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We consider the setup of nonparametric blind regression for estimat-
ing the entries of a large m × n matrix, when provided with a small, ran-
dom fraction of noisy measurements. We assume that all rows u ∈ [m] and
columns i ∈ [n] of the matrix are associated to latent features x1(u) and
x2(i) respectively, and the (u, i)-th entry of the matrix, A(u, i) is equal to
f(x1(u), x2(i)) for a latent function f . Given noisy observations of a small,
random subset of the matrix entries, our goal is to estimate the unobserved
entries of the matrix as well as to “de-noise” the observed entries.

As the main result of this work, we introduce a nearest neighbor based
estimation algorithm inspired by the classical Taylor’s series expansion. We
establish its consistency when the underlying latent function f is Lipschitz,
the latent features belong to a compact domain, and the random fraction of
observed entries in the matrix is at least max

(
m−1+δ, n−1/2+δ

)
, for any

δ > 0. As an important byproduct, our analysis sheds light into the perfor-
mance of the classical collaborative filtering algorithm for matrix completion,
which has been widely utilized in practice. Experiments with the MovieLens
and Netflix datasets suggest that our algorithm provides a principled improve-
ment over basic collaborative filtering and is competitive with matrix factor-
ization methods.

Our algorithm has a natural extension to the setting of tensor completion.
For a t-order balanced tensor with total of N entries, we prove that our ap-

proach provides a consistent estimator when at least N−
b2t/3c

2t
+δ fraction of

entries are observed, for any δ > 0. When applied to the setting of image in-
painting, which is a 3-order tensor, we find that our approach is competitive
with respect to state-of-art tensor completion algorithms across benchmark
images.
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1. Introduction. The problem of matrix completion has received enormous
attention in the past decade: Consider an m × n matrix A of interest. Suppose
we observe a random subset of the entries of an m × n matrix Z, which is a
noisy version of A, such that each (u, i)-th entry Z(u, i) is a random variable with
E[Z(u, i)] = A(u, i). For each u ∈ [m] and i ∈ [n], Z(u, i) is observed with prob-
ability p and with probability 1 − p it is not observed, independently of all other
entries. The goal is to recover matrix A given partial observations from Z.

1.1. Related Literature. The primary methods used to solve this problem in the
literature include neighbor based approaches, such as collaborative filtering, and
spectral approaches, which include low-rank matrix factorization or minimization
of a loss function with respect to spectral constraints.

Spectral Methods. In the recent years, there have been exciting intellectual de-
velopments in the context of spectral approaches such as matrix factorization. All
matrices admit a singular-value decomposition, such that they can be uniquely fac-
torized. The goal of the factorization based method is to recover row and column
singular vectors accurately from the partially observed, noisy matrix Z and subse-
quently estimate the matrix A. Srebro, Alon and Jaakkola (2004) was one of the
earliest works to suggest the use of low-rank matrix approximation in this context.
Subsequently, statistically efficient approaches were suggested using optimization
based estimators, proving that matrix factorization can fill in the missing entries
with sample complexity as low as rn log n, where r is the rank of the matrix Candès
and Recht (2009); Rohde et al. (2011); Keshavan, Montanari and Oh (2009); Ne-
gahban and Wainwright (2012); Jain, Netrapalli and Sanghavi (2013). There has
been an exciting line of ongoing work to make the resulting algorithms faster and
scalable Fazel, Hindi and Boyd (2003); Liu and Vandenberghe (2010); Cai et al.
(2008); Lin et al. (2009); Shen, Ji and Ye (2009); Mazumder, Hastie and Tibshirani
(2010a).

Xu, Massoulié and Lelarge (2014) proposed a spectral clustering method for
inferring the edge label distribution for a network sampled from a generalized
stochastic block model. The model is similar to the proposed latent variable model
introduced in Section 2, except that the edges are labeled by one of finitely many
labels in symmetric setup with m = n, and the goal is to estimate the label dis-
tribution in addition to the expected label. When the expected function has a finite
spectrum decomposition, i.e. low rank, then they provide a consistent estimator
for the sparse data regime, with Ω(m logm) samples. When the function is only
approximately low rank (e.g. the class of general Lipschitz functions), for a fixed
rank r approximation, the mean squared error bounds converge to a positive con-
stant which captures the low rank approximation gap. That is, Ω(m logm) samples
are not sufficient to guarantee consistent estimation for the entire class of Lipschitz
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functions.
Many of these approaches are based on the structural assumption that the under-

lying matrix is low-rank and the matrix entries are reasonably “incoherent”. Unfor-
tunately, the low-rank assumption may not hold in practice. The recent work Ganti,
Balzano and Willett (2015) makes precisely this observation, showing that a simple
non-linear, monotonic transformation of a low-rank matrix could easily produce an
effectively high-rank matrix, despite few free model parameters. They provide an
algorithm and analysis specific to the form of their model, which achieves sample
complexity of O((mn)2/3). However, their algorithm only applies to functions f
which are a nonlinear monotonic transformation of the inner product of the latent
features. Lee et al. (2016) propose an algorithm for estimating locally low rank
matrices, however their algorithm assumes prior knowledge of the “correct” kernel
function between pairs of rows and columns which is not known a priori.

In contrast, Chatterjee (2015) proposes the universal singular value thresholding
estimator (USVT) inspired by low-rank matrix approximation. Somewhat interest-
ingly, he argues that under the latent variable model considered in this work (see
Section 2), the USVT algorithm provides an accurate estimate for any Lipschitz
function. However, to guarantee consistency of the USVT estimator for an m×m

(i.e. m = n) matrix, it requires observing Ω

(
m

2(d+1)
(d+2)

)
many entries out of the

m2 total entries, where d is the dimension of the latent space in which the row
and column latent features belong. In contrast, our algorithm requires observing
Ω(m

3
2

+δ) entries of the matrix for any small δ > 0, which is independent of the
dimension of the latent space, as long as d = o(logm) (c.f. Corollary 4.3).

Collaborative Filtering. The term collaborative filtering was coined by Gold-
berg et al. (1992), and this technique is widely used in practice due to its simplicity
and ability to scale. There are two main paradigms in neighborhood-based collabo-
rative filtering: the user-user paradigm and the item-item paradigm. To recommend
items to a user in the user-user paradigm, one first looks for similar users, and
then recommends items liked by those similar users. In the item-item paradigm, in
contrast, items similar to those liked by the user are found and subsequently rec-
ommended. Much empirical evidence exists that the item-item paradigm performs
well in many cases (Linden, Smith and York, 2003; Koren and Bell, 2011; Ning,
Desrosiers and Karypis, 2015). There have also been many heuristic improvements
upon the basic algorithm, such as normalizing the data, combining neighbor meth-
ods with spectral methods, combining both user and item neighbors, and addi-
tionally optimizing over interpolation weights given to each datapoint within the
neighborhood when computing the final prediction Bell and Koren (2007); Koren
(2008); Wang, de Vries and Reinders (2006).
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Despite the widespread success of similarity based collaborative filtering heuris-
tics, the theoretical understanding of these method is very limited. In recent works,
latent mixture models have been introduced to explain the collaborative filtering
algorithm as well as the empirically observed superior performance of item-item
paradigms, c.f. Bresler, Chen and Shah (2014); Bresler, Shah and Voloch (2015).
However, these results assume binary ratings and a specific parametric model, such
as a mixture distribution model for preferences across users and movies. We hope
that by providing an analysis for collaborative filtering within a nonparametric
model, we can provide a better understanding of collaborative filtering.

Within the context of dense graphon estimation, when the entries in the data ma-
trix are binary and the sample probability p is constantO(1), there have been a few
theoretical results that prove convergence of the mean squared error for similarity
based methods Airoldi, Costa and Chan (2013); Zhang, Levina and Zhu (2015).
They hinge upon computing similarities between rows or columns by comparing
commonly observed entries, similar to collaborative filtering. Similar to our result,
they are able to prove convergence for the class of Lipschitz functions. However,
Airoldi, Costa and Chan (2013) assumes that the algorithm is given multiple in-
stances of the sampled dataset, which is not available in our formulation. Zhang,
Levina and Zhu (2015) is weaker than our result in that it assumes p = O(1),
however they are able to handle a more general noise model, when the entries are
binary. The similarity between a pair of vertices is computed from the maximum
difference between entries in the associated rows of the second power of the data
matrix, which is computationally more expensive than directly comparing rows in
the original data matrix.

Tensor Completion. Recently there have been efforts to extend decomposition
methods or neighborhood based approaches to the context of tensor completion,
however this has proven to be significantly more challenging than matrix comple-
tion due to the complication that tensors do not have a canonical decomposition
such as the singular value decomposition (SVD) for a matrix. This property makes
obtaining a decomposition for a tensor challenging. The survey Kolda and Bader
(2009) elaborates on these challenges. There have been recent developments in ob-
taining efficient tensor decompositions in form of rank-1 tensors (tensors obtained
from one vector), presented in Anandkumar et al. (2014). This has been especially
effective in learning latent variable models and estimating missing data as shown
in, for example Jain and Oh (2014); Oh and Shah (2014). Beyond tensor decompo-
sition, there have been recent developments in the context of learning latent vari-
able models or mixture distributions also called non-negative matrix factorization,
c.f. Arora, Ge and Moitra (2012); Arora et al. (2012).
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1.2. Our Contributions. We provide a similarity based collaborative filtering
algorithm with theoretical performance guarantees under the latent variable model.
In addition, we extend the algorithm and results to the more challenging setting of
tensor completion. To our knowledge, this is the first theoretical analysis for simi-
larity based collaborative filtering algorithms, shedding insight into the widespread
success of this popular heuristic for the past two decades. The algorithm we intro-
duce is a simple variant of classical collaborative filtering, in which we compute
similarities between pairs of rows and pairs of columns by comparing their com-
mon overlapped entries. Our model assumes that each row and column is associated
to a latent variable, i.e. hidden features, and that the data is in expectation equal to
some unknown function of those latent variables. The key regularity condition that
we require is that the function is Lipschitz with respect to the latent space.

Given this latent variable model, we prove that the estimate produced by this
algorithm is consistent as long as the fraction of entries that are observed is at least
max(m−1+δ, n−1/2+δ) for some δ > 0 for an m × n matrix. We provide experi-
ments using our method to predict ratings in the MovieLens and Netflix datasets.
The results suggest that our algorithm improves over basic collaborative filtering
and is competitive with factorization based methods.

We also show that the algorithm can be applied to tensor completion by flatten-
ing the tensor to a matrix. Additionally we can extend the analysis to prove that
our algorithm produces a consistent estimator when at least N−1/3+δ fraction of
the entries are observed, for some δ > 0, where N is the total number of entries
in the tensor. We implemented our method for predicting missing pixels in im-
age inpainting, which showed that our method is competitive with existing spectral
methods used for tensor completion.

The algorithm that we propose is inspired by local functional approximations,
specifically Taylor’s series expansion. This work has similarities to classical ker-
nel regression, which also relies on local smoothed approximations, c.f. Mack and
Silverman (1982); Wand and Jones (1994). However, since kernel regression and
other similar methods use explicit knowledge of the input features, their analysis
and proof techniques do not extend to our context. Instead of using distance in
the unknown latent space, the algorithm weights datapoints according to similar-
ities that are computed from the data itself. Our analysis shows that although the
similarities may not reflect true latent distance, they essentially reflect L2 func-
tional distances between the expected data function associated to a pair of rows or
columns, which is sufficient to guarantee that the datapoints with high similarities
are indeed similar in value.

1.3. Organization of the Paper. In Section 2 we setup the formal model and
problem statement and discuss the assumptions needed for our analysis. In Section
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3 we introduce the basic form of our algorithm, which is similar to the user-user
variant of collaborative filtering. We show that the algorithm can be intuitively de-
rived from local first order approximations, and we present heuristic variants of the
algorithm that perform well in practice. In Section 4 we present the main theoret-
ical results of our paper as they pertain to matrix completion, showing provable
convergence of the user-user and item-item variants of our algorithm. We discuss
our results alongside the results of the USVT estimator, which highlights that the
sample complexity of our method scales well with the latent dimension of the row
and column hidden features. In Section 5 we extend the algorithm and theoretical
results to tensor completion, including a discussion on the optimal flattening of a
tensor which is best suited to our method. In Section 6 we present experimental
results from applying our methods to both matrix completion in the context of pre-
dicting movie ratings, and tensor completion in the context of image inpainting.
Sections 7 and 8 include the detailed proofs and associated lemmas used in the
theoretical analysis.

