
Analysis and Optimization of Randomized
Gossip Algorithms

Stephen Boyd Arpita Ghosh Balaji Prabhakar Devavrat Shah
Information Systems Laboratory, Stanford University

Stanford, CA 94305-9510

boyd, arpitag, balaji, devavrat@stanford.edu

Abstract—We study the distributed averaging problem on
an arbitrary network with a gossip constraint, which means
that no node communicates with more than one neighbour in
every time slot. We consider algorithms which are linear iter-
ations, where each iteration is described by a random matrix
picked i.i.d. from some distribution. We derive conditions that
this distribution must satisfy so that the sequence of iterations
converges to the vector of averages in different senses.
We then analyze a simple asynchronous randomized gossip

algorithm for averaging, and show that the problem of optimiz-
ing the parameters of this algorithm for fastest convergence is
a semi-definite program. Finally we study the relation between
Markov chains and the averaging problem, and relate the
averaging time of the algorithm to the mixing time of a related
Markov chain on the graph.

I. INTRODUCTION

We consider a network G on n nodes with edge set E ,
where each edge {i, j} ∈ E is an unordered pair of distinct
nodes. The set of neighbours of node i is denoted Ni =
{j|{i, j} ∈ E}. A node i can communicate with node j
only if j ∈ Ni. We will assume that the network graph G
is connected.

A gossip constraint on the communication protocol
means the following. In a given time slot, each node can

communicate with only one of its neighbours. This can
be accomplished, for example, if only one pair of nodes

communicates in a time slot. Another way to do this is by

ensuring that the set of exchanges in a time slot is described

by a matching on the graph G, i.e., the set of edges {i, j}
along which communication occurs (in a time slot) is such

that no two edges have a node in common.

A variety of problems can be studied in the context of

communication on a graph with a gossip constraint, such

as fast information exchange, or distributed computation. In

this paper, we will be interested in the averaging problem,

which is the following. Every node i holds an initial scalar
value xi(0) ∈ R. We want to compute the average xave =
(1/n)

∑n
i=1 xi(0) at every node, via a gossip algorithm.

Distributed averaging via gossip can be accomplished in

Author names appear in alphabetical order.
This work is supported in part by a Stanford Graduate Fellowship, and

by C2S2, the MARCO Focus Center for Circuit and System Solution,
under MARCO contract 2003-CT-888.

many ways. One simple solution is flooding, where every

node maintains a table of initial node values for all nodes,

initialized with its own initial value. Each node updates

its table with information from its neighbours (obeying the

gossip constraint). After a finite number of steps, every

node knows the initial value of every other node and so

can compute the average, or indeed any function of the
initial values. However each node needs to maintain n-
dimensional state.

In this paper, we are interested in algorithms described

by linear iterations. Let x(0) = (x1(0), . . . , xn(0)) denote
the vector of initial values on the network. We want an

algorithm where each iteration is of the form x(t + 1) =
W (t)x(t), and x(t) converges to the vector of averages
xave1, where 1 ∈ Rn is the vector of all ones.

Now let us consider the gossip constraint. Suppose that at

every time step, a pair of nodes communicates and averages.

If nodes i and j (connected by an edge) average, this is
described by the equation x(t + 1) = Wijx(t), where

Wij = I − (ei − ej)(ei − ej)T

2
. (1)

To study convergence of this gossiping scheme means

studying the convergence of

x(t) = Φ(t)x(0)

to xave1, where

Φ(t) = W (t)W (t − 1) · · ·W (0)

is a product of matrices of the form (1). This product must

converge to 11T /n for convergence of x(t).

One simple way to choose the sequence W (t) is to
periodically repeat a finite sequence W1, W2, . . . , Wk. If

W =
∏k

i=1 Wi, then the sequence of iterations converges

if W t → 11T /n as n → ∞. The rate of convergence will
depend upon the order in which the exchanges take place,

and in this case maximizing the rate of convergence is a hard

combinatorial problem of finding the order of exchange that

leads to the fastest-averaging W .

