speech. However, in AI applications, computation is typically domi-
nated by direct sensor analysis, while beam search which appears
at a high level of the system stack where throughput demands are
much lower. As a result, there seems to have no attempt to create a
full hardware beam search implementation in the AI community.

3. SYSTEM ARCHITECTURE
Our decoder is designed to be layered with an inner OFDM or

CDMA receiver, so we are not concerned with synchronization or
equalization. The decoder’s inputs are the real and imaginary parts
(I and Q) of the received (sub)carrier samples, in the same order that
the encoder produced its outputs xn. The first decoding step is to
invert the encoder’s permutation arithmetic and recover the matrix

yi,! corresponding to xi,!. Because of the sequential structure of
the encoder, yi,! depends on m̄1...i, the first ik bits of the message.
Each depth in the decoding tree corresponds to an index i and some
number of samples yi,!.

The precise number of samples available for some i depends on
the permutation and the total number of samples that have been
received. In normal operation there may be anywhere from 0 to,
say, 24 passes’ worth of samples stored in the sample memory. The
upper limit determines the size of the memory.

To compute a score for some node in the decoding tree, the de-
coder produces the encoded symbols x̂i,! for the current i (via the
hash function and constellation map) and subtracts them from yi,!.
The new score is the sum of these squared differences plus the score
of the parent node at depth i−1. In order to reach the highest level
of performance shown in Figure 1, we need to defer pruning for
as long as possible. Intuitively, this gives the central limit theorem
time to operate – the more squared differences we accumulate, the
more distinguishable the correct and incorrect scores will be. This
requires us to keep a lot of candidates alive (ideally B = 64 to 256)
and to explore a large number of children as quickly as possible.

There are three main implementation challenges, corresponding
to the three blocks shown in Figure 3. The first is to calculate B ·2k
scores at each stage of decoding. Fortunately, these calculations
have identical data dependencies, so arbitrarily many can be run in
parallel. The calculation at each node depends on the hash si−1,0
from its parent node, a proposal m̂i for the next k bits of data, and
the samples yi,!. We discuss optimizations of the path expansion
unit in §5.

The second problem is to select the best B of B · 2k scores to
keep for the next stage of path expansion. This step is apparently an
all-to-all shuffle. Worse yet, it is in the critical path, since compu-
tation at the next depth in the decoding tree cannot begin until the
surviving candidates are known. In §4 we describe a surprisingly
good approximation that relaxes the data dependencies in this step
and allows us to pipeline the selection process aggressively.

The third problem is to trace back through the tree of unpruned
candidates to recover the correct decoded bits. When operating close
to the Shannon limit (low SNR or few passes), it is not sufficient,
for instance, to put out the k bits corresponding to the best of the B
candidates. Viterbi solves this problem for convolutional codes using
a register-exchange approach reliant on the fixed trellis structure.
Since the spinal decoding tree is irregular, we need a memory to
hold data and back-track pointers. We show in §6 how we keep this
memory small and minimize the time spent tracing back through the
memory, while also obtaining valuable decoding hints.

While we could imagine building B ·2k path metric blocks and a
selection network from B ·2k inputs to B outputs, such a design is
too large, occupying up to 1.2 cm2 (for B = 256) in a 65 nm process.
Worse, the vast majority of the device would be dark at any given
time: data would be either moving through the metric units, or it
would be at some stage in the selection network. Keeping all of
the hardware busy would require pipelining dozens of simultaneous
decodes, with a commensurate storage requirement.

3.1 Initial Design
The first step towards a workable design is to back away from

computing all of the path metrics simultaneously. This reduces the
area required for metric units and frees us from the burden of sorting
B ·2k items at once. Suppose that we have some number W of path
metric units (informally, workers), and we merge their W outputs
into a register holding the best B outputs so far. If we let W = 64,
the selection network can be reduced in area by a factor of 78 and
in latency by a factor of three relative to the all-at-once design, and
workers also occupy 1/64 as much area. The cost is that 64 times
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Figure 5: Detail of the incremental selection network.

as many cycles are needed to complete a decode. This design is
depicted in Figure 4. The procedure for merging into the register is
detailed in §4.1.