2. Problem Statement. Suppose that there is an unknown m × n matrix A
which we would like to estimate, and we observe partial observations of a noisy
matrix Z. LetD ⊂ [m]× [n] denote the index set of observed entries. Precisely, for
any u ∈ [m] and i ∈ [n], Z(u, i) is observed and thus (u, i) ∈ D with probability
p ∈ [0, 1], and otherwise it is not observed (or missing) and thus (u, i) /∈ D with
probability 1 − p, independent of everything else. When observed, it provides an
unbiased noisy signal of A(u, i), such that E[Z(u, i)] = A(u, i). Concretely,

Z(u, i) = A(u, i) + η(u, i),(2.1)

where η(u, i) is an independent zero-mean bounded random variable with

E[η(u, i)] = 0, Var[η(u, i)] = γ2, and |η(u, i)| ≤ Be,(2.2)

for some constant Be.
We posit the following nonparametric model for the matrixA, also known as the

Latent Variable Model Chatterjee (2015). Each row u and column i is associated
to latent features x1(u) ∈ X1 and x2(i) ∈ X2 for some compact metric spaces
X1,X2. The (u, i)-th entry of matrix A takes the form of

A(u, i) = f(x1(u), x2(i))(2.3)

for some latent function f : X1 ×X2 → R. Note that there does not exist a unique
representation, as we can apply a transformation to the latent feature spaces X1 and
X2, and apply an equivalent transformation to the function f such that the data is
exactly equal under the new representation. Therefore, the question of estimating
the function f itself is not well defined, and thus we focus our energy on predicting
the values A(u, i).
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2.1. Blind Regression. We call the problem of interest Blind Regression for the
following reason. In the setting of Regression, one observes data containing fea-
tures and associated labels; the goal is to learn functional relationship (or model)
between features and labels assuming that labels are noisy observation. In our set-
ting, tuple (x1(u), x2(i)) are features and Z(u, i) are noisy observations of associ-
ated labels. In that sense, it is very much like the Regression setting. However, the
features (x1(u), x2(i)) are latent. Therefore, the term Blind Regression.

2.2. Operating Assumptions. In addition to the assumptions on the additive
noise model presented in (2.2), we additionally assume basic regularity conditions
on the function f and the latent spaces X1 and X2. Assume X1 and X2 are endowed
with metrics dX1 and dX2 , and have diameters DX1 and DX2 :

dX1(x1, x
′
1) ≤ DX1 for all x1, x

′
1 ∈ X1,(2.4)

dX2(x2, x
′
2) ≤ DX2 for all x2, x

′
2 ∈ X2.(2.5)

Assume the latent function f is L-Lipschitz:

|f(x1, x2)− f(x′1, x
′
2)| ≤ Lmax

(
dX1(x1, x

′
1), dX2(x2, x

′
2)
)
,(2.6)

for all x1, x
′
1 ∈ X1 and x2, x

′
2 ∈ X2. While our formal results require Lipschitz

continuity, equivalent results can be derived for piecewise Lipschitz functions as
well. Assumptions (2.4), (2.5), and (2.6) along with the bounded noise in (2.2)
imply that all entries of matrix A and Z are uniformly bounded. Specifically we
define parameter

B0 , LDX1 + 2Be,(2.7)

such that for any u, v ∈ [m] and any i ∈ [n],

|Z(u, i)− Z(v, i)| = |f(x1(u), x2(i)) + η(u, i)− f(x1(v), x2(i))− η(v, i)|
≤ LDX1 + 2Be =: B0.

Assume that for each u ∈ [m] and i ∈ [n], the latent features x1(u) and x2(i) are
sampled independently from X1 and X2 according to Borel probability measures
PX1 and PX2 respectively. For i ∈ {1, 2}, define φi : R+ → [0, 1] to be a function
lower bounding the cumulative distribution function according to the distance in
the latent space. For any radius r > 0, we define it according to

φi(r) ≡ ess inf
x0∈Xi

PXi (Bi(x0, r)) ,(2.8)

where Bi(x0, r) indicates the ball of radius r centered around point x0 ∈ Xi,

B(x0, r) = {x ∈ Xi : dXi(x0, x) ≤ r}.(2.9)
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For example, if PX1 is a uniform distribution over a unit cube in d dimensional Eu-
clidean space, then φ1(r) = min

{
1,
(
r
2

)d}. If PX1 is supported over finitely many
points, then φ1(r) ≥ minx∈supp(PX1 ) PX1(x) is a positive constant (see Appendix
B for a detailed discussion on the function φ1).

2.3. Connections to Exchangeability. In fact, the latent variable model is well
motivated and arises as a canonical representation for row and column exchange-
able data, cf. Aldous (1981) and Hoover (1981). Suppose that our data matrix
Z is a particular realization of the first m × n entries of a random array Z =
{Z(u, i)}(u,i)∈N×N, which satisfies

Z(u, i)
d
= Z (σ(u), τ(i)) for all (u, i),(2.10)

for every pair of permutations1 σ, τ of N. We use d
= to denote equivalently dis-

tributed, i.e. the random variables on both sides have the same distribution. Ran-
dom array Z satisfying (2.10) is called separately row and column exchangeable.
That is, a dataset is exchangeable if the distribution is invariant to permutations of
the rows and columns. For an interested reader, Austin (2012) and Orbanz and Roy
(2015) presents overviews of exchangeable arrays.

In practice, the use of exchangeable arrays as a model is appropriate for va-
riety of reasons. For example, in the setting of a recommendation system with
anonymized data, this property may be reasonable if the order of the users in the
system does not intrinsically carry information about the type of user; or in other
words, a user in the system could equally likely have been located in any row of
the dataset.

In addition to exchangeability being quite a reasonable property for a wide va-
riety of applications, it also leads to a convenient latent variable representation.
The Aldous-Hoover representation theorem provides a succinct characterization
for such exchangeable arrays. According to the theorem (see Corollary 3.3 in Or-
banz and Roy (2015) for example), a random data array Z is exchangeable if and
only if it can also be represented as

Z (u, i)
d
= fθ

(
θrow(u), θcol(i), θ(u, i)

)
for all (u, i)(2.11)

where θ,
{
θrow(u)

}
u∈N,

{
θcol(i)

}
i∈N,

{
θ(u, i)

}
(u,i)∈N×N are independent random

variables drawn uniformly from the unit interval [0, 1], and fθ is a measurable
function indexed by the realization of θ, such that for any particular realization
θ = t ∈ [0, 1], ft : [0, 1]3 → R. As described in Orbanz and Roy (2015), this
suggests the following generative model:

1The permutations over N are defined in the usual manner where only finitely many indices are
permuted.
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1. Sample an instance of θ ∼ U [0, 1] determining the governing function fθ.
2. Independently sample i.i.d. uniform random variables θrow(u) ∼ U [0, 1],
θcol(i) ∼ U [0, 1], θ(u, i) ∼ U [0, 1] for every row u ∈ [m] and column
i ∈ [n].

3. Compute the realized data matrix Z according to

Z(u, i) = fθ
(
θrow(u), θcol(i), θ(u, i)

)
.

By comparing the model from (2.11) with the latent variable model described
in (2.1) and (2.3), we can see that the latent variable model considered in this
work is a restricted subclass of exchangeable models which additionally impose
an additive noise model and regularity conditions on the function fθ. In our model
we have conditioned on the universal index θ, such that given partial observations
from matrix Z for a particular fθ, our goal is to learn predicted outcomes of the
realized fθ. Our model takes the form of

Z(u, i) = f(x1(u), x2(i)) + η(u, i)(2.12)

where {x1(u)}u∈[m], {x2(i)}i∈[n], {η(u, i)}(u,i)∈[m]×[n] are sampled independently.
We can transform this to the form of (2.11) by considering f to be equal to the real-
ized function fθ, considering the latent variables x1(u) ∼ PX1 and x2(i) ∼ PX2 to
be higher dimensional representations of θrow(u) and θcol(i) in spaces X1 and X2,
and considering the noise term η(u, i) to be generated by applying some transfor-
mation to the variable θ(u, i). Given these transformations, it becomes equivalent
that

Z(u, i) = fθ
(
θrow(u), θcol(i), θ(u, i)

)
= f(x1(u), x2(i)) + η(u, i).(2.13)

Our model additionally imposes regularity conditions on f by requiring it to be
Lipschitz continuous with respect to the higher dimensional representationX1×X2

instead of being any arbitrary measurable function over [0, 1]× [0, 1]. From a mod-
eling perspective, effectively we are transferring the model complexity from a po-
tentially complex measurable latent functions over [0, 1]× [0, 1] to a simpler Lips-
chitz latent function over a potentially more complex latent variable spaceX1×X2.
The simple functional form provides analytic tractability for establishing theoreti-
cal results.

3. Algorithm. Our algorithm builds on intuition from local approximation
methods such as kernel regression. Therefore it takes the form of a similarity
based method which first defines a kernel, i.e. distances between pairs of rows
or columns, and then computes the estimate by averging over datapoints which are
determined to be close according to the estimated distances. The basic user-user
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k-nearest neighbor variant which we present next is equivalent to a variant of the
classical similarity based collaborative filtering methods. In Section 4 we will pro-
vide clear theoretical guarantees showing convergence of the mean squared error
of this basic algorithm. We also present another variation of the algorithm which
combines both row and column similarities to compute the kernel between data-
points. In Section 6 we will show experimental results that suggest combining row
and column similarities improves the estimate.

3.1. User-User k-Nearest Neighbor Algorithm. We refer to this algorithm to
as the “user-user k-nearest neighbor” variant of our method, because the algorithm
computes estimates by exploiting the similarity between rows (users), and averages
datapoints over the k most similar rows with available ratings. The algorithm uses
parameters β, k ∈ Z+, and we denote the output estimated matrix as Âk, which
takes as input the observed entries of Z and would like to best approximate A.
Steps 1 and 2 set up definitions which are used to compute the row similarities.
Step 3 chooses the k most similar rows according to the computed similarities, and
Step 4 computes the estimate by averaging over datapoints from the chosen rows.

1. For each row u ∈ [m], let Ou be the set of column indices for which Z(u, i)
is observed:

Ou = {i s.t. (u, i) ∈ D} .(3.1)

Define the “overlap” between a pair of rows (u, v) ∈ [m]× [n] to be

Ouv := Ou ∩ Ov.(3.2)

2. For each pair of rows (u, v) ∈ [m] × [m] with sufficiently large overlap
|Ouv| ≥ β, compute the mean and variance of the difference in their associ-
ated observed datapoints:

muv =
1

|Ouv|

 ∑
j∈Ouv

Z(u, j)− Z(v, j)

 ,(3.3)

s2
uv =

1

|Ouv| − 1

 ∑
j∈Ouv

(Z(u, j)− Z(v, j)−muv)
2

 .(3.4)

The sample variance s2
uv acts as an estimated distance between rows u and

v. It can equivalently be computed from the expression

s2
uv =

1

2|Ouv|(|Ouv| − 1)

∑
i,j∈Ouv

((Z(u, i)− Z(v, i))− (Z(u, j)− Z(v, j)))2 .
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3. For each index of the matrix (u, i) ∈ [m] × [n], define Sβu (i) to be the set
of rows with sufficient overlap with u that also contain available data about
column i:

Sβu (i) = {v 6= u ∈ [m] s.t. (v, i) ∈ D and |Ouv| ≥ β} .(3.5)

Let Sβ,ku (i) ⊂ Sβu (i) denote the (at most) k rows with minimum sample
variance s2

uv amongst rows v ∈ Sβu (i), where ties can be broken in any
arbitrary manner.

4. The user-user k-nearest neighbor smoothed estimator ofA(u, i) is computed
according to:

Âk(u, i) =
1

|Sβ,ku (i)|

 ∑
v∈Sβ,ku (i)

Âv(u, i)

 ,(3.6)

where

Âv(u, i) = Z(v, i) +muv.(3.7)

If |Sβ,ku (i)| = 0, then define Âk(u, i) = 0.

While the algorithm above chooses the nearest neighbors Sβu (i) amongst rows
v 6= u, if the entry Z(u, i) itself is actually observed, we could modify the algo-
rithm to include u into the set Sβ,ku (i) chosen in Step 3, such that Z(u, i) itself
will be included in compute the estimate Âk(u, i). The results which follow will
equally hold given this slight modification.

An equivalent expression for Âv(u, i) is given by

Âv(u, i) =
1

|Ouv|

 ∑
j∈Ouv

Âvj(u, i)

(3.8)

where

Âvj(u, i) = Z(v, i) + Z(u, j)− Z(v, j),(3.9)

which will be a useful form used to define other variations of our algorithm. An
equivalent “item-item” variant of the algorithm follows from simply applying the
stated algorithm on the transpose of the matrix such that the similarities are com-
puted between columns and estimates are obtained from averaging over similar
columns with available data.

This algorithm is asymptotically equivalent to the mean-adjusted variant of the
classical user-user k-nearest neighbor collaborative filtering algorithm, since muv

will converge to the difference between the empirical means of each row u and v.
Our method uses the row empirical variance instead of the standard cosine similar-
ity.
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3.2. Intuition Derived from First-Order Taylor Approximation. In fact, since
we have a clear model, we can show that the proposed algorithm can be derived
from insights related to the classical Taylor approximation of a function. Suppose
the latent spaceX1

∼= X2
∼= R, and we wish to predict the (u, i)-th entry,A(u, i) =

f(x1(u), x2(i)). According to the first order Taylor approximation of f around
(x1(v), x2(j)) for some u 6= v ∈ [m], i 6= j ∈ [n], it follows that

f(x1(u), x2(i)) ≈ f(x1(v), x2(j)) + (x1(u)− x1(v))∂f(x1(v),x2(j))
∂x1

+ (x2(i)− x2(j))∂f(x1(v),x2(j))
∂x2

.