In this paper, we choose the sequence of matrices W (t)
by a randomized method. At every time slot, one of the
allowed averaging matrices is chosen at random according

43rd IEEE Conference on Decision and Control
December 14-17, 2004
Atlantis, Paradise Island, Bahamas

0-7803-8682-5/04/$20.00 ©2004 IEEE

FrC08.2

5310

to some probability distribution. The problem then is to

characterize necessary and sufficient conditions on this

distribution under which the iterations converge to xave1,
where convergence now means the convergence of the

sequence of random vectors x(t). In this paper, we study the
question of when, and at what rate, a (randomized) gossip
algorithm converges to the vector of averages, and how

long it takes to converge to a given level of accuracy with

high probability. We also investigate the problem of finding

the fastest converging algorithm of a class of gossiping
algorithms.

The distributed averaging problem with the gossip con-

straint arises in the context of estimation and information

exchange in sensor networks, ad-hoc wireless networks,

peer-to-peer networks, and other distributed networks like

social networks, where there is a need for inter-node in-

formation exchange in the absence of a centralized com-

putational entity. ([KDG03] and references therein contain

many examples of such situations). Gossiping reduces the

number of operations per node per time slot, reducing

power consumption per node, and the total number of

transmissions in a given time slot (reducing interference),

which makes it particularly well-suited for communication

in wireless networks. This work is a first step towards design

and analysis of distributed randomized algorithms in such

a set up; it also establishes a connection to the well-studied

Markov chain mixing time problem. For further work on

this topic, see [BGPS04b] and [BGPS04a]. [BGPS04b]

contains results regarding mixing times of random walks on

geometric random graphs (which are used to model wireless

sensor nets), while [BGPS04a] discusses averaging time

results for other types of networks, as well as describes

a distributed method to converge to the optimal averaging

algorithm on an arbitrary graph.

A. Related Work

The recent work [KDG03] studies the gossip-constrained

averaging problem for the special case of the complete

graph. A randomized gossiping algorithm is proposed which

is shown to converge to the vector of averages on the

complete graph. However, the method of analysis used does

not easily and cleanly extend to an arbitrary network graph.

The problem of fast distributed averaging without the

gossip constraint on an arbitrary graph is studied in [XB03];

here, the matrices W (t) are constant, i.e., W (t) = W for

all t. It is shown that the problem of finding the (constant)
W matrix that converges fastest to 11T /n can be written
as a semidefinite program (under a symmetry constraint),

and can therefore be solved numerically.

Distributed averaging has also been studied in the context

of distributed load balancing ([RSW98]), where nodes (pro-

cessors) exchange tokens in order to uniformly distribute

tokens over all the processors in the network (the number

of tokens is constrained to be integral, so exact averaging is

not possible). An analysis based on Markov chains is used

to obtain bounds on the time required to achieve averaging

upto a certain accuracy. However, each iteration is governed

either by a constant stochastic matrix, or a fixed sequence

of matchings is considered. This differs from our work (in

addition to the integral constraint) in that we consider an

arbitrary sequenceW (t) drawn IID from some distribution,
and try to characterize the properties the distribution must

possess for convergence.

An interesting result regarding products of random matri-

ces is found in [EKN90]. The authors prove the following

result on a sequence of iterations x(t + 1) = W (t)x(t),
where the W (t) belong to a finite set of paracontracting
matrices (i.e., W (t)x �= x ⇔ ‖W (t)x‖ < ‖x‖). If I = {i :
Wi appear infinitely often in the sequence W (t)}, and for
i ∈ I, H(Wi) denotes the eigenspace ofWi associated with

eigenvalue 1, then the sequence of vectors x(t) has a limit
x� ∈ ∩i∈IH(Wi). This result can be used to find conditions
for convergence of distributed averaging algorithms.

B. Organization

The remainder of the paper is organized as follows. In §II,
we study convergence of a randomized gossip algorithm in

expectation and second moment, and give a lower bound on

the running time. In §III, we analyze a simple decentralized
gossip algorithm, which turns out to have a beautiful

property: the rate of convergence in expectation and second

moment are governed by the same parameter. In §IV, we
show that the problem of choosing the parameters to find

the fastest converging algorithm is a semidefinite program.

Finally, in §V, we relate the averaging time of a randomized
gossip algorithm to the mixing time of a Markov chain

associated with the algorithm.

II. CONVERGENCE OF GOSSIP-CONSTRAINED

AVERAGING

In this section, we will study the convergence of random-

ized gossip algorithms. We will not restrict ourselves here

to any particular algorithm; but rather consider convergence

of the iteration governed by a product of random matrices,

each of which satisfies certain (gossip-based) constraints

described below.