4. PATH SELECTION
To address the problem of performing selection efficiently, we

describe a series of improvements to the sort-everything-at-once
baseline. We require the algorithm to be streaming, so that candi-
dates are computed only once and storage requirements are minimal.
Thus, during each cycle, the selection network must combine a num-
ber of fresh inputs with the surviving inputs from previous cycles,
and prune away inputs which score poorly.

4.1 Incremental Selection
This network design accepts W fresh items and B old items, and

produces the B best of these, allowing candidates to be generated
over multiple cycles (Figure 5). While the W fresh items are in
arbitrary order, it is possible to take advantage of the fact that the B
old items are previous outputs of the selection network, and hence
can be sorted or partially sorted if we wish. In particular, if we
can get independently sorted lists of the best B old candidates and
the best B new candidates, we can merge the lists in a single step
by reversing one list and taking the pairwise min. The result will
be in bitonic order (increasing then decreasing). Sorting a bitonic
list is easier than sorting a general list, allowing us to save some
comparators. We register the bitonic list from the merger, and restore
it to sorted order in parallel with the sorting of the W fresh items. If
W $=B, a few more comparators can be optimized away. We use
the bitonic sort because it is regular and parametric. Irregular or
non-parametric sorts are known which use fewer comparators, and
can be used as drop-in replacements.

4.2 Pipelined Selection
The original formulation of the decoder has a long critical path,

most of which is spent in the selection network. This limits the
throughput of the system at high data rates, since the output of the

Beam Width 8 Workers 16 Workers 32 Workers
8 14601
16 22224 44898
32 39772 61389 122575

Table 1: Area usage for various bitonic sorters in µm2 using
a 65 nm process. An 802.11g Viterbi implementation requires
120000 µm2 in this process.

selection network is recirculated and merged with the next set of W
outputs from the metric units. This dependency means that even if
we pipeline the selection, we will not improve performance unless
we find another way to keep the pipeline full.

Fortunately, candidate expansion is perfectly parallel and sort-
ing is commutative. To achieve pipelining, we divide the B · 2k
candidates into α independent threads of processing. Now we can
fill the selection pipeline by recirculating merged outputs for each
thread independently, relaxing the data dependency. Each stage of
the pipeline operates on an independent thread.

This increases the frequency of the entire system without introduc-
ing a dependency bottleneck. Registers are inserted into the pipeline
at fixed intervals, for instance after every one or two comparators.

At the end of the candidate expansion, we need to eliminate
B(α−1) candidates. This can be done as a merge step after sorting
the α threads at the cost of around α logα cycles of added latency.
This may be acceptable if α is small or if many cycles are spent
expanding candidates (B ·2k %W ).

4.3 α-β Approximate Selection
We now have pipeline parallelism, which helps us scale through-

put by increasing clock frequency. However, we have yet to consider
a means of scaling the B and k parameters of the original design.
An increase in k improves the maximum throughput of the design
linearly while increasing the amount of computation exponentially,
making this direction unattractive. For fixed k, scaling B improves
decoding strength.

In order to scale B, we need to combat the scaling of
sort logic, which is Θ(B logB) + Θ(W log2W ) in area and
Θ(max(logB, log2W )) in latency. Selection network area can
quickly become significant, as shown in Table 1. Fortunately, we can
dodge this cost without a significant reduction in decoding strength
by relaxing the selection problem.

First, we observe that if candidates are randomly assorted among
threads, then on average β ! B

α of the best B will be in each thread.
Just as it is unlikely for one poker player to be dealt all the aces in
a deck, it is unlikely (under random assortment) for any thread to
receive significantly more than β of the B best candidates.