We are not able to directly compute this expression, as we do not know the latent
features, the function f , or the partial derivatives of f . However, we can again com-
pute the first order Taylor approximation for f(x1(v), x2(i)) and f(x1(u), x2(j))
around (x1(v), x2(j)), which results in a set of equations with the same unknown
terms. It follows from substitution and rearranging the terms that

f(x1(u), x2(i)) ≈ f(x1(v), x2(i)) + f(x1(u), x2(j))− f(x1(v), x2(j)),

as long as the first order Taylor approximation is accurate. Thus if the noise term
in (2.1) is small, we can approximate f(x1(u), x2(i)) by using observed ratings
Z(v, j), Z(u, j) and Z(v, i) according to

Âvj(u, i) = Z(u, j) + Z(v, i)− Z(v, j).(3.10)

This is precisely (3.9) in the algorithm described in Section 3. However, we only
expect this estimate to be close when the first order approximation is valid, i.e.
the latent features x1(u) ≈ x1(v) and x2(i) ≈ x2(j). Unfortunately we cannot
directly verify this because the features are latent. Therefore we need a data-driven
surrogate to help decide for which entries (v, j) the estimate Âvj(u, i) is close to
A(u, i).

The approximation error for using Âvj(u, i) to estimate A(u, i) can be directly
computed by substituting (2.1) and (2.3) into (3.10),

Error ≡ f(x1(u), x2(i)− Âvj(u, i)
= (f(x1(u), x2(i))− f(x1(v), x2(i)))

− (f(x1(u), x2(j)− f(x1(v), x2(j)))− η(v, i) + η(v, j)− η(u, j).(3.11)

Therefore, conditioned on the row latent variables x1(u), x1(v), the average squared
error, with respect to the individual noise terms and the randomly sampled column
latent variables x2(i) and x2(j), is given by

E
[
(Error)2 | x1(u), x1(v)

]
= 2 Varx2∼X2 [f(x1(u),x2)− f(x1(v),x2) | x1(u), x1(v)] + 3γ2.
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This expression shows that the expected squared error conditioned on rows u and v
is directly related to the variance of the difference between the entries associated to
rows u and v. The good news is that the variance of the row differences can in fact
be estimated from the data itself. We can equivalently show that the variance of the
column differences is directly related to the expected squared error conditioned on
the column latent variables x2(i) and x2(j).

This suggests that Âvj(u, i) is a good estimate forA(u, i) as long as either (a) the
empirical variance of the differences between corresponding entries of rows u and
v is small, or (b) the empirical variance of the differences between corresponding
entries of columns i and j is small. This suggests an algorithm which computes
the empirical variances between pairs of rows and pairs of columns, and produces
a final estimate for the (u, i)-th entry by averaging over Âvj(u, i) for (v, j) where
either the row variance between u and v is small, or the column variance between
i and j is small.

The user-user k-nearest neighbor algorithm presented in section 3.1 follows pre-
cisely this format, using the pairwise row variances computed in Step 2, denoted
as s2

uv. The choice of a large β guarantees that the empirical variance is a good ap-
proximation of the true variance. The at most k rows in Sβ,ku (i) are selected to have
small empirical variance s2

uv, and a large enough k is chosen to average out the er-
ror due to the individual noise terms η, trading off between the bias and variance
of the final estimate Âk(u, i).

3.3. General Form of the Algorithm. The intuition provided characterization
of the estimation error as a function of both the row and column pairwise vari-
ances, however the user-user k-nearest neighbor algorithm presented in Section
3.1 only used pairwise row variances. Therefore we present a general form of
the algorithm in this section which will compute both row and column variances
and then compute weights for the datapoints as a function of the row and column
variances. These weights are used to predict the final estimate. There are many
possible weight functions, i.e. kernel functions, that one could choose. In Section
3.3.1, we show the weight function which leads to the user-user and item-item k-
nearest neighbor algorithm which we presented earlier. In Section 3.3.2, we present
a weight function which combines both row and column variances. In experiments,
we will show that combining both row and column similarities improves the esti-
mate. Let Â(u, i) denote the estimate our algorithm produces for A(u, i).

1. For rows u and v, compute the row-based expressionsOu andOuvfrom (3.1)
and (3.2). For columns i and j, compute the equivalent column-based expres-
sions. The observed entries in column i are

Ōi = {u s.t. (u, i) ∈ D} .(3.12)
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The overlap entries between a pair of columns i and j is

Ōij := Ōi ∩ Ōj .(3.13)

2. For rows u and v, compute the empirical mean muv and variance s2
uv of the

difference between the entries associated to the two rows, defined in (3.3)
and (3.4). Equivalently, for columns i and j, compute the empirical mean
and variance of the difference in the entries associated to the two columns
according to

m̄ij =
1∣∣Ōij∣∣

 ∑
u∈Ōij

Z(u, i)− Z(u, j)

 ,(3.14)

s̄2
ij =

1∣∣Ōij∣∣− 1

 ∑
u∈Ōij

(Z(u, i)− Z(u, j)− m̄ij)
2

 .(3.15)

3. For an index of the matrix (u, i) ∈ [m] × [n] that we would like to esti-
mate, let B(u, i) denote the set of indices (v, j) such that the entries Z(v, j),
Z(u, j) and Z(v, i) are observed, i.e. Âvj(u, i) as defined in (3.9) is com-
putable from the observations. Formally,

B(u, i) = {(v, j) s.t. (v, j) ∈ D, (u, j) ∈ D, and (v, i) ∈ D} .(3.16)

For (v, j) ∈ B(u, i), define some weight function wui(v, j) ∈ [0, 1], which
will specify the weight used to incorporate Âvj(u, i) into the final estimate
Â(u, i). These weights can be any function of the quantities computed in
Steps 1 and 2, but according to the intuition presented in Section 3.2, we
may want to choose wui(v, j) to decrease with s2

uv and s̄2
ij .

4. Compute the final prediction for A(u, i) according to a weighted combina-
tion

Â(u, i) =

∑
(v,j)∈B(u,i)wui(v, j)Âvj(u, i)∑

(v,j)∈B(u,i)wui(v, j)
,(3.17)

where

Âvj(u, i) = Z(v, i) + Z(u, j)− Z(v, j).(3.18)

We have not yet defined the weight function wui(v, j) in Step 3, and in the
following two sections we show different selections of the weight function and the
corresponding algorithm that results from (3.17).
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3.3.1. User-User and Item-Item k-Nearest Neighbor Weights. We can derive
the user-user and item-item k-nearest neighbor algorithms presented in Section 3.1
as an instance of (3.17) by an appropriate selection of the weights. For an index
of the matrix (u, i) ∈ [m] × [n], recall our definition of set Sβu (i) from (3.5). We
can verify that in fact Sβu (i) is a subset of B(u, i), additionally enforcing that the
row overlap is larger than β. Recall that Sβ,ku (i) ⊂ Sβu (i) denotes the (at most)
k rows with minimum sample variance s2

uv amongst rows v ∈ Sβu (i). Therefore,
the user-user k-nearest neighbor algorithm is equivalent to choosing the following
weight function

wui(v, j) =

{
1 if v ∈ Sβ,ku (i)

0 otherwise.
(3.19)

This essentially defines a hard threshold where datapoints are included in the final
estimate if and only if the row is amongst the k minimum sample variance rows,
and evenly weighted amongst included datapoints. We can verify that the estimate
computed from (3.17) using this choice of the weight function is equivalent to
(3.6).

The item-item k-nearest neighbor algorithm can equivalently be defined using
a similar weight function. Let S̄βi (u) be the set of columns with sufficient overlap
with column i that also contain available data about row u,

S̄βi (u) =
{
j 6= i ∈ [n] s.t. (u, j) ∈ D and |Ōij | ≥ β

}
.(3.20)

And define the set S̄β,ki (u) ⊂ S̄βi (u) to be the (at most) k columns with minimum
sample variance s̄2

ij amongst columns j ∈ S̄βi (u). Therefore, the item-item k-
nearest neighbor algorithm is equivalent to choosing the following weight function

wui(v, j) =

{
1 if j ∈ S̄β,ki (u)

0 otherwise.
(3.21)

3.3.2. User-Item Gaussian Kernel Weights. The previous choice of weights in
Section 3.3.1 uses either row or column variances, and implements a hard-threshold
kernel, averaging equally amongst the k nearest rows or columns. We introduce a
variant of the algorithm which combines both row and column variances s2

uv and
s̄2
ij using a soft-thresholded Gaussian kernel. Since we need the empirical variances

to concentrate, we restrict ourselves to the set Bβ(u, i), which we define to be
entries (v, j) ∈ B(u, i) for which rows u and v have overlap of at least β and
columns of i and j have overlap of at least β. Formally,

Bβ(u, i) =
{

(v, j) ∈ B(u, i) s.t. |Ouv| ≥ β and |Ōij | ≥ β
}
.(3.22)
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Inspired by kernel regression, we define the weights according to a Gaussian kernel
with bandwith parameter λ ∈ R+, using the minimum of the row and column
variances as a proxy for the distance:

wui(v, j) =

{
exp

(
− λmin{s2

uv, s̄
2
ij}
)

if (v, j) ∈ Bβ(u, i)

0 otherwise.
(3.23)

When λ =∞, the estimate Â(u, i) only depends on the basic estimates Âvj(u, i)for
entries (v, j) whose row or column has minimum sample variance. When λ = 0,
the algorithm equally averages all the estimates Âvj(u, i) for (v, j) ∈ Bβ(u, i).
Empirically, this variant of the algorithm seem to perform very well with an ap-
propriate selection of the bandwidth parameter λ, which can be tuned using cross
validation.

3.3.3. Cosine Similarity Weights. In our proposed algorithm, we selected neigh-
bors and associated weights as a function of the row and column sample variances
s2
uv and s̄2

ij , which is equivalent to the squared distance of the mean-adjusted val-
ues. In classical collaborative filtering, cosine similarity is commonly used, which
can be approximated as a different choice of the weight kernel over the squared
difference. Therefore, under the assumption that the variations of users’ ratings
around their respective means are approximately similar, then weighting the esti-
mates proportional to cosine similarity over mean-adjusted values is equivalent to
choosing a polynomially decaying kernel and plugging in the sample variance as a
proxy for distance between points.

4. Main Results. Given an estimator Â for the unknown matrix A ∈ Rm×n
of interest, we use the mean-squared error (MSE) to evaluate the performance of
the estimator, defined as

MSE(Â) = E

[
1

mn

m∑
u=1

n∑
i=1

(
Â(u, i)−A(u, i)

)2
]
.(4.1)

We present a theorem which upper bounds the MSE of the estimate produced by
the user-user k-nearest neighbor algorithm presented in Section 3.1. Recall from
our problem statement in Section 2 that p is the probability each entry is observed,
L is the Lipschitz constant of the latent function f ,B0 = LDX1 +2Be is the bound
on all entries, and the function φ1 lower bounds the cumulative distribution func-
tion of the row latent variable sampled from X1 according to PX1 , defined in (2.8).
Our algorithm uses parameters k and β, where β is the threshold for minimum
number of overlapped entries to compute row variances, and k is the smoothing
parameter which determines how many nearest neighbor rows are incorporated in
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the final estimate. The variable ζ in the formal theorem statement is an analysis
parameter used to quantify our error bound.

THEOREM 4.1 (Main theorem; user-user). Suppose that

p ≥ max
{
m−1+δ, n−

1
2

+δ
}

for some δ > 0,

ζ satisfies φ1

(√
ζ

L2

)
≥ cφ (mp)−2/3 for some cφ ≥ 0,

β = cβnp
2 for some cβ ∈ (0, 1), and

k ≤ ck
2

(m− 1)pφ1

(√
ζ

L2

)
for some ck ∈ [0, 1).

The mean-squared error (MSE) of the estimate produced by the user-user k-nearest
neighbor variant of our algorithm with overlap parameter β is upper bounded by:

(4.2) MSE(Â) ≤ 2F1 ln

(
2B0

F1

)
+ (F1 + F2)2 + 2F2 + 4B2

0F3,

where

F1 = ζ + 2β−1/3 +
γ2

k
,

F2 = β−1/3, and

F3 = 3 exp
(
−c1 (mp)1/3

)
+

(
m+

9

2
mp

)
exp

(
−c2β

1/3
)
,

with absolute constants c1 and c2 defined according to the geometry of the latent
spaces,

c1 = min

{
1

24
,
cφ (1− ck)2

8

}
,

c2 = min

{
c2
β

2
,

3

6B2
0 + 4B0

,
1

8B2
0

(
2B2

0 + 1
)} .

To guarantee thatF3 converges to zero, we additionally need to ensure that logm <
(np2)δ

′/3 for some δ′ ∈ (0, 1).

We can prove an equivalent MSE bound for the item-item k-nearest neighbor
variant, which essentially follows from taking the transpose of the matrix, thus
switching m and n. We state it here for completeness.
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THEOREM 4.2 (Main theorem; item-item). Suppose that

p ≥ max
{
m−

1
2

+δ, n−1+δ
}

for some δ > 0,

ζ satisfies φ2

(√
ζ

L2

)
≥ cφ (np)−2/3 for some cφ ≥ 0,

β = cβmp
2 for some cβ ∈ (0, 1), and

k ≤ ck
2

(n− 1)pφ2

(√
ζ

L2

)
for some ck ∈ [0, 1).