The vector of estimates is updated as

x(t + 1) = W (t)x(t),

where each W (t) must satisfy the following constraints
imposed by the gossip criterion and the graph topology.

If nodes i and j are not connected by an edge, then
Wij(t) must be zero. Further, since every node can commu-
nicate with only one of its neighbours per time slot, each

column of W (t) can have only one non-zero entry other
than the diagonal entry.

The iteration intends to compute the average, and there-

fore must preserve sums: this means that 1T W (t) = 1T ,

2

5311

where 1 denotes the vector of all ones. Also, the vector
of averages must be a fixed point of the iteration, i.e.,
W (t)1 = 1.

We will consider matricesW (t) drawn i.i.d. (independent
identically distributed) from some distribution on the set of

non-negative matrices satisfying the above constraints, and

investigate the behaviour of the estimate x(t):

x(t) = W (t − 1)W (t − 2) · · ·W (0)x(0)
= φ(t − 1)x(0).

If x(t) must converge to the vector of averages 11T

n x(0)
for every initial condition x(0), we must have that

lim
t→∞φ(t) =

11T

n
. (2)

A. Convergence in expectation

Let the mean of the (i.i.d.) matrices W (t) be denoted by
W . We have

E(φ(t)) =
t∏

i=0

E(W (i)) = W
t
, (3)

so φ(t) converges in expectation to 11T

n if W
t → 11T

n . The

conditions on W for this to happen are stated in [XB03];

they are

1T W = 1T , (4)

W1 = 1, (5)

ρ(W − 11T

n
) < 1, (6)

where ρ(·) is the spectral radius of a matrix. The first two
conditions will be automatically satisfied by W , since it
is the expected value of matrices each of which satisfies

this property. Therefore, if we pick any distribution on the

W (t) whose mean satisfies (6), the sequence of estimates
will converge in expected value to the vector of averages.

In fact, if W is invertible, by considering the martingale

W
−t

φ(t)x(0), we can obtain almost sure convergence of
x(t) to x∞ = xave. However neither result tells us the rate
at which x(t) converges to x∞.

B. Convergence of second moment

To obtain the rate of convergence of x(t) to x∞, we will
investigate the rate at which the error y(t) = x(t) − x∞
converges to 0. Observe that y(t) ⊥ 1 and y(t + 1) =
W (t)y(t), so that

E[y(t)T y(t)|y(t−1)] = y(t−1)T E[W (t−1)T W (t−1)]y(t−1).
(7)

Since W (t) is doubly stochastic, so is W (t)T W (t), and
therefore E[W (t)T W (t)] is doubly stochastic. Since the

matrices W are identically distributed we will shorten

E[W (t)T W (t)] to E[W T W]. Since y(t) ⊥ 1,

y(t − 1)T E[WT W]y(t − 1) ≤ λ2(E[WT W])‖y(t − 1)‖2.
(8)

Repeatedly conditioning and using (8), we finally obtain

the bound

E[y(t)T y(t)] ≤ λ2t
2 (E[WT W])‖y(0)‖2. (9)

From this, we see that the second moment of the error

y(t) converges to 0 at a rate governed by λ2
2(E[WT W]).

This means that any scheme of choosing the W (t) which
corresponds to a E[W T W] with second largest eigenvalue
strictly less than 1 (and, of course with ρ(E[W]− 11T /n)
less than 1) provably converges in the second-moment.

C. High probability bounds

We have so far analyzed the convergence of a randomized

gossip algorithm in the first and second moment. In this

subsection, we study the running time of an algorithm, ie,

after how many steps can we say that the value of x(t) is
close to xave1 with high probability (i.e., for a large fraction
of sample paths). For this, we will first need to define the

ε-averaging time ([KDG03])

• The ε-averaging time of an algorithm is the smallest
integer Tave(ε) such that for any initial value x(0)

Pr
(‖x(t) − xave1‖2

‖x(0)‖2
≥ ε

)
≤ ε. (10)

for all t ≥ Tave.

Thus, the averaging time is the smallest time for which,

on any sample path, the values at the nodes are all ε-close
to the average value with probability greater than 1 − ε.
Based on this definition, we state the following theorem:

Theorem 1: The averaging time Tave(ε) of any random-
ized gossip algorithm with symmetric W = E[W] is lower
bounded as

Tave(ε) ≥ 0.5 log ε−1

log λmax(W)−1
. (11)

Due to space constraints, we do not include the proof of

the theorem; the proof is identical to the proof of the lower

bound in Theorem 2, with the only difference being that

λmax is replaced by λ2.