Thus, rather than globally selecting the B best of B · 2k candi-
dates, we can approximate by locally selecting β = B

α from each
thread. There are a number of compelling reasons to make this
trade-off. Besides eliminating the extra merge step, it reduces the
width of the selection network from B to β, since we no longer need
to keep alive the B best items in each thread. This decreases area by
more than a factor of α and may also improve operating frequency.
We call the technique α-β selection.

The question remains whether α-β selection performs as well as
B-best selection. The intuition about being dealt many aces turns
out to be correct for the spinal decoder. The candidates which are
improperly pruned (compared with the unmodified M-algorithm)
are certainly not in the top β, and they are overwhelmingly unlikely
to be in the top B/2. In the unlikely event that the correct candidate
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is pruned, the packet will fail to decode until more passes arrive. A
detailed analysis is given in §4.6.

Figure 6 is a block diagram of a decoder using α-β selection.
Since each candidate expands to 2k children, the storage in the
pipeline is not sufficient to hold the B surviving candidates while
their children are being generated. A shift register buffer of depth α
placed at the front of the pipeline stores candidates while they await
path expansion. We remark in passing that letting α = 1, β = B
recovers the basic decoder described in §4.1.

4.4 Deterministic α-β Selection
One caveat up to this point has been the random assortment of

the candidates among threads. Our hardware is expressly designed
to keep only a handful of candidates alive at any given time, and
consequently such a direct randomization is not feasible. We would
prefer to use local operations to achieve the same guarantees, if
possible.

Two observations lead to an online sorting mechanism that per-
forms as well as random assortment. The first is that descendants of a
common parent have highly correlated scores. Intuitively, the goal is
not to spread the candidates randomly, but to spread them uniformly.
Consequently, we place sibling candidates in different threads. In
hardware this amounts to a simple reordering of operations, and
entails no additional cost.

The second observation is that we can randomize the order in
which child candidates are generated from their parents by scram-
bling the transmitted packet. The hash function structure of the
code guarantees that all symbols are identically distributed, so the
scores of incorrect children are i.i.d. conditioned on the score of
their parents. This guarantees that a round-robin assignment of these
candidates among the threads is a uniform assignment. The children
of the correct parent are not i.i.d., since one differs by being the
correct child. By scrambling the packet, we ensure that the correct
child is assigned to a thread uniformly. The scrambler can be a small
linear feedback shift register in the MAC, as in 802.11a/g.

The performance tradeoffs for these techniques are shown in
Figure 9. Combining the two proposed optimizations achieves per-
formance that is slightly better than a random shuffle.

4.5 Further Optimization
A further reduction of the α-β selection network is possible by

concatenating multiple smaller selection networks as shown in Fig-
ure 8. This design has linear scaling with W . One disadvantage
is that child candidates are less effectively spread among threads if
a given worker only feeds into a single selection network. At the
beginning of decoding, for instance, this would prevent the children
of the root node from ever finding their way into the workers serving

the other selection networks, since no wires cross between the se-
lection networks or the shift registers feeding the workers. A cheap
solution is to interleave the candidates between the workers and the
selection networks by wiring in a rotation by W

2γ . This divides each
node’s children across two selection networks at the next stage of
decoding. A more robust solution is to multiplex between rotated
and non-rotated wires with an alternating schedule.

4.6 Analysis of α-β Selection
We consider pipelining the process of selecting the B best items

out of N (i.e. B ·2k). Our building block is a network which takes
as input W unsorted items plus β bitonically presorted items, and
produces β bitonically sorted items.

Suppose that registers are inserted into the selection network to
form a pipeline of depth α. Since the output of the selection network
will not be available for α clock cycles after the corresponding input,
we will form the input for the selection network at each cycle as
W new items plus the β outputs from α cycles ago. Cycle n only
depends on cycles n′ ≡ n (mod α), forming α separate threads of
execution.