The mean-squared error (MSE) of the estimate produced by the item-item k-nearest
neighbor variant of our method with overlap parameter β is upper bounded by:

MSE(Â) ≤ 2F1 ln

(
2B0

F1

)
+ (F1 + F2)2 + 2F2 + 4B2

0F3,

where

F1 = ζ + 2β−1/3 +
γ2

k
,

F2 = β−1/3, and

F3 = 3 exp
(
−c1 (np)1/3

)
+

(
n+

9

2
np

)
exp

(
−c2β

1/3
)
,

with absolute constants c1 and c2 defined according to the geometry of the latent
spaces,

c1 = min

{
1

24
,
cφ (1− ck)2

8

}
,

c2 = min

{
c2
β

2
,

3

6B2
0 + 4B0

,
1

8B2
0

(
2B2

0 + 1
)} .

To guarantee that F3 converges to zero, we additionally need to ensure that log n <
(mp2)δ

′/3 for some δ′ ∈ (0, 1).

Comparing the sample requirements for p in both theorems indicates that the
user-user variant is more suitable for a fat matrix, and the item-item variant is more
suitable for a tall matrix. This is due to the fact that the limiting condition of our
sample complexity requires that there is a sufficiently large overlap between pairs
of rows or columns. A fat matrix will naturally satisfy the condition (np2)δ

′/3 ≥
n2δ′δ/3 ≥ logm, and a tall matrix will naturally satisfy the condition (mp2)δ

′/3 ≥
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m2δ′δ/3 ≥ log n, and a square matrix will satisfy both conditions, guaranteeing
that the term F3 decays to 0 exponentially fast.

The parameter β determines the required overlap between rows, such that choos-
ing β to grow with m,n, such as β = np2/2, ensures that asymptotically the em-
pirical mean muv and variance s2

uv computed in the algorithm converge to the true
mean and variance. Given any choice of β, we can derive the rates of convergence
of the empirical mean and variance statistics (see Lemmas 7.2 and 7.3), which also
impacts the MSE of the final estimate. The parameter k determines the number
of nearest neighbor rows which are incorporated in the final estimate in (3.6). We
choose k to balance bias and variance, ensuring that k goes to infinity with m and
n to drive down the error due to the individual additive noise terms η, yet also con-
trolling that k grows slowly enough to guarantee that the sample variance s2

uv of
the k nearest neighbor rows goes to zero as well.

In the process of proving the bound on the mean squared error, we are able to in
fact upper bound the tail probability of error for each entry as presented in Theorem
7.6. This entry-wise error bound is stronger than a MSE bound over the aggregate
error, suggesting that the error is evenly spread amongst different entries.

4.1. Results Given Local Geometry of Latent Probability Measure. The local
“geometry” of the latent probability measure PX1 through the function φ1 deter-
mines the impact of the latent space dimension on the sample complexity and error
convergence rate of the user-user k-nearest neighbor algorithm. Since the algo-
rithm is a neighbor-based method, we need to guarantee that for each row u ∈ [m],
there are sufficiently many rows v ∈ Sβu (i) such that the variances of their row
differences are small, which we showed in section 3.2 intuitively implies bounds
on |Âvj(u, i) − Â(u, i)| for the average column j. By our model assumption that
the matrix A is described by an L-Lipschitz function f , it is sufficient to show
that with high probability, there exists sufficiently many rows v ∈ Sβu (i) such that
dX1(x1(u), x1(v)) is small, which implies the differences in their functional val-
ues are small, and thus the sample variance of their differences is also small. This
is directly related to the function φ1, since it lower bounds the probability for the
latent variable x1(v) to be sampled within a r-radius ball around x1(u) such that
dX1(x1(u), x1(v)) < r.

For example, suppose PX1 is a uniform measure over a unit cube in d dimen-
sional Euclidean space. Then

φ1(r) := inf
x0∈X1

PX1 (dX1(x, x0) ≤ r) = min

{
1,
(r

2

)d}
.

Due to the uniform random sampling of latent features, for any x0, this expressions
shows that the number of rows we need to sample, in order to guarantee that there
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is at least one row whose latent feature is within distance r of x0, scales as Ω(r−d).
Thus m� r−d for r → 0, which implies that we need d = o(logm).

Corollary 4.3 presents simplified expressions for the upper bound on the MSE
when X1 is a unit cube of Rd with uniform probability measure PX1 . For readabil-
ity, we additionally assume that m and n are large enough such that F1 ≤ 1/2.

COROLLARY 4.3 (uniform). When the latent space is a cube in Rd equipped
with the uniform probability measure, as long as p ≥ max

{
m−1+δ, n−

1
2

+δ
}

for
some δ > 0, the mean-squared error (MSE) of the estimate produced by the user-
user k-nearest neighbor algorithm with β = np2/2 and k = 1

8 (mp)1/3 is upper
bounded by:

MSE(Â) ≤ 21

4
F1 ln

(
2B0

F1

)
+ 4B2

0F2,

where

F1 = C max
{

(mp)−4/3d, (np2)−1/3, (mp)−1/3
}
,

F2 = 3 exp
(
−c1 (mp)1/3

)
+ 6m exp

(
−c2

(
np2
)1/3)

,

where C, c1, c2 are absolute constants. Additionally assuming that d = o(logm)
and logm < (np2)δ

′/3 for some δ′ ∈ (0, 1), then the estimator Â is consistent, i.e.,
MSE(Â)→ 0 as m,n→∞.

When our matrix is square , i.e. m = n, then it always holds that mp ≥ np2,
since p ≤ 1. The bound on the MSE then reduces to

MSE(Â) ≤ C max
{

(mp)−
4
3d , (mp2)−

1
3

}
,

for some constant C up to a logarithmic factor. If we choose the smallest p =
m−1/2+δ, we can compare (mp)−4/3d and (mp2)−1/3 to show that (mp)−4/3d =

m−
2(1+2δ)

3d ≥ m−
2δ
3 = (mp2)−1/3 if and only if δ ≥ 1

d−2 .
In an even simpler setting where PX1 (or PX2) is supported only on a finite

number of points, i.e. there are only finitely many latent row types, then the error
convergence rate and the sample complexity have no dependency on dimension of
X1 and X2. This follows from the fact that φ1(r) is bounded below by a constant
even for r → 0. Corollary 4.4 presents simplified expressions for the MSE upper
bounds when X1 is a unit cube of Rd with uniform probability measure PX1 . For
readability, we additionally assume that m and n are large enough such that F1 ≤
1/2.
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COROLLARY 4.4 (discrete). When the latent space consists of a finite number
of points, in other words, PX1 is supported only on a finitely many points, as long as

p ≥ max
{
m−1+δ, n−

1
2

+δ
}

for some δ > 0, the mean-squared error (MSE) of the

estimate produced by the user-user k-nearest neighbor algorithm with β = np2/2

and k = 1
8 (mp)1/3 is upper bounded by:

MSE(Â) ≤ 21

4
F1 ln

(
2B0

F1

)
+ 4B2

0F2,

where

F1 = C max
{

(np2)−1/3, (mp)−1/3
}
,

F2 = 3 exp
(
−c1 (mp)1/3

)
+ 6m exp

(
−c2

(
np2
)1/3)

,

whereC, c1, c2 are absolute constants. Additionally assuming that logm < (np2)δ
′/3

for some δ′ ∈ (0, 1), then the estimator Â is consistent, i.e., MSE(Â) → 0 as
m,n→∞.

4.2. Comparison with the USVT estimator. Our result can be compared with
the upper bound on the MSE for the UVST estimator as presented in Theorem 2.7
of Chatterjee (2015). For simplicity, consider the setting of a square matrix, i.e.
m = n. For a matrix sampled from the latent variable model with latent variable
dimension d, their theorem guarantees that

(4.3) MSE(ÂUSV T ) ≤ Cm
− 1
d+2

√
p

for some constant C as long as p ≥ m−1+δ. This upper bound is meaningful only
when p > m−

2
d+2 , because the MSE bound in (4.3) is bounded below by C when

p ≤ m−
2
d+2 . However, requiring p > m−

2
d+2 can be too restrictive when the latent

dimension d is large since it means that we need to sample almost every entry to
achieve a nontrivial bound.

In contrast, when d = o(logm), our algorithm and analysis provides a vanish-
ing upper bound on the MSE whenever p ≥ max

{
m−1+δ, n−1/2+δ

}
, surprisingly

independent of the latent dimension. In fact, our analysis guarantees that our algo-
rithm achieves a vanishing MSE even as d grows with m as long as d = o(logm).

This difference in the provided sample complexity for the USVT spectral method
and our similarity based method is likely due to the fact that our analysis essentially
relies on “local” structure. Even if the latent dimension increases, we only need to
ensure that there are sufficiently many close neighbor points. On the other hand,
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Chatterjee’s result stems from showing that a Lipschitz function can be approxi-
mated by a piecewise constant function, which upper bounds the rank of the (ap-
proximate) target matrix. This global discretization results in a large penalty with
regards to the dimension of the latent space.

In other aspects, the results of Chatterjee (2015) are also more general in that
they do not require that latent features are generated i.i.d. according to an under-
lying distribution, i.e. they could be arbitrarily generated. They additionally can
handle more general noise models, as long as the data is bounded, while our anal-
ysis requires that the noise terms have uniform variance equal to γ2.

4.3. Discussion. We discuss strengths and limitations of our results followed
by some natural directions for future work. One limitation of our proof is that we
assumed an additive noise model in (2.1) and (2.2), where the individual noise
terms η(u, i) are independent with zero mean, identical variance and bounded sup-
port. The result of Chatterjee (2015) holds in the independent zero mean bounded
noise setting, allowing the variance of the noise across entries to be different. In
that sense, our assumption on the noise model is restrictive.

It is also not clear if our result is tight or not, as we do not know of information
theoretic lower bounds for the MSE under the general latent variable model con-
sidered. For specific settings such as when the function f when considered as an
integral operator has finite spectrum, it is equivalent to low-rank models, for which
lower bounds have been characterized. For specific noise models such as the binary
observation model which corresponds to the graphon generative model for random
graphs, Gao, Lu and Zhou (2015); Klopp, Tsybakov and Verzelen (2015) show that
variants of the least squares estimator achieve optimal rates, but unfortunately they
are not polynomial time computable.

From an implementation perspective, the similarity based algorithm proposed
in this work, similar to classical collaborative filtering methods, is easy to imple-
ment and scales extremely well to large datasets, as it naturally enjoys a paralleliz-
able implementation. Furthermore, the operation of finding k nearest neighbors
can benefit from computational advances in building scalable approximate nearest
neighbor indices, cf. Indyk (2001, 2004).

Next we discuss some natural extensions and directions for future work. In our
model, the latent function f is assumed to be Lipschitz. However, the proof only
truly utilizes the fact that “locally” the function value does not oscillate too wildly.
Intuitively, this suggests that the result may extend to a broader class of functions,
beyond Lipschitz functions. For example, a function with bounded Fourier coeffi-
cients does not oscillate too wildly, and thus it may behave well for the purposes
of analyzing our algorithm.

Another possible direction for extension is related to the measurement of simi-
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larity and the sample complexity. Our current algorithm measures the similarity of
rows u and v from their overlapping observed entries, which critically determines
the sample complexity requirement of np2 � 1. However, for sparser datasets
without overlaps, we may be able to reveal the similarity by instead comparing dis-
tribution signatures such as moments or comparing them through their “extended”
neighborhoods.

As a concluding remark, we would like to mention that the latent variable model
is a fairly general model and there is a large body of related applications. Some of
the popular recent examples, which are special cases of latent variable model, in-
clude Stochastic blockmodels for community detection, the Bradley-Terry model
for ranking from pair-wise comparison data and the Dawid-Skene model for low-
cost crowd sourcing. Another prominent example of latent variable model is the
generative model for random graphs referred to as a Graphon, which has been
shown to be the limit of a sequence of graphs. We refer interested readers to (Chat-
terjee, 2015, Section 2.4) for an excellent overview on the broad applicability of
the latent variable model.

5. Extending Beyond Matrices to Tensors. A natural extension beyond ma-
trix completion is to higher order tensor completion. Given an unknown t-order
tensor T of interest with dimensions n1 × · · · × nt, suppose that we observe a
random subset of noisy observations of its entries. Similar to matrix completion,
the goal in tensor completion is to estimate the missing entries in the tensor from
the noisy partial observations, as well as to “de-noise” the observed entries. The
tensor completion problem is important within a wide variety of applications, in-
cluding recommendation systems, multi-aspect data mining Kolda and Sun (2008);
Sun et al. (2009), and machine vision Liu et al. (2013a); Zhang et al. (2014); Ravi
et al. (2013).

Although tensor completion has been widely studied, there is still a wide gap in
understanding, unlike matrix completion. This gap partially stems from the hard-
ness of tensor decomposition, as most recovery methods rely on retrieving hidden
algebraic structure through the framework of low-rank factorization. Tensors do not
have a canonical decomposition such as the singular value decomposition (SVD)
for a matrix.