We now proceed in the next section to describe and

investigate the perfomance of a specific gossiping scheme.

III. ALGORITHM

In this section we analyze a simple gossip algorithm for

which ρ(E[W T W]) can be evaluated easily, and therefore
chosen to be small. The algorithm is motivated by the

following observation: since exchanges between nodes are

inherently ansynchronous, almost surely at any instant only

3

5312

one pair of nodes is exchanging information. We therefore

increment time by one every time a pair of nodes exchanges

information.

The algorithm, denoted A, is as follows. At every time
step, an edge {i, j} is chosen with probability Pij , where

Pij is a probability distribution on the edges of the graph.

Node i and node j then average their values, i.e., the W (t)
describing the iteration is of the formWij (whereWij is I−
(ei−ej)(ei−ej)

T

2 as before). The algorithm is parametrized

by the variables Pij , the probabilities with which edges are

chosen for averaging.

A. First and second moment convergence

The expected value W = E[W] is given by

W =
∑

{i,j}∈E
PijWij . (12)

Note that W also lies on the graph (i.e., W ij = 0 if there
is no edge between i and j), since it is the expectation
of matrices each of which satisfies this constraint. This

matrix W governs convergence in expectation. Specifically,

for fastest convergence in expectation, we should chooseW
to have the smallest possible ρ(W − 11T /n).

Now we will find E[W T W]. For each t (since W (t) is
symmetric),

W (t)T W (t) = (I − (ei − ej)(ei − ej)T

2
)2

= (I − (ei − ej)(ei − ej)T

2
)

= W (t).

(EachWij is actually a projection matrix onto the subspace

xi = xj .) So the expected value is the same as W , i.e.,

E[WT W] = W =
∑

{i,j}∈E
PijWij . (13)

Observe that this implies that W is positive semidefinite,

since it is also the expected value of positive semidefinite

matrices W T W . So the spectral radius of W − 11T /n,
which governs the rate of convergence of E[x(t)], is simply
the second largest eigenvalue of W .

From (13), we see that for this algorithm, the conditions

for convergence of the expectation are necessary and suffi-

cient for convergence in the second moment as well. In fact,

the rate of convergence of the expected value is governed

by the same parameter as the rate of convergence of the

second moment, i.e., λ2(W)! That is, there is no trade-off
between the convergence in expected value and second mo-

ment, and both can be simultaneously optimized for fastest

convergence. We will return to optimizing the algorithm for

fastest convergence after analyzing the averaging time for

this particular algorithm.

B. Analysis of averaging time

We state the following theorem regarding the averaging

time for our algorithm. Due to lack of space, we omit the

proof, which can be found in a longer version of this paper

[BGPS04a].

Theorem 2: The averaging time Tave(ε) of A is bounded
as

Tave(ε) ≥ 0.5 log ε−1

log λ2(W)−1

Tave(ε) ≤ 3 log ε−1

log λ2(W)−1
.

Again, the averaging time is related to the second largest

eigenvalue of W : the smaller λ2(W), the smaller the lower
and upper bounds on the averaging time.

IV. OPTIMIZING FOR FASTEST CONVERGENCE

To find the W characterizing the algorithm with fastest

convergence, we need to find the W with the smallest λ2

which can be decomposed into a convex combination of

Wijs. From (12), this is the optimization problem

minimize λ2(
∑

PijWij)
subject to

∑
{i,j}∈E Pij = 1

Pij ≥ 0,

(14)

where the optimization variables are the probabilities on

the edges Pij . Note that the objective function, which is

the second largest eigenvalue of a doubly stochastic matrix,

is a convex function on the set of symmetric matrices. Since

each of the Wij is symmetric, the doubly stochastic matrix

is symmetric as well. The constraints are all linear con-

straints, and so the optimization problem above is convex.

This problem can be easily reformulated as the following

semidefinite program:

minimize s
subject to (

∑
{i,j}∈E PijWij) − 11T /n � sI,∑

{i,j}∈E Pij = 1, Pij ≥ 0.
(15)

For general background on SDPs, eigenvalue optimiza-

tion, and associated interior-point methods for solving these

problems, see, for example, [BV03], [WSV00], [LO96],

[Ove92], and references therein. Interior-point methods can

be used to solve problems for large graphs with upto

a thousand edges or so; [XB03] describes a subgradient

method for a closely related problem that can be used

to solve this problem for very large graphs, with upto a

hundred thousand edges.