After N/W uses of the pipeline, all of the threads terminate, and
we are left with α lists of β items. We’d like to know whether this
is a good approximation to the algorithm which selects the αβ best
of the original N items. To show that it is, we state the following
theorem.

THEOREM 1. Consider a selection algorithm that divides its N
inputs among N/n threads, each of which individually returns the
best β of its n inputs, for a total of Nβ/n results. We compare its
output to the result of an ideal selection algorithm which returns
precisely the Nβ/n best of its N inputs. On randomly ordered
inputs, the approximate output will contain all of the best m inputs
with probability at least

P≥ 1−
m∑

i=1

n∑

j=β

(n−1
j

)(N−n
i−j−1

)

(N−1
i−1

) (1)

For e.g. N = 4096, n= 512, β = 32, this gives a probability of
at least 1− 3.1 · 10−4 for all of the best 128 outputs to be correct,
and a probability of at least 1/2 for all of the best 188 outputs to be
correct. Empirically, the probability for the best 128 outputs to be
correct is 1−2.4 ·10−4, so the bound is tight. The empirical result
also shows that the best 204 outputs are correct at least half of the
time.

PROOF. Suppose that the outputs are sorted from best to worst.
Suppose also that the input consists of a random permutation of
(1, . . . ,N). For general input, we can imagine that each input has
been replaced by the position at which it would appear in a list
sorted from best to worst. Under this mapping, the exact selection
algorithm would return precisely the list (1, . . . ,Nβ/n). We can see
that the best m inputs appear in the output list if and only if m is the
mth integer in the list. Otherwise, some item i≤m must have been
discarded by the algorithm. By the union bound,

P(mth output $=m)≤
m∑

i=1

P(i discarded)

An item i is discarded only when the thread it is assigned also
finds at least β better items. So

P(i discarded) = P(∃β items < i in same thread)

=
n∑

j=β

P(exactly j items < i in same thread)
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Figure 7: Decoder performance across α and β parameters. Even β=1 decodes with good performance.
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Figure 8: Concatenated selection network, emulating a β, W
network with γ smaller selection networks.

What do we know about this thread? It was assigned a total of
n items, of which one is item i. Conditional on i being assigned
to the thread, the assignment of the other n− 1 (from a pool of
N −1 items) is still completely random. There are i−1 items less
than i, and we want to know the probability that a certain number j
are selected. That is, we want the probability of drawing exactly j
colored balls in n−1 draws from a bucket containing N −1 balls,
of which i− 1 are colored. The drawing is without replacement.
The result follows the hypergeometric distribution, so the number of
colored balls is at least β with probability

P(i discarded) =
n∑

j=β

(n−1
j

)(N−n
i−j−1

)

(N−1
i−1

)

Thus, we have

P(best m outputs correct) =

1−P(mth output $=m)≥ 1−
m∑

i=1

n∑

j=β

(n−1
j

)(N−n
i−j−1

)

(N−1
i−1

)

Similarly, the expected number of the best m inputs which survive
selection is

E
[

m∑

i=1

1{i in output}

]
=

m∑

i=1

P(i in output)

=m−
m∑

i=1

n∑

j=β

(n−1
j

)(N−n
i−j−1

)

(N−1
i−1

)

5. PATH EXPANSION
Thanks to the optimizations of §4, path metric units occupy a

large part of the area of the final design. The basic worker is shown
in Figure 10. This block encodes the symbols corresponding to
k bits of data by hashing and mapping them, then subtracts them
from the received samples and computes the squared residual. In the
instantiation shown, the worker can handle four passes per cycle. If
there are more than four passes available in memory, it will spend
multiple cycles accumulating the result. By adding more hash blocks,
we can handle any number of passes per cycle; however, we observe
that in the case where many passes have been received and stored
in memory, we are operating at low SNR and consequently low
throughput. Thus, rather than accelerate decoding in the case where
the channel and not the decoder is the bottleneck, we focus on
accelerating decoding at high SNR, and we only instantiate one hash
function per worker in favor of laying down more workers. We can
get pipeline parallelism in the workers provided that we take care to
pipeline the iteration control logic as well.