There is a factorization scheme, namely the CANDECOMP/PARAFAC (CP) de-
composition, which factorizes the tensor as a sum of rank-1 tensors (outer product
of vectors). However, it is known that finding the rank of a tensor is NP-Complete,
which makes it computationally intractable. Also, there are known ill-posedness
De Silva and Lim (2008) issues with CP-based low-rank approximation.

There are other kinds of decompositions such as the Tucker decomposition. Ap-
proaches based on Tucker decomposition essentially unfold (matricize or flatten)
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the tensor, and make use of matrix completion theory and methods Gandy, Recht
and Yamada (2011); Signoretto et al. (2011); Tomioka et al. (2011); Liu et al.
(2013a); Mu et al. (2014).

5.1. Latent Variable Model for Tensor. The nonparametric blind regression
setup presented in Section 2 naturally extends beyond bivariate functions which
correspond to matrices, to higher dimensional functions encompassing higher-order
tensors. We set up the formal latent variable model for a tensor following similar
assumptions as stated in Section 2.

Consider a t-order tensor TA ∈ Rn1×n2×...nt . Consider a vector ~α = (α1, . . . , αt) ∈
[n1]× · · · × [nt] indexing a position in the tensor TA. Let the coordinate αq in the
qth dimension of the tensor be associated to a latent feature xq(αq) drawn i.i.d
from the space Xq according to probability measure PXq , for q ∈ [t] and αq ∈ [nq].
Assume Xq is a compact metric space with metric dXq and diameter DXq . Define
φq : R+ → [0, 1] to be a function lower bounding the cumulative distribution func-
tion according to the distance in the latent space. For any radius r > 0, we define
it according to

φq(r) := ess inf
x0∈Xq

PXq(Bq(x0, r)),(5.1)

where Bq(x0, r) := {x ∈ Xq : dXq(x0, x) ≤ r}. Then TA(~α), the value in tensor
TA corresponding to position ~α, is equal to

TA(~α) = f(x1(α1), . . . , xt(αt))(5.2)

for a latent function f : X1 × · · · × Xt → R. Assume that the function f is L-
Lipschitz over the latent spaces:

|f(x1, . . . xt)− f(x′1, . . . x
′
t)| ≤ Lmax

(
dX1(x1, x

′
1), . . . dXt(xt, x

′
t)
)
,(5.3)

for all (x1, . . . xt) ∈ X1 × · · · × Xt and (x′1, . . . x
′
t) ∈ X1 × · · · × Xt. Let TZ ∈

Rn1×n2×...nt be a noisy tensor derived from TA by adding independent noise to
each entry ~α ∈ [n1]× · · · × [nt] according to

TZ(~α) = TA(~α) + η(~α),(5.4)

where the additive noise terms η(~α) are independent with bounded support, zero
mean, and variance equal to γ2, as assumed in the setup presented in Section 2.
Let D ⊂ [n1] × · · · × [nt] denote the index set of observed entries. We assume
that each entry TZ(~α) is observed independently with probability p ∈ [0, 1], and
otherwise unobserved or missing. Therefore for any ~α ∈ [n1]× · · · × [nt], ~α ∈ D
with probability p, and ~α /∈ D with probability 1− p.



BLIND REGRESSION 27

Exchangeability Revisited. Our data structure is a tensor of order t which sat-
isfies t-order exchangeability, i.e. for all (α1 . . . αt) ∈ [n1]× · · · × [nt],

TZ(α1, . . . αt)
d
= TZ(π1(α1), . . . πt(αt)),(5.5)

for all permutations π1 . . . πt. This follows from our assumption that the latent
variables associated to each coordinate of the tensor are drawn i.i.d. according to
the probability measures PX1 . . . PXt . Aldous and Hoover’s representation theorem
states than a t-order exchangeable array can be represented as a measurable func-
tion of 2t independent random sources, each of which corresponds to a member in
the power set of [t], cf. see Austin (2012).

The additive noise model which we assume in (5.2) and (5.4) enforces a smaller
subclass within t-order exchangeable models, reducing the function to only depend
upon t+ 2 independent sources of randomness according to

TZ(~α)
d
= fθ(θ1, . . . θt, θ~α),(5.6)

where θ is a universal parameter indexing the function fθ, (θ1, . . . θt) are latent
features associated to each dimension, and θ~α is an individual noise term. Given
a particular instance of the dataset, θ is realized and our goal is to estimate the
outputs of the function fθ. Our model additionally restricts the class to consider
Lipschitz functions fθ and additive noise model, such that

fθ(θ1, . . . θt, θ~α) = f(θ1, . . . θt) + η(~α).(5.7)

5.2. Tensor Completion by Flattening to Matrix. Given the setup, one could
imagine similarly constructing a neighborhood based algorithm exploiting local
approximations, exploiting the intricate structure within higher-order tensors to
provide a meaningful estimation algorithm. In this section we suggest a simple
algorithm for tensor completion which follows naturally from flattening the tensor
to matrix and applying our matrix completion algorithm. While this algorithm itself
is not a surprise, we are additionally able to provide theoretical guarantees showing
consistency of the resulting estimator. This provides a starting point for analyzing
similarity based algorithms for tensor completion, however, it may be possible to
improve the efficiency of the estimator by designing an algorithm which directly
acts on the tensor itself.

Given a tensor TA, we discuss how to flatten it to a corresponding matrix A.
Let (I1, I2) be a bi-partition of [t] such that I1 = {π(1), . . . , π(t1)} and I2 =
{π(t1 + 1), . . . , π(t)} for some 1 ≤ t1 ≤ t−1 and some permutation π : [t]→ [t].
We can reduce the tensor TA to a matrix A by “flattening”, i.e. taking the cartesian
product of all dimensions in I1 to be the rows of the matrix and taking the cartesian
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product of all dimensions in I2 to be the columns of the matrix. The resulting flat-
tened matrix has dimensionm×nwherem =

∏
q∈I1 nq and n =

∏
q∈I2 nq. Given

this matrix or flattened tensor, the resulting latent row features belong to space
X π1 = ×q∈I1Xq, and the latent column features belong to X π2 = ×q∈I2Xq. The
underestimator function of the product probability measure for the row features is
denoted by φπ1 (r) =

∏
q∈I1 φq(r). Let the observation matrix Z be equivalently

obtained by flattening tensor TZ according to the same partition (I1, I2).
For notational simplicity, we rearrange and relabel the indices to map between

the tensor and matrix indices. For a tensor index ~α = (α1, . . . , αt) ∈ [n1]× · · · ×
[nt], we equate it to a matrix row and column index pair ~α = (~u,~i), where ~u =
(u1, . . . , ut1) = (απ(1), . . . , απ(t1)) and~i = (i1, . . . , it2) = (απ(t1+1), . . . , απ(t1+t2))
with t2 := t−t1 (1 ≤ t1 ≤ t−1). Although ~u ∈ ×q∈I1 [nq] is a t1-tuple of positive
integers, we will sometimes identify the vector ~uwith an integer u ∈ [m] according
to

u = 1 +
∑
τ∈[t1]

(
(uτ − 1)

t1∏
s=τ+1

nπ(s)

)
.

We use this notion when u refers to a row in the matrix which corresponds to the
flattened tensor. Equivalently, i will be sometimes identified with an integer i ∈ [n]
according to

i = 1 +
∑
τ∈[t2]

(
(iτ − 1)

t1∏
s=τ+1

nπ(t1+s)

)
.

The corresponding row (i.e. “user”) and column (i.e. “item”) features are denoted
by

~xπ1 (~u) =
(
xπ1,1(u1), . . . , xπ1,t1(ut1)

)
=
(
xπ(1)(u1), . . . , xπ(t1)(ut1)

)
,

~xπ2 (~i) =
(
xπ2,1(i1), . . . , xπ2,t2(it2)

)
=
(
xπ(t1+1)(i1), . . . , xπ(t1+t2)(it2)

)
.

We let X π1,k denote Xπ(k) for k ∈ [t1], and we let X π2,k denote Xπ(t1+k) for k ∈ [t2].
It follows that if the tensors TA and TZ are drawn from the tensor latent variable

model described in Section 5.1, then the associated matrices A and Z, obtained by
flatting the tensors TA and TZ , follow a similar form as introduced in Section 2:

A(u, i) = f(~xπ1 (~u), ~xπ2 (~i))

Z(u, i) = A(u, i) + η(u, i),

where η(u, i) = η(~α) for the correct index mapping ~α = (~u,~i). We can verify that
A and Z satisfy all the assumptions needed in Section 2 except for the assumption
that the row and column latent variables are independently sampled. This is due
to the fact that the associated latent variables of ~xπ1 (~u) and ~xπ1 (~u′) are correlated
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if any component of ~u and ~u′ are the same. If uτ = u′τ for any τ ∈ [t1], then
xπ1,τ (uτ ) = xπ1,τ (u′τ ). However if all the components of ~u and ~u′ are distinct, then
~xπ1 (~u) and ~xπ1 (~u′) will be independent. In fact the structure of the correlations is
very specific and follows from the flattening of the tensor to a matrix. Therefore, we
will show in the following sections that the estimate which results from applying
our matrix completion algorithm to the flattened tensor in fact leads to a consistent
tensor completion algorithm.

5.3. Tensor Completion Algorithm. Given partial observations from the noisy
tensor TZ , we construct an estimator for the desired tensor TA by flattening the
observation tensor to a matrix Z and applying the user-user k-nearest neighbor
algorithm presented in Section 3 on the observed entries of Z to construct an es-
timated matrix Â of the corresponding flattened matrix A. The only modification
we introduce, purely for the purposes of our analysis, is that when we compute
the overlap entries, we remove any entries which share a coordinate in the original
tensor representation. Formally speaking, we define a set Ouvi ⊂ Ouv such that

Ouvi := {j ∈ Ouv s.t. jk 6= ik for all k ∈ [t2]}.(5.8)

Let Ni ⊂ [n] denote the set of columns which do not share a tensor coordinate
with i,

Ni := {j ∈ [n] s.t. jk 6= ik for all k ∈ [t2]}.

Recall that we are overloading the notation such that a column index i is associ-
ated to a corresponding vector ~i = (i1, . . . it2) which denotes the original tensor
coordinates. Therefore, the set Ouvi restricts to columns j which do not share any
coordinates in the original tensor representation, which translates to the condition
of jk 6= ik for all k ∈ [t2]. Then the set Ouvi is used instead of Ouv for computing
the sample means and variances. Since the calculation now depends on i, we will
denote the means and variances computed from the set Ouvi by muv(i) and s2

uv(i).
We will also change the set of row indices that are chosen in Step 3 to be part

of the computation. In order to estimate entry (u, i) we find all rows v such that
the overlap |Ouvi | is larger than βl and smaller than βh, and the row contains in-
formation about column i. Formally, we replace the definition in (3.5) with the set
Sβl,βhu (i):

Sβl,βhu (i) = {v ∈ [m] : Z(v, i) is observed, and βl ≤ |Ouvi | ≤ βh} .(5.9)

Then the final estimate is computed by averaging over the i-th entry of the k
rows in Sβl,βhu (i) which have minimum sample variance s2

uv(i) amongst rows
v ∈ Sβl,βhu (i).
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The difference is that we now require that |Ouvi | is also upper bounded by a
parameter βh. Intuitively having a larger overlap should only help, but this is intro-
duced purely for an analytical purpose, when showing concentration of the sample
means and variances. This upper bound is not restrictive, because we can always
subsample from the overlap when our data matrix is dense, and then apply boosting
to construct an averaged estimator. Since each individual estimator obtained from
the subsampled data is consistent, the averaged estimator is also consistent. This
argument also implies that the upper bound on the sample probability p in Theorem
5.1 can be relaxed.

The first modification of removing columns in Ouv which are correlated with i
is needed for the current analysis so that the choice of the k nearest neighbor rows
are independent from the latent variables associated to the column i. This increases
the computation complexity, as the means and variances for a pair of rows (u, v)
must be computed for each i. In a practical implementation, we would simply use
the original matrix algorithm, and we show in experiments presented in Section 6
that this performs well. In fact, we believe that a modified proof would be able to
circumvent this fix by showing that the latent variables associated to column i are
only marginally correlated with the set of k nearest neighbor rows chosen, since
the fraction of columns correlated to column i goes to zero as the size of the tensor
increases.

5.4. Results. We provide bounds on the mean squared error for the estimate
produced by applying our method to a flattened tensor, drawn from the latent vari-
able model. The results show that in fact the estimate is consistent, i.e. the mean
squared error converges to zero.

Recall that (I1, I2) denote the partition used in flattening the matrix. Therefore
the matrix dimensions are m =

∏
q∈I1 nq and n =

∏
q∈I2 nq, and the number of

columns after removing one coordinate from each tensor dimension is denoted by
n′ =

∏
q∈I2(nq − 1). The algorithm uses parameters βl and βh to set the upper

and lower thresholds for the overlap between pairs of users, and it uses k as a
smoothing parameter, specifying the number of neighbors the algorithm averages
over to obtain the final estimates. p is the probability that each entry of the tensor
is observed, and φq is the underestimator function for the latent probability space
associated to the latent features of dimension q in the original tensor. φπ1 is the
underestimator function associated to the matrix row product space, taking the form
of φπ1 (r) =

∏
q∈I1 φq(r).