Thus given a graph topology, we can solve the semidef-

inite program (15) to find the probability distribution on

the edges that yields the fastest convergence for this class

of randomized gossip algorithms. [BGPS04a] shows how

to arrive at this optimal distribution via a completely dis-

tributed algorithm, using the subgradient method.

4

5313

V. RELATION TO MARKOV CHAINS

In this section we explore the relation between averaging

and mixing of Markov chains. First we look at the relation

between the fastest mixing Markov chain problem [BDX04]

and (14).

Recall that the incidence matrix for a graph with n nodes
and m edges, B ∈ Rn×m has entries Bij = 1 if edge j
starts from vertex i, −1 if it ends on i, and 0 otherwise,
where directions are arbitrarily assigned to the edges. Then

∑
{i,j}∈E

PijWij = I − 1
2
B diag(P)BT , (16)

where diag(P) ∈ Rm×m is the diagonal matrix with

entries Pij . Thus the optimization problem (14) is closely

related to the fastest-mixing Markov chain problem, which

can be written as

minimize λmax(I − B diag(P)BT)
subject to

∑
{i,j}∈E Pij = 1

Pij ≥ 0.

(17)

Let XP = I − B diag(P)BT , then the objective function

in (17) is λmax(XP), while in (14), it is λ2(1
2 (I +XP)) =

λmax(1
2 (I + XP)), since the eigenvalues of 1

2 (I + XP) all
lie between 0 and 1. So the problem of finding the fastest
averaging algorithm of class A can be equivalently stated
as the problem of finding the fastest mixing Markov chain

on the graph with a positive-semidefinite transition matrix.

Now consider the averaging algorithm A with E[W] =
W as in (12), and a Markov chainM on G with W as its

probability transition matrix. The dependence of the mixing

time of M and the averaging time of A on λ2(W) (since
W � 0) relates them in the following sense: the smaller
the mixing time ofM, the smaller the averaging time of A
and vice versa.

We make this connection precise in the following Theo-

rem 3. This relation allows us to import techniques for de-

signing fast mixing Markov chains to design good averaging

algorithms in situations where it may not be easy or feasible

to solve (14) (for example, in a distributed setting). Well-

known heuristics such as Metropolis-Hastings for obtaining

fast mixing Markov chains can help in obtaining fast

averaging algorithms.

Recall the definition of the mixing time. For any node

i define ∆i(t) = 1
2

∑n
j=1 |W

t

ij − 1
n |. The mixing time is

defined as

Tmix(ε) = sup
i

inf{t : ∆i(t′) ≤ ε for all t′ ≥ t}. (18)

Recall also the following well known results (see for

example, the survey [Gur00]).

Lemma 1: The following are bounds on the mixing time
of a Markov chain P :

λmax(P) log(2ε)−1

2(1 − λmax(P))
≤ Tmix(ε) ≤ log n + log ε−1

1 − λmax(P)
. (19)

Since we are interested in high probability guarantees for

the averaging algorithm, we will consider ε which is of the
form 1/nδ, where δ is a positive constant. We are now ready
to state the following result:

Theorem 3: The averaging time of the gossip algorithm
A is related to the mixing time of the Markov chain with
transition matrix E[W] = W as

Tave(ε) = Θ(log n + Tmix(ε)).

Proof: Let ε = 1/nδ. It is shown in [KSSV00]

that Tave(ε) = Ω(log n) for ε < 1/2, and we al-
ready know that Tave(ε) = Ω(log n

log λmax(W)−1), so that

Tave(ε) = log n + Ω(log n

log λmax(W)−1). We will first show
that Tave(ε) = Ω(log n + Tmix(ε)). There are two cases to
consider: (i) λmax(W) ≤ 1

4 ; and (ii) λmax(W) > 1
4 .
1 Case

(i): In this case, by Lemma 1, Tmix(ε) = O(log n). Fur-
ther, log n

log λmax(W)−1 = O(log n). It follows that Tave(ε) =
Ω(log n + Tmix(ε)). Case (ii): From Lemma 1, since
λ2(W) > 1/4, we get

Tmix(ε) = Θ
(

log n

1 − λ2(W)

)
= Ω(log n). (20)

To conclude that Tave(ε) = Ω(log n + Tmix(ε)), it suffices
to show that log λmax(W)−1 = Θ(1 − λmax(W)). By the
continuity and monotonicity of log(·), there exist c1, c2 < 0,
such that for x ∈ [0, 3

4],

c1x ≤ log(1 − x) ≤ c2x.