Samples in our decoder are only 8 bits, so subtraction is cheap.
There are three major costs in the worker. The first is the hash
function. We used the Jenkins one-at-a-time hash [13]. Using a
smaller hash function is attractive from an area perspective, but hash
and constellation map collisions are more likely with a weaker hash
function, degrading performance. We leave a satisfactory exploration
of this space to future work.

The second major cost is squaring. The samples are 8 bits wide,
giving 9 bit differences and nominally an 18 bit product. This can be
reduced a little by taking the absolute value first to give 8×8 → 16
bits, and a little further by noting that squaring has much more
structure than general multiplication. Designing e.g. a Dadda tree
multiplier for squaring 8 bits gives a fairly small circuit with 6 half-
adders, 12 full-adders, and a 10 bit summation. By comparison,
an 8×8 general Dadda multiplier would use 7 half-adders, 35 full-
adders, and a 14 bit summation.
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Figure 10: Schematic of the path metric unit. Over one or more cycles indexed by j, the unit accumulates squared differences between
the received samples in memory and the symbols which would have been transmitted if this candidate were correct. Not shown is the
path for returning the child hash, which is the hash for j = 0.

The third cost is in summing the squares. In Viterbi, the scores of
all the live candidates differ by no more than the constraint length K
times twice the largest possible log likelihood ratio. This is because
the structure of the trellis is such that tracing back a short distance
from two nodes always leads to a common ancestor. Thanks to two’s
complement arithmetic, it is sufficient to keep score registers that are
just wide enough to hold the largest difference between two scores.

In our case, however, there is no guarantee of common ancestry,
save for the argument that the lack of a recent common ancestor is
a strong indication that decoding will fail (as we show in §6). As
a consequence, scores can easily grow into the millions. We used
24 bit arithmetic for scores. We have not evaluated designs which
reduce this number, but we nevertheless highlight a few known
techniques from Viterbi as interesting directions for future work.
First, we could take advantage of the fact that in low-SNR regimes
where there are many passes and scores are large, the variance of

the scores is also large. In this case, the low bits of the score may
be swamped with noise and rendered essentially worthless, and we
should right-shift the squares so that we accumulate only the “good”
bits.

A second technique for reducing the size of the scores is to use
an approximation for the x2 function, like |x| or min(|x|,1). The
resulting scores will no longer be proportional to log likelihoods,
so the challenge will be to show that the decoder still performs
adequately.

6. ONLINE TRACEBACK
The final stage of the M-algorithm decoder is traceback. Ideally,

at the end of decoding, traceback begins from the most likely child,
outputting the corresponding set of k bits and recursing up the tree
to the node’s parents. The problem with this ideal approach is that
it requires the retention of all levels of the beam search until the
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end of decoding. As a result, traceback is typically implemented
in an online fashion. For each new beam, a traceback of c steps is
performed starting from the best candidate, and k bits are produced.
The variable c represents the effective constraint length of the code:
the maximum number of steps until all surviving paths converge
on a single, likely ancestor. Beyond this point of convergence,
the paths are identical. Because only c steps of traceback need to
be performed to find this ancestor, only c beams’ worth of data
need to be maintained. For many codes, c is actually quite small.
For example, convolutional code traceback lengths are limited to
log2 s, where s is the number of states in the code. In spinal codes,
particularly with our selection approximations, it is possible for bad
paths to appear with very long convergence distances. However, in
practice we find that convergence is usually quite rapid, on the order
of one or two traceback steps.