BLIND REGRESSION 31

THEOREM 5.1 (Main theorem for tensor completion). Suppose that

max
{
m−1+δ, n′−

1
2

+δ
}
≤ p ≤ n′−

1
6
−δ for some δ > 0,

∀q ∈ I1, ζ satisfies φq

(√
ζ

L2

)
≥ cqn

− logmp
2 logm

q for some cq > 0,

2 ≤ βl ≤ cl min
{
n′p2, n′1/2

}
for some cl ∈ (0, 1),

ch max
{
n′1/2, n′p2

}
≤ βh ≤ n′

2
3
−δ for some ch > 1 and

k ≤ 1

8
mpφπ1

(√
ζ

L2

)
=
p

8

∏
q∈I1

nqφq

(√
ζ

L2

)
.

The mean squared error (MSE) of the estimate produced by applying the user-
user k-nearest neighbor variant of our method on a flattened tensor, using overlap
parameters βl and βh, is upper bounded by:

(5.10) MSE(Â) ≤ 2F ′1 ln

(
2B0

F ′1

)
+
(
F ′1 + F ′2

)2
+ 2F ′2 + 4B2

0F
′
3,

where

F ′1 =
(1 + θ)ζ + 2F ′2

1− θ
+
γ2

k
,

F ′2 = max

{
(nq∗ − 1)−1/3,

(
n′2

β3
h

)−1/3

, β
−1/3
l

}
, and

F ′3 = 4(m− 1) exp
(
−c1n

′p2
)

+ 2 exp

(
− 1

24
mp

)
+ 6(m− 1)p exp

(
−c2(nq∗ − 1)1/3

)
+ 6(m− 1)p exp

(
−c3 min

{
n′2/3

4βh
,
β

1/3
l

4

})

+ t1 exp
(
−c4n

1/2
q∗

)
+ exp

(
−k

8

)
,
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with q∗ := arg minq∈I1 nq and

c1 := min

{
(1− cl)2

2
,
(ch − 1)2

3

}
,

c2 := min

{
1

8L2D2t2 + 16B2
e

,
1

32L2D2(3LD + 4Be)2t2 + 64B2
e (2LD + 5Be)2

}
,

c3 := min

{
1

32(LD + 2Be)2
,

1

128(LD + 2Be)4

}
,

c4 := min
q∈Iq

{
(1− 2−1/t1)2

2
cq

}

being some absolute constants, which may depend only on the geometry of the
latent spaces. Also, θ =

∑
q∈I2

1
nq−1 is a quantity which depends only on the

shape of the given tensor and vanishes to 0 as nq →∞,∀q ∈ I2.

The statement is similar to the matrix completion result stated in Theorem 4.1,
but with slightly more restrictive conditions and more complex error bound terms.
This complication mainly stems from a two-step analysis used to prove the con-
centration of the sample means and variances ?. This is introduced to handle the
correlations amongst the latent features in flattened tensor. The additional upper
bound on the sample complexity, p ≤ n′−

1
6
−δ, is not restrictive, because we can

always build multiple sparser matrices by subsampling the data to satisfy the con-
straint, and then using boosting to combine the outputs from each of the subsam-
pled datasets to obtain a final estimate.

5.5. Optimal Flattening to Balance Matrix Dimensions. The stated theorem
results depend on the choice of partitions (I1, I2) used for flattening the tensor to
a matrix. Different choices of partitions will affect the row and column dimensions
of the resulting matrix, i.e. m and n, which impact both the convergence rates and
sample complexity stated in Theorem 5.1. Therefore, it is natural to ask if there is
an optimal partition for flattening.

We will specifically define a partition (I1, I2) to be user-optimal if it minimizes
the required sample complexity of the user-user algorithm. In order to guarantee
that the user-user method produces a consistent estimator, Theorem 5.1 requires
that the fraction of observed datapoints p ≥ max

{
m−1+δ, n′−

1
2

+δ
}

. Since n′ =

Θ(n), this is equivalent to requiring that p ≥ max
{
m−1+δ, n−

1
2

+δ
}

, as n
n′ →

1 as n → ∞. The equivalent theorem for the item-item method would require
p ≥ max

{
n−1+δ,m−

1
2

+δ
}

. An optimal partition would minimize the lower bound
required on p to guarantee consistency.
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DEFINITION 5.1 (optimal flattening). Given a t-order tensor T ∈ Rn1×···×nt ,
a partition (I∗1 , I∗2 ) of [t] is user-optimal if for any other partition (I1, I2) of [t],

max
{( ∏

q∈I∗1

nq

)−1
,
( ∏
q∈I∗2

nq

)−1/2}
≤ max

{( ∏
q∈I1

nq

)−1
,
( ∏
q∈I2

nq

)−1/2}
.

Switching the roles of I∗1 and I∗2 , we define (I∗2 , I∗1 ) to be item-optimal if (I∗1 , I∗2 )
is user-optimal.

As an optimal partition only depends on the product of the dimensions in the two
partitions, there may not be a unique optimal partition. For example, consider an
equilateral t-order tensor with dimension l, i.e., a tensor with nq = l,∀q ∈ [t]. The
following lemma states that any partition (I1, I2) of [t] which satisfies |I2| = b2t

3 c
is user-optimal.

LEMMA 5.2. For an equilateral t-order tensor, any partition (I1, I2) of [t]
which satisfies |I2| = b2t

3 c is user-optimal.

PROOF. Let l denote the dimension of the given equilateral tensor. The lower
bound (threshold) on the required sample complexity for the user-user method is
given by p∗ = max

{
m−1, n−1/2

}
=
{
l−|I1|, l−

1
2
|I2|
}

. Taking log with respect to

l yields logl p
∗ = max

{
− |I1| ,−1

2 |I2|
}

. Since tmust be a positive integer, either
t ≡ 0, 1, or 2 (mod 3).

If t = 3k for some k ∈ Z+, |I2| = b2t
3 c = 2k, and |I1| = k.

If t = 3k + 1 for some k ∈ Z+, |I2| = b2t
3 c = 2k, and |I1| = k + 1.

If t = 3k + 2 for some k ∈ Z+, |I2| = b2t
3 c = 2k + 1, and |I1| = k + 1.

It is easy to observe that perturbing |I2| from this value results in increasing the
threshold from the expression of logl p

∗ above. Therefore, the choice of |I2| = b2t
3 c

is user-optimal.

Given an equilateral tensor of order t, i.e., nq = l,∀q ∈ [t], the total number
of entries in the tensor is N = lt. The above lemma implies that if we apply the
user-user algorithm on the user-optimally flattened tensor, the required fraction of
observed samples in order to guarantee consistency is lower bounded by

p∗ = n−1/2 = (l)−
1
2
|I2| = N−

b 2t3 c
2t ,(5.11)

which converges to N−1/3 as t goes to infinity. In the following corollary, we
state the simplified error convergence rate for the user-user algorithm applied to a
user-optimally flattened equilateral tensor, in the case when the latent features are
sampled uniformly from a cube in Rd.
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COROLLARY 5.3 (uniform, user-optimally flattened, equilateral tensor). Given
an equilateral t-order tensor where nq = l for all q ∈ [t], when each latent
space is a cube in Rd equipped with the uniform probability measure, as long
as max

{
m−1+δ, n′−

1
2

+δ
}
≤ p ≤ n′−

1
6
−δ for some δ > 0, the user-user k-

smoothed variant of our method applied to the user-optimally flattened tensor with
βl = 1

2 min
{
n′p2,

√
n′
}

, βh = 2 max
{
n′p2,

√
n′
}

and k = 1
8 (mp)1/2 is consis-

tent. Moreover, its mean squared error is bounded by

(5.12) MSE(Â) ≤ 21

4
F ′1 ln

(
2B0

F ′1

)
+ 4B2

0F
′
2,

where

F ′1 = C max

{
(mp)

− 1
d|I1| , (l − 1)−

1
3 ,

βh

(l − 1)
2
3
|I2|

, β
− 1

3
l , (mp)−

1
2

}
,

F ′2 = same as the exponentially decaying term F ′3 defined in Theorem 5.1

with some absolute constant C.

6. Experiments. In this section we present experimental results from apply-
ing the User-Item Gaussian Kernel variant of our algorithm to real datasets.

6.1. Matrix completion. We evaluated the performance of our algorithm on
predicting user-movie ratings for the MovieLens 1M and Netflix datasets. We chose
the overlap parameter β = 2 to ensure the algorithm is able to compute an estimate
for all missing entries. When β is larger, the algorithm enforces rows (or columns)
to have more commonly rated movies (or users). Although this increases the relia-
bility of the estimates, it also reduces the fraction of entries for which the estimate
is defined.

We compared our method with user-user collaborative filtering, item-item col-
laborative filtering, and SoftImpute from Mazumder, Hastie and Tibshirani (2010b).
We chose the classic mean-adjusted collaborative filtering method, in which the
weights are proportional to the cosine similarity of pairs of users or items (i.e.
movies). SoftImpute is a matrix-factorization-based method which iteratively re-
places missing elements in the matrix with those obtained from a soft-thresholded
SVD.

The MovieLens 1M data set contains about 1 million ratings by 6000 users of
4000 movies. The Netflix data set consists of about 100 million movie ratings by
480,189 users of about 17,770 movies. For both MovieLens and Netflix data sets,
the ratings are integers from 1 to 5. From each dataset, we generated 100 smaller
user-movie rating matrices, in which we randomly subsampled 2000 users and
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2000 movies. For each rating matrix, we randomly select and withhold a percentage
of the known ratings for the test set, while the remaining portion of the data set
is revealed to the algorithm for computing the estimates (or training). After the
algorithm computes its predictions for all the missing user-movie pairs, we evaluate
the Root Mean Squared Error (RMSE) of the predictions compared to the ratings
from the withheld test set. Figure 1 plots the RMSE of our method along with
classic collaborative filtering and SoftImpute evaluated against 10%, 30%, 50%,
and 70% withheld test sets. The RMSE is averaged over 100 subsampled rating
matrices, and 95% confidence intervals are provided.

Fig 1: Performance of algorithms on Netflix and MovieLens datasets with 95%
confidence interval. λ values used by our algorithm are 2.8 (10%), 2.3 (30%), 1.7
(50%), 1 (70%) for MovieLens, and 1.8 (10%), 1.7 (30%), 1.6 (50%), 1.5 (70%)
for Netflix.

Figure 1 suggests that our algorithm achieves a systematic improvement over
classical user-user and item-item collaborative filtering. SoftImpute performs worse
than all methods on the MovieLens dataset, but it performs better than all methods
on the Netflix dataset.

6.2. Tensor completion. We consider the problem of image inpainting for eval-
uating the performance of tensor completion algorithm. Inpainting is the process
of reconstructing lost or deteriorated parts of image or videos. Such methods, in
particular, have revitalized the process of recovery old artifacts in museum world
which was historically done by conservators or art restorers. An interested reader
is referred to a recent survey Ravi et al. (2013) for summary of the state of art on
methods and techniques. We compare performance of our algorithm against exist-
ing methods in the literature on the image inpainting problem.

An image can be represented as a 3rd-order tensor where the dimensions are
rows × columns × RGB. In particular we used three images (Lenna, Pepper, and
Facade) of dimensions 256 × 256 × 3. For each image, a percentage of the pix-
els are randomly removed, and the missing entries are filled in by various tensor
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completion algorithms.
For the implementation of our tensor completion method, we collapsed the last

two dimensions of the tensor (columns and RGB) to reduce the image to a matrix,
and applied our method. We set the overlap parameter β = 2. We compared our
method against fast low rank tensor completion (FaLRTC) Liu et al. (2013b), alter-
nating minimization for tensor completion (TenAlt) Jain and Oh (2014), and fully
Bayesian CP factorization (FBCP) Zhao, Zhang and Cichocki (2015), which ex-
tends the CANDECOMP/PARAFAC(CP) tensor factorization with automatic ten-
sor rank determination.

To evaluate the outputs produced by each method, we computed the relative
squared error (RSE), defined as

RSE =

∑
i,j,k∈E(Ẑ(i, j, k)− Z(i, j, k))2∑

i,j,k∈E(Z(i, j, k)− Z̄)2
,

where Z̄ is the average value of the true entries. Figure 2 plots the RSE achieved by
each tensor completion method on the three images, as a function of the percentage
of pixels removed. The results demonstrate that our tensor completion method is
competitive with existing tensor factorization based approaches, while maintaining
a naive simplicity. In short, a simple algorithm works nearly as good as the best
algorithm for this problem!

Fig 2: Performance comparison between different tensor completion algorithms
based on RSE vs testing set size. For our method, we set overlap parameter β to 2.

Figure 3 shows a sample of the image inpainting results for the facade and pep-
per images when 70% of the pixels are removed.