Since λmax(W) > 1/4, we get

log(λmax(W))−1 = Θ((1 − λmax(W)−1)). (21)

Now we will show that Tave(ε) = O(log n+Tmix(ε)), which
will give us our result. Again we consider the same two

cases. If λ2 < 1/4, then − log λ2(W) ≥ log(4). By (2), this
gives Tave(ε) ≤ O(log n). But by Lemma 1 Tmix(W) =
O(log n). Hence, for λmax(W) ≤ 1/4,

Tave(ε) = O(log n + Tmix(ε)). (22)

If λmax(P) > 1/4, then using the fact that log(1+x) ≤ x,
(2) and Lemma 1, we get

Tave(ε) ≤ 3δ log n

1 − λ2(W)

≤ 3
λ2(W)

Tmix(ε)

≤ 12(logn + Tmix(ε)),

and again Tave(ε) = O(log n + Tmix(ε)). Combining the
two results gives us the theorem.

1The specific value 1
4
is not crucial; we could have chosen any a > 0

instead.

5

5314

VI. CONCLUSION

We have analyzed the convergence of a general random-

ized gossip algorithm, and derived conditions under which

an algorithm converges. We have found the associated rates

of convergence and given a lower bound on the running

time of any such algorithm. We then describe and study the

convergence properties of a specific gossip algorithm. We

show that optimizing the performance of the algorithm leads

to the same problem for different kinds of convergence, and

show that this is in fact a semidefinite program. Finally,

we explore the relation between Markov chains and the

randomized gossip problem, and relate the averaging time

to the mixing time of an associated Markov chain.

REFERENCES

[BDX04] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing
Markov chain on a graph. To appear in SIAM Re-
view, problems and techniques section, 2004. Available at
www.stanford.edu/˜boyd/fmmc.html.

[BGPS04a] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah.
Gossip algorithms: Design, analysis, and ap-
plications. Submitted, 2004. Available at
www.stanford.edu/˜arpitag/papers/gossip.ps.

[BGPS04b] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah.
Mixing times for random walks on random

graphs. Submitted, 2004. Available at
www.stanford.edu/˜arpitag/papers/mixgnr.ps.

[BV03] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2003. Available at
http://www.stanford.edu/˜boyd/cvxbook.html.

[EKN90] L. Elsner, I. Koltracht, and M. Neumann. On the convergence
of asynchronous paracontractions with applications to tomo-
graphic reconstruction from incomplete data. Linear Algebra
Appl., (130):65–82, 1990.

[Gur00] V. Guruswami. Rapidly mixing markov chains: A
comparison of techniques. May 2000. Available
at cs.washington.edu/homes/venkat/
pubs/papers.html.

[KDG03] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based com-
putation of aggregate information. In Proc. Conference on
Foundations of Computer Science. IEEE, 2003.

[KSSV00] R. Karp, C. Schindelhauer, S. Shenker, and B. Vcking.
Randomized rumor spreading. In Proc. Symposium on Foun-
dations of Computer Science. IEEE, 2000.

[LO96] A. S. Lewis and M. L. Overton. Eigenvalue optimization.
Acta Numerica, 5:149–190, 1996.

[Ove92] M. L. Overton. Large-scale optimization of eigenvalues.
SIAM Journal on Optimization, 2:88–120, 1992.

[RSW98] Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of
Markov chains and the analysis of iterative load-balancing
schemes. In Proc. Conference on Foundations of Computer
Science. IEEE, 1998.

[WSV00] H. Wolkowicz, R. Saigal, and L. Vandengerghe, editors.
Handbook of Semidefinite Programming, Theory, Algorithms,
and Applications. Kluwer Academic Publishers, 2000.

[XB03] L. Xiao and S. Boyd. Fast linear iterations for distributed
averaging. In Proc. 2003 Conference on Decision and
Control, December 2003.

6

5315

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Helvetica
 /Helvetica-Bold
 /Times-Bold
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