Online traceback implementation are well-studied and appear in
most implementations of the Viterbi algorithm. Viterbi implemen-
tations typically implement traceback using the register-exchange
microarchitecture [7, 19]. However, spinal codes can have a much
wider window of B live candidates at each backtrack step. More-
over, unlike convolutional codes wherein each parent may have
only two children, in spinal codes, a parent may have 2k children,
which makes the wiring the register-exchange expensive. There-
fore, we use the RAM-based backtrace approach [7]. Even hybrid
backtrace/register-exchange architectures [5] are likely to be pro-
hibitive in complexity. In this architecture, pointers and data values
are stored in RAM and iterated over during the traceback phase. For
practical choices of parameters the required storage is on the order
of tens of kilobits. Figure 13 shows empirically obtained through-
put curves for various traceback lengths. Even an extremely short
traceback length of four is sufficient to achieve a significant portion
of channel capacity. Eight steps represents a good tradeoff between
decoding efficiency and area.

The traditional difficulty with traceback approaches is the long
latency of the traceback operation itself, which must chase c pointers
to generate an output. We note however, that c is a pessimistic bound
on convergence. During most tracebacks, “good” paths will con-
verge long before c. Leveraging this observation, we memoize the
backtrack of the preceding generation, as suggested by Lin et al. [14].
If the packet being processed will be decoded correctly, parent and
child backtracks should be similar. Figure 11 shows a distribution of
convergence distances under varying channel conditions, confirming
this intuition.

If, during the traceback pointer chase, we encounter convergence
with the memoized trace, we terminate the traceback immediately
and return the memoized value. This simple optimization drastically
decreases the expected traceback length, improving throughput while
simultaneously decreasing power consumption.

Figure 12 shows the microarchitecture of our backtrace unit. The
unit is divided in half around the traceback RAM. The front half
handles finding starting points for traceback from among the incom-
ing beam, while the back half conducts the traceback and outputs
values. The relatively simple logic in the two halves permits them to
be clocked at higher frequencies than other portions of the pipeline.
Our implementation is fully parameterized, including both the pa-
rameters of the spinal code and the traceback length.

7. EVALUATION

7.1 Hardware Platforms
We use two platforms in evaluating our hardware implementation.

Wireless algorithms operate on the air, and the best way to achieve
a high-fidelity evaluation is of wireless hardware is to measure its
on-air performance. The first platform we use to evaluate the spinal
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Figure 11: Average convergence distance between adjacent
tracebacks, collected for various SNRs and numbers of passes.
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Figure 12: Traceback Microarchitecture. Some control paths
have been eliminate to simplify the diagram.

decoder is a combination of an XUPV5 [23] and USRP2 [8]. We
use the USRP2 to feed IQ samples to an Airblue [17]-based OFDM
baseband implemented on the larger XUPV5 FPGA.

However, on-air operation is insufficient for characterizing and
testing new wireless algorithms because over-air operation is dif-
ficult to control. Experiments are certainly not reproducible, and
some experiments may not even be achievable over the air. For
example, it is interesting to evaluate the behavior of spinal codes at
low SNR, however the Airblue pipeline does not operate reliably at
SNRs below 3dB. Additionally, from a hardware standpoint, some
interesting decoder configurations may operate too slowly to make
on-air operation feasible.

Therefore, we use a second platform for high-speed simulation
and testing: the ACP [16]. The ACP consists of two Virtex-LX330T
FPGAs socketed in to a Front-Side Bus. This platform not only
offers large FPGAs, but also a low-latency, high-bandwidth connec-
tion to general purpose software. This makes it easy to interface a
wireless channel model, which is difficult to implement in hardware,
to a hardware implementation while retaining relatively high simula-
tion performance. Most of our evaluations of the spinal hardware
are carried out using this high-speed platform.

7.2 Comparison with Turbo Codes
Although spinal codes offer excellent coding performance and an

attractive hardware implementation, it is important to get a feel for
the properties of the spinal decoder as it compares to existing error
correcting codes. Turbo codes [4] are a capacity-approaching code
currently deployed in most modern cellular standards.