7. Proofs: Matrix Completion. The proof of the main theorem corresponds
to showing that the estimates associated to the k-nearest neighbors selected by the
algorithm are indeed close to the true target value. Theorem 7.6 provides such a
probabilistic tail bound for each (u, i), and integrating this leads to the conclusion
of Theorem 4.1.
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Original Degraded FaLRTC

0.0924

TenAlt

0.099

FBCP

0.12

Our Method

0.0869

0.1101 0.1182 0.154 0.109

Fig 3: Recovery results for Facade and Pepper images with 70% of missing entries.
RSE is reported under the recovery images.

7.1. Proof Outline. For any fixed row latent features a, b ∈ X1, and randomly
sampled column latent feature variable x2 ∼ PX2 , we denote the mean and vari-
ance of the difference f(a,x2)− f(b,x2) with respect to x2 according to

µab , Ex2 [f(a,x2)− f(b,x2)] = E[muv|x1(u) = a,x1(v) = b],

σ2
ab , Varx2 [f(a,x2)− f(b,x2)] = E[s2

uv|x1(u) = a,x1(v) = b]− 2γ2.

This is also equivalent to the expectation of the empirical means and variances
computed by the algorithm when we condition on the latent representations of the
users. The computation of Âui involves two steps: first the algorithm determines the
k rows in Sβu (i) with minimum sample variance, and then it computes the estimate
by averaging over the k rows, adjusting each according to the empirical row mean.

The proof involves three key steps, each stated within a lemma. We first prove
that every pair of rows has sufficient overlap with high probability. Specifically,
Lemma 7.1 proves that for any (u, i), the number of the candidate rows, |Sβu (i)|,
concentrates around (m − 1)p. This relies on concentration of Binomial random
variables via Chernoff’s bound, using the fact that every entry is independently
observed uniformly at random.

LEMMA 7.1. Given p > 0, 2 ≤ β < np2, and θ ∈ (0, 1), for any (u, i) ∈
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[m]× [n],

P
(
|Sβu (i)− (m− 1)p| > θ(m− 1)p

)
≤ (m− 1) exp

(
−
(
np2 − β

)2
2np2

)
+ 2 exp

(
−θ

2

3
(m− 1)p

)
.

Next, assuming the overlap between two rows u and v is sufficiently large,
Lemmas 7.2 and 7.3 prove that the sample mean and variance of the difference
Z(u, i)−Z(v, i) , denoted bymuv and s2

uv and defined in Section 3.1 (main article),
concentrate around their expectations µx1(u)x1(v) and σ2

x1(u)x1(v) with high proba-
bility. Recall that B0 = LDX1 + 2Be, uniformly upper bounds |Z(u, i)− Z(v, i)|
for any u, v ∈ [m] and i ∈ [n], due to the properties that f is Lipschitz, X1 is
compact, and the noise terms are bounded by Be. We will use the Bernstein and
Maurer-Pontil inequalities along with the boundedness of the variables to show the
following concentration results for the mean and variance.

LEMMA 7.2. Given u ∈ [m], i ∈ [n], and β ≥ 2, for any ν > 0,

P
(∣∣µx1(u)x1(v) −muv

∣∣ > ν
∣∣∣v ∈ Sβu (i)

)
≤ exp

(
− 3βν2

6B2
0 + 4B0ν

)
.

LEMMA 7.3. Given u ∈ [m], i ∈ [n], and β ≥ 2, for any τ > 0,

P
(∣∣∣s2

uv −
(
σ2
x1(u)x1(v) + 2γ2

)∣∣∣ > τ
∣∣∣v ∈ Sβu (i)

)
≤ 2 exp

(
− βτ2

8B2
0(2B2

0 + τ)

)
.

Next, Lemma 7.4 proves that since the latent features are sampled iid from a
bounded metric space, for any index pair (u, i), there exists k “good” neighboring

rows in Sβu (i), whose σ2
x1(u)x1(v) is sufficiently small. Let

{
σ2
x1(u)x1(v)

}(k)

v∈Sβu (i)

denote the value of the k-th minimum element in the set
{
σ2
x1(u)x1(v)

}
v∈Sβu (i)

.

LEMMA 7.4. Given u ∈ [m], i ∈ [n], for any ζ > 0 and for any integer
k ∈ (0, N0],

P
({

σ2
x1(u)x1(v)

}(k)

v∈Sβu (i)
> ζ

∣∣∣∣ |Sβu (i)| ∈
[

1

2
(m− 1)p,

3

2
(m− 1)p

])
≤ exp

(
−(N0 − k)2

2N0

)
,

whereN0 = 1
2(m−1)pφ1

(√
ζ
L2

)
and φ1 (r) := ess infx′∈X1 PX1 (dX1(x, x′) ≤ r).
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Given that there exist k good neighbors in Sβu (i) whose variance is small, and
conditioned on the event that all the sample variances concentrate, it follows that
the true variance between u and its k nearest neighbors are small with high prob-
ability. Therefore, we can provide a bound on the tail probability of the estimation
error conditioned on these good events by using Chebyshev’s inequality.

LEMMA 7.5. Given ν > 0, τ > 0, for any ε > ν, ζ ≥ 0 and any integer k ∈
(0, N0], the estimate produced by the user-user k-nearest neighbor with overlap
parameter β satisfies

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε
∣∣∣ E) ≤ 1

(ε− ν)2

(
ζ + 2τ +

γ2

k

)
,

where the events E,E1, E2, E3 and E4 are defined as follows

E := E1 ∩ E2 ∩ E3 ∩ E4,

E1 :=

{
|Sβu (i)| ∈

[
1

2
(m− 1)p,

3

2
(m− 1)p

]}
,

E2 :=
{∣∣µx1(u)x1(v) −muv

∣∣ ≤ ν, ∀ v ∈ Sβu (i)
}
,

E3 :=
{∣∣∣s2

uv − (σ2
x1(u)x1(v) + 2γ2)

∣∣∣ ≤ τ, ∀ v ∈ Sβu (i)
}
,

E4 :=

{{
σ2
x1(u)x1(v)

}(k)

v∈Sβu (i)
≤ ζ
}
.

Finally we combine the lemmas which bound each of the deviating events to
obtain a bound on the tail probability of the error.

THEOREM 7.6. Suppose that

p ≥ max
{
m−1+δ, n−

1
2

+δ
}

for some δ > 0,

ζ satisfies φ1

(√
ζ

L2

)
≥ cφ (mp)−2/3 for some cφ ≥ 0,

2 ≤ β ≤ cnp2for some c ∈ (0, 1), and

k ≤ ck
2

(m− 1)pφ1

(√
ζ

L2

)
for some ck ∈ [0, 1).

For any ε >
(
np2
)−1/3, the tail probability of the error of the estimate produced

by the user-user k-nearest neighbor algorithm with overlap parameter β is upper
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bounded by:

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε
)

≤ 1(
ε− β−1/3

)2 (ζ + 2β−1/3 +
γ2

k

)
+ 3 exp

(
−c1 (mp)1/3

)
+

(
m+

9

2
mp

)
exp

(
−c2β

1/3
)
,

where c1 := min
{

1
24 ,

cφ(1−ck)2

8

}
and c2 := min

{
c2

2 ,
3

6B2
0+4B0

, 1
8B2

0(2B2
0+1)

}
are

absolute constants, which depend only on the geometry of the latent spaces.

Note that we can obtain a similar theorem for the item-item k-nearest neighbor
variant by exchangingm and n in Theorem 7.6. Given an upper bound on the tail of
the error probability, we can prove an upper bound on the MSE by integrating the
tail bound. The results for the user-user variant is stated in the final Theorem 4.1
(main article). Corresponding results for the item-item variant is stated in Theorem
4.2 (main article), which follows from taking the transpose of the matrix and simply
exchanging m and n.

7.2. Proof of Key Lemmas. In this section we prove the five key lemmas intro-
duced in the proof outline.

Sufficiently many rows with large overlap. Using the fact that every entry is
independently observed uniformly at random, we can prove Lemma 7.1. It states
that with high probability, for every entry (u, i) which we might want to estimate,
there are sufficiently many other rows v for which entry (v, i) is observed and there
is a sufficiently large overlap |Ouv| between rows u and v.

PROOF OF LEMMA 7.1. The set Sβu (i) consists of all rows v such that (a) entry
(v, i) is observed, and (b) |Ouv| ≥ β. With a fixed u, for each v, define binary
random variables Qv and Ruv, such that Qv = 1 if (v, i) ∈ D, i.e. Z(v, i) is
observed, and 0 otherwise; Ruv = 1 if |Ouv| ≥ β and 0 otherwise. Then we can
equivalently express the cardinality of the set as a sum over m− 1 binary random
variables

|Sβu (i)| =
∑
v 6=u

QvRuv.

If the events
∑

v 6=uQv ∈ [a, b] and
∑

v 6=uRuv = m − 1 are satisfied, it implies

|Sβu (i)| =
∑

v 6=uQvRuv ∈ [a, b]. It follows from the contrapositive of this state-
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ment that

{
|Sβu (i)| 6∈ [a, b]

}
⇒

∑
v 6=u

Qv 6∈ [a, b]

 ∨
∑
v 6=u

Ruv < m− 1

 .

Therefore, by applying the union bound, we obtain that for any 0 ≤ a < b ≤ m−1,

P
(
|Sβu (i)| /∈ [a, b]

)
≤ P

∑
v 6=u

Qv /∈ [a, b]

+ P

∑
v 6=u

Ruv < m− 1

 .(7.1)

Given that the entries within each row v are sampled independently with prob-
ability p, it follows that

∑
v 6=uQv is Binomial with parameters (m − 1) and p.

We will choose the interval specified by endpoints a = (1 − θ)(m − 1)p and
b = (1 + θ)(m − 1)p. Directly applying Chernoff’s bound (see Theorem A.1 in
Appendix A) implies that for any θ ∈ (0, 1),

P

∣∣∣∣∣∣
∑
v 6=u

Qv − (m− 1)p

∣∣∣∣∣∣ > θ(m− 1)p

 ≤ 2 exp

(
−θ

2(m− 1)p

3

)
.(7.2)

Next recall that the variable Ruv , I(|Ouv| ≥ β). Again due to the assumption
that each entry is observed independently with probability p, it follows that |Ouv|
is Binomial with parameters n and p2. Therefore, for any β ∈ [2, np2), by an
application of Chernoff’s bound for lower tails, it follows that for each v 6= u,

P (Ruv = 0) ≤ exp

(
−
(
np2 − β

)2
2np2

)
.(7.3)

By the union bound, it follows that

P

∑
v 6=u

Ruv < m− 1

 ≤∑
v 6=u

P (Ruv = 0) ≤ (m− 1) exp

(
−
(
np2 − β

)2
2np2

)
.

(7.4)

By combining (7.1)-(7.4), we obtain the desired result.

Concentration of sample mean and sample variance. Assuming that the over-
lap between two rows u and v is sufficiently large, the sample mean and variance
of the difference between the two rows will concentrates around their expected
values.
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PROOF OF LEMMA 7.2. Conditioned on a particular realization of the latent
features associated to rows u and v, i.e. x1(u) = x1(u),x1(v) = x1(v), the ex-
pected mean between the difference in their values µx1(u)x1(v) is a constant. Recall
that the empirical mean muv is defined as

muv =
1

|Ouv|

 ∑
j∈Ouv

Z(u, j)− Z(v, j)

 .(7.5)

We would like to show that muv concentrates to µx1(u)x1(v). For any column j,
recall that the column latent feature variable x2(j) is sampled according to PX2 ,
independently from the row features x1(u) and x1(v). The additive noise terms
associated to each observation is an independent and zero-mean random variable.
For each pair (u, v), let us define a new independent random variable,

Wuv(j) = Z(u, j)− Z(v, j) for j ∈ Ouv,

which has mean µx1(u)x1(v) when conditioned on x1(u) = x1(u) and x1(v) =

x1(v). It follows then that W̃uv(j) = Wuv(j) − µx1(u)x1(v) for j ∈ Ouv are zero-
mean independent random variables conditioned on the row latent features.

Therefore, conditioned on x1(u) = x1(u),x1(v) = x1(v) and the cardinality of
overlap |Ouv|, we can rewrite the difference µx1(u)x1(v)−muv to be the average of
|Ouv| independent, zero mean random variables W̃uv(j). By the definition of B0

in (2.7), |Wuv(j)| is upper bounded byB0 for every pair of rows (u, v) and column
j. It follows that

∣∣µx1(u)x1(v)

∣∣ ≤ B0, such that∣∣∣W̃uv(j)
∣∣∣ =

∣∣Wuv(j)− µx1(u)x1(v)

∣∣ ≤ |Wuv(j)|+
∣∣µx1(u)x1(v)

∣∣ ≤ 2B0.

In addition, conditioned on x1(u) = x1(u),x1(v) = x1(v), µx1(u)x1(v) is a con-
stant so that

V ar
(
W̃uv(j)

)
= V ar (Wuv(j)) = E

[
Wuv(j)

2
]
− E [Wuv(j)]

2

≤ E
[
Wuv(j)

2
]
≤ B2

0 .