There are several metrics against which one might compare hard-
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3G Turbo (1dB) 3G Turbo(1dB) [6] Spinal (1dB) Spinal(-5dB)
Parity RAM 118 Kb 86kB
Systemic RAM 92 Kb 25kB
Interleaver RAM 16 Kb
Pipeline Buffer RAM 27 Kb 12kB
Symbol RAM 41Kb 135Kb
Backtrace RAM 8Kb 8Kb
Total RAM 253 Kb 123 kB 49Kb 143Kb

Table 2: Memory Usage for turbo and spinal decoders supporting 5120 bit packets. Memory area accounts for more than 50% of
turbo decoder area.

ware implementations of spinal and turbo codes: implementation
area, throughput, latency, and power consumption.

A fundamental difference between turbo and spinal decoders is
that the former are iterative, while spinal decoders are sequential and
thus can be streaming. This means that a turbo implementation must
fundamentally use more memory than a spinal implementation since
turbo decoders must keep at least one pass worth of soft, extrinsic
information alive at any point in time. Because packet lengths are
large and soft information is wide, this extra memory can dominate
implementation area. On the other hand, spinal codes store much
narrower symbol information. We therefore conjecture that turbo
decoders must use at least twice the memory area of a spinal decoder
with a similar noise floor. This conjecture is empirically supported
by Table 2, which compares 3G-compliant implementations of turbo
codes with spinal code decoders configured to similar parameters.

It is important to note that spinal decoder memory usage scales
with the noise floor of the decoder since more passes must be
buffered, while turbo codes use a constant memory area for any
noise floor supported. If we reduce the supported noise floor to
1dB from -5dB, then the area required by the spinal implementation
drops by around a factor of 4. This is attractive for short-range de-
ployments which do not require the heavy error correction of cellular
networks.

7.3 Performance of Hardware Decoder
Figure 13 shows the performance of the hardware decoder across

a range of operational SNRs. Throughputs were calculated by run-
ning the full Airblue OFDM stack on FPGA and collecting packet
error rates across thousands of packets, a conservative measure of
throughput. The decoder performs well, achieving as much as 80%
of capacity at relevant SNRs. The low SNR portion of the range
is limited by Airblue’s synchronization mechanisms, which do not
operate reliably below 3dB.

Table 3 shows the implementation areas of various modules of
our reference hardware decoder in a 65 nm technology. Memory
area dominates the design, while logic area is attractively small. The
majority of the area of the design is taken up by the score calculation
logic. Individually, these elements are small. However there are β
of them in our parameterized design. The α-β selection network
requires one-fourth the design. In contrast, a full selection network
for B = 64 requires around 360000 µm2, much more than our entire
decoder.

As a basis for comparison, state of the art turbo decoders [6] at
the 65 nm node require approximately .3 mm2 for the active portion
of the decoder. The remaining area (also around .3 mm2) is used
for memory. Our design is significantly smaller in terms of area,
using half the memory and around 80% the logic area. However,
our design at 200 MHz, processes at a maximum throughput of
12.5 Mbps, which is somewhat lower than the Cheng et al., who
approached 100 Mbps.
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Figure 13: Throughput of the hardware decoder with various
traceback lengths.

In our choice of implementation, we have attempted to achieve
maximum decoding efficiency and minimum gap-to-capacity. How-
ever, maximum efficiency may not yield the highest throughput
design. Should throughput be a priority, we note that there are sev-
eral ways in which we could improve the throughput of our design.
The most obvious direction is reducing B to 32 or 16. These de-
coders suffer slightly degraded performance, but operate 2 and 4
times faster. Figure 14 shows an extreme case of this optimization
with B = 4. This design has low decoder efficiency, but much higher
throughput. We note that a dynamic reduction in B can be achieved
with relatively simple modifications to our hardware. A second
means of improvement is optimizing the score calculators. There are
three ways to achieve this goal. First, we can increase the number
of score calculators. This is slightly unattractive because it also
requires scaling in the sorting network. Second, the critical path of
our design runs through the worker units and is largely unpipelined.
Cutting this path should increase achievable clock period by at least
a few nano-seconds. Related to the critical path is the fact that we
calculate error metrics using Euclidean distance, which requires
multiplication. Strength reduction to absolute difference has worked
well in Viterbi and should apply to spinal as well. By combining
these techniques it should be possible to build spinal decoders with
throughputs greater than 100 Mbps.
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Module Total (µm2) Combinational (µm2) Sequential (µm2) RAM(Kbits)
Selection Network 60700 25095 35907
Backtrack 8575 3844 4720 8
Score Calculator 10640 8759 1881
SampleRAM 5206 2592 2613 41
Total 245526 181890 63703 49

Table 3: Area usage for modules with B = 64, W = β = 16, α = 4. Area estimates were produced using Cadence Encounter with a
65 nm process, targeting 200 MHz operating frequency. Area estimates do not include memory area.
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Figure 14: Performance of B = 4, β = 4, α= 1 decoder over the
air versus identically parameterized C++ model. Low code effi-
ciency is due to the narrow width of the decoder, which yields a
high throughput implementation.

7.4 On-Air Validation
The majority of the performance results presented in this paper

were generated via simulation, either using an idealized, floating-
point C++ model of the hardware or using an emulated version of the
decoder RTL on an FPGA with a software channel model. Although
we have taken care to accurately model both the hardware and the
wireless channel, it is important to validate the simulation results
with on-air testing.

Figure 14 show a preliminary on-air throughput curve obtained
by using the previously described USRP set-up plotted against an
identically parameterized C++ model. The performance differential
between hardware and software across a wide range of operating
conditions is minimal, suggesting that our simulation-based results
have high fidelity.

7.5 Integrating with Higher Layers
Error correction codes do not exist in isolation, but as part of

a complete protocol. Good protocols require feedback from the
physical layer, including the error correction block, to make good
operational choices. Additionally, the spinal decoder itself requires a
degree of control to decide when to attempt a decode when operating
ratelessly. Decoding too early results in increased latency due to
failed decoding, while decoding too late wastes channel bandwidth.
It is therefore important to have mechanisms in the decoder, like
SoftPHY [12], which can provide fine-grained information about
the success of decoding.

Traceback convergence in spinal codes, which bears a strong re-
semblance to confidence calculation in SOVA [11], is an excellent
candidate for this role. As Figure 11 shows, a sharp increase in con-
vergence length suggests being near or over capacity. By monitoring
the traceback cache for long convergences using a simple filter, the

hardware can terminate decodes that are likely to be incorrect early
in processing, preventing significant time waste. Moreover, propa-
gating information about when convergences begin to narrow gives
upper layers an excellent measure of channel capacity which can be
used to improve overall system performance.

8. CONCLUSION
Spinal codes are, in theory and simulation, a promising new

capacity-achieving code. In this paper, we have developed an effi-
cient microarchitecture for the implementation of spinal codes by
relaxing data dependencies in the ideal code to obtain smaller, fully
pipelined hardware. The enabling architectural features are a novel
“α-β” incremental approximate selection algorithm, and a method
for obtaining hints to anticipate successful or failed decoding, which
permits early termination and/or feedback-driven adaptation of the
decoding parameters.

We have implemented our design on an FPGA and have conducted
over-the-air tests. A provisional hardware synthesis suggests that a
near-capacity implementation of spinal codes can achieve a through-
put of 12.5 Megabits/s in a 65 nm technology, using substantially
less area than competitive 3GPP turbo code implementations.

We conclude by noting that further reductions in hardware com-
plexity of spinal decoding are possible. We have focused primarily
on reducing the number of candidate values alive in the system at any
point in time. Another important avenue of exploration is reducing
the complexity and width of various operations within the pipeline.
Both Viterbi and Turbo codes operate on extremely narrow values
using approximate arithmetic. It should be possible to reduce spinal
decoders in a similar manner, resulting in more area-efficient and
higher throughput decoders.
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