Therefore, an application of Bernstein’s inequality (see Lemma A.2) for a sum of
bounded random variables implies that

P
(∣∣µx1(u)x1(v) −muv

∣∣ > ν |x1(u) = x1(u),x1(v) = x1(v), |Ouv|
)

(7.6)

≤ exp

(
− 3|Ouv|ν2

6B2
0 + 4B0ν

)
.
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When v ∈ Sβu (i), |Ouv| ≥ β. Further, since the above holds inequalities for all
possibilities of x1(u), x1(v), we conclude that

P
(∣∣µx1(u)x1(v) −muv

∣∣ > ν
∣∣∣v ∈ Sβu (i)

)
≤ exp

(
− 3βν2

6B2
0 + 4B0ν

)
.

Next we prove that the sample variance s2
uv converges to its expected value

σ2
x1(u),x1(v) conditioned on the row latent features and a large enough overlapOuv.

PROOF OF LEMMA 7.3. Recall σ2
ab , Var[f(a,x2) − f(b,x2)] for a, b ∈ X1,

x2 ∼ PX2 , and the sample variance between rows u, v is defined as

s2
uv =

1

2|Ouv|(|Ouv| − 1)

∑
j1,j2∈Ouv

((Z(u, j1)− Z(v, j1))− (Z(u, j2)− Z(v, j2)))2

=
1

|Ouv| − 1

∑
j∈Ouv

(Z(u, j)− Z(v, j)−muv)
2 .

Conditioned on x1(u) = x1(u),x1(v) = x1(v), it follows from our model of
independent additive noise that

E
[
s2
uv | x1(u), x1(v)

]
= σ2

x1(u)x1(v) + 2γ2,

with respect to the randomness of the sampled latent column features induced by
PX2 and the independent noise terms. Recall as well that, Wuv(j) = Z(u, j) −
Z(v, j) are independent random variables conditioned on x1(u) = x1(u),x1(v) =
x1(v), where |Wuv(j)| ≤ B0, by the model assumptions and the definition of B0

in (2.7).
Therefore, by an application of Maurer-Pontil inequality for the sample variance

of a set of bounded random variables (see Lemma A.3 in Appendix A), it follows
that

P
(
|s2
uv−(σ2

x1(u)x1(v) + 2γ2)| > τ
∣∣ v ∈ Sβu (i),x1(u) = x1(u),x1(v) = x1(v)

)
≤ 2 exp

(
− (β − 1) τ2

4B2
0(2(σ2

x1(u)x1(v) + 2γ2) + τ)

)
,(7.7)

where we used the property that v ∈ Sβu (i) implies |Ouv| ≥ β. Since we assumed
β ≥ 2, β − 1 ≥ β/2. By the same argument used in the proof of Lemma 7.2, we
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can bound σ2
x1(u)x1(v) + 2γ2 = V ar (Wuv(j)) ≤ E

[
Wuv(j)

2
]
≤ B2

0 . Therefore,
the right hand side of (7.7) can be bounded by

≤ 2 exp

(
− βτ2

8B2
0(2B2

0 + τ)

)
.(7.8)

Given that this bound is indepedent of x(u),x(v), we can conclude the desired
result.

Sufficiently good k-nearest neighbors. We will next prove that with high prob-
ability, the k rows in set Sβu (i) with the smallest values of σ2

x1(u)x1(v) are indeed
“close”, i.e. the variance is small. This result depends on the local geometry of the
probability measure on the latent space, according to the function φ (·).

DEFINITION 7.1. Given a compact metric space (X , d) equipped with a Borel
probability measure PX , we define the measure underestimator function φ (·) as
the essential infimum of the measure of an r-ball. For r > 0,

φ (r) := ess inf
x∈X

PX (B(x, r)) ,

where B(x, r) := {x′ ∈ X : d(x, x′) ≤ r}.

We recall the notion of essential infimum. For a function f measurable on
(X , PX ), its essential infimum on X with respect to measure PX is defined as

ess inf
x∈X

f(x) = sup {a : PX ({x : f(x) < a}) = 0} .

For each r > 0, we can define fr(x) := PX (B(x, r)) so that fr is measurable.
Because PX is a probability measure, 0 ≤ fr(x) ≤ 1 for all x ∈ X and hence
φ(r) := ess infx∈X fr(x) is well-defined and takes value in [0, 1].

The function φ (·) behaves as an underestimator of the cumulative distribution
function of PX , and it always exists under our assumptions that X is compact
(see Appendix B for a proof of its existence). It is used to ensure that for any
u ∈ [m], with high probability, there exists another row v ∈ Sβu (i) such that
dX (x1(v), x1(v)) is small, implied by the Lipschitz condition that we can use the
values of row v to approximate the values of row u well.

PROOF OF LEMMA 7.4. Define the random variable Yuv = I(σ2
x1(u)x1(v) ≤ ζ).

Then the following two events are equivalent. ∑
v∈Sβu (i)

Yuv < k

 ≡
{{

σ2
x1(u)x1(v)

}(k)

v∈Sβu (i)
> ζ

}
.
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Observe that
∑

v∈Sβu (i)
Yuv is simply a Binomial random variable with parameters∣∣∣Sβu (i)

∣∣∣ and P
(
σ2
x1(u)x1(v) ≤ ζ

)
. By the Lipschitz property of f , for any a, b ∈ X1,

and y ∈ Y ,

|f(a, y)− f(b, y)| ≤ LdX1(a, b).(7.9)

Therefore, it follows that

σ2
ab = Var[f(a,y)− f(b,y)]

≤ E[(f(a,y)− f(b,y))2]

≤ L2dX1(a, b)2.(7.10)

From (7.10), it follows that dX1(a, b) ≤
√
ζ/L2 is a sufficient condition to ensure

σ2
ab < ζ. Therefore, using the definition of φ1(·), it follows that

P
(
σ2
x1(u)x1(v) ≤ ζ

)
≥ P

(
dX1(x1(u), x1(v)) ≤

√
ζ

L2

)

≥ φ1

(√
ζ

L2

)
.

Since we have also conditioned on the fact that |Sβu (i)| ≥ 1
2(m − 1)p, if U is

a Binomial random variable with parameters 1
2(m − 1)p and φ1

(√
ζ
L2

)
, then∑

v∈Sβu (i)
Yuv dominates U , in the sense that

P

 ∑
v∈Sβu (i)

Yuv < k

 ≤ P(U < k).

We letN0 denote the expectation of U , i.e.,N0 := E [U ] = 1
2(m−1)pφ1

(√
ζ
L2

)
.

Then it follows from Chernoff’s bound for the lower tail that

P(U < k) ≤ exp

(
−(N0 − k)2

2N0

)
.

Therefore,

P
({

σ2
x1(u)x1(v)

}(k)

v∈Sβu (i)
> ζ

∣∣∣∣ |Sβu (i)| ∈
[

1

2
(m− 1)p,

3

2
(m− 1)p

])
≤ exp

(
−(N0 − k)2

2N0

)
.
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Bound on tail probability of error conditioned on good events. Conditioned
on the above events that the overlaps are sufficiently large, mean and variance
concentrate, and there are sufficiently many good nearest neighbors, we can upper
bound the estimation error using Chebyshev’s inequality.

PROOF OF LEMMA 7.5. Recall that Sβ,ku (i) denotes the set of the k best row
indices v in Sβu (i) which have minimum sample variance s2

uv. We are interested in
the probabilistic tail bound of the error Errk(u, i), which can be expressed as

Errk(u, i) , A(u, i)− Âk(u, i)

=
1

|Sβ,ku (i)|

∑
v∈Sβ,ku (i)

(A(u, i)− Âv(u, i))

=
1

|Sβ,ku (i)|

∑
v∈Sβ,ku (i)

(A(u, i)− Z(v, i)−muv)

=
1

|Sβ,ku (i)|

∑
v∈Sβ,ku (i)

((
A(u, i)−A(v, i)− η(v, i)− µx1(u)x1(v)

))
− 1

|Sβ,ku (i)|

∑
v∈Sβ,ku (i)

((
muv − µx1(u)x1(v)

))

Its absolute value can be bounded by∣∣∣A(u, i)− Âk(u, i)
∣∣∣

≤

∣∣∣∣∣∣ 1

|Sβ,ku (i)|

∑
v∈Sβ,ku (i)

(
A(u, i)−A(v, i)− η(v, i)− µx1(u)x1(v)

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

|Sβ,ku (i)|

∑
v∈Sβ,ku (i)

(
muv − µx1(u)x1(v)

)∣∣∣∣∣∣
By the same argument as in the proof of Lemma 7.1,

∣∣∣A(u, i)− Âk(u, i)
∣∣∣ > ε

implies either

(7.11)

∣∣∣∣∣∣ 1

|Sβ,ku (i)|

∑
v∈Sβ,ku (i)

(
A(u, i)−A(v, i)− η(v, i)− µx1(u)x1(v)

)∣∣∣∣∣∣ > ε− ε1
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or

(7.12)

∣∣∣∣∣∣ 1

|Sβ,ku (i)|

∑
v∈Sβ,ku (i)

muv − µx1(u)x1(v)

∣∣∣∣∣∣ > ε1

for any choice of ε1. Recall the definitions of events E1, E2, E3, E4 from the state-
ment of Lemma 7.5. Conditioned on E2,

∣∣µx1(u)x1(v) −muv

∣∣ ≤ ν, ∀ v ∈ Sβu (i),
the second event (7.12) never happens for ε1 ≥ ν. By choosing ε1 = ν, it follows
that the error probability conditioned onE1, E2, E3, andE4 can be bounded by the
probability of the first event (7.11). We denote E := E1 ∩ E2 ∩ E3 ∩ E4, and we
use “expr” to denote the left hand expression in (7.11).

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε | E
)(7.13)

≤ P

∣∣∣∣∣∣ 1

|Sβ,ku (i)|

∑
v∈Sβ,ku (i)

(
A(u, i)−A(v, i)− η(v, i)− µx1(u)x1(v)

)∣∣∣∣∣∣ > ε− ν

∣∣∣∣∣∣ E


=

∫
~y∈Xm1

∑
S0⊂[n]:|S0|=k

P
(
|“expr”| > ε− ν | (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E

)
P
(

(x1(v))v∈[m] = ~y,Sβ,ku (i) = S0 | E
)
d~y.

We can verify that the eventE and the set Sβ,ku (i) do not depend upon any informa-
tion from column i, therefore η(v, i) is independent from E for all v. For the same
reason, x2(i) is independent fromE and Sβ,ku (i). Therefore, we can show that each
term in the summation

(
A(u, i)−A(v, i)− η(v, i)− µx1(u)x1(v)

)
has zero mean

by definition of µx1(u)x1(v). We use x2 to denote an independent random variable
sampled as per PX2 .

E
[
A(u, i)−A(v, i)− η(v, i)− µx1(u)x1(v)

∣∣ (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E
]

= E
[
f(x1(u), x2(i))− f(x1(v), x2(i))

∣∣ (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E
]
− µyuyv

= Ex2

[
f(yu,x2)− f(yv,x2)

∣∣ (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E
]
− µyuyv

= 0.
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Therefore an application of Chebyshev inequality yields,

P
(
|“expr”| > ε− ν | (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E

)(7.14)

≤
Var
[

1

|Sβ,ku (i)|

∑
v∈Sβ,ku (i)

(A(u, i)−A(v, i)− η(v, i))
∣∣∣ (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E

]
(ε− ν)2

.

Recall that η(v, i) is independent from E and Sβ,ku (i) and has variance γ2. In addi-
tion, |Sβ,ku (i)| = |S0| = k. Therefore, by independence of the noise term and using
Cauchy-Schwarz inequality, it follows that

Var

 1

|Sβ,ku (i)|

∑
v∈Sβ,ku (i)

(A(u, i)−A(v, i)− η(v, i))
∣∣∣ (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E


= Var

1

k

∑
v∈Sβ,ku (i)

(A(u, i)−A(v, i))
∣∣∣ (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E


+ Var

1

k

∑
v∈Sβ,ku (i)

η(v, i)
∣∣∣ (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E



≤

1

k

∑
v∈S0

√
Var
[
A(u, i)−A(v, i)

∣∣ (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E
]2

+
γ2

k
.

(7.15)

Next we will bound Var
[
A(u, i)−A(v, i)

∣∣ (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E
]

for any v ∈ S0. Recall that the event E and set Sβ,ku (i) is completely independent
from x2(i) because the event does not depend on any data from column i. Therefore
using the independence of x2(i), if we let x2 denote a random variable which is
sampled independently from PX2 , then

Var
[
A(u, i)−A(v, i)

∣∣ (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E
]

= Var
[
f(x1(u), x2(i))− f(x1(v), x2(i))

∣∣ (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E
]

= Var
[
f(yu,x2)− f(yv,x2)

∣∣ (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E
]

= σ2
yuyv .
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Let Ṽ denote the subset of rows v ∈ Sβu (i) such that σ2
x1(u)x1(v) ≤ ζ. Conditioned

on E4, the size of set Ṽ must be at least k. Conditioned on E3, for every v ∈ Ṽ ⊂
Sβu (i),

s2
uv ≤

(
σ2
x1(u)x1(v) + 2γ2

)
+ τ ≤ ζ + 2γ2 + τ.

Therefore, it follows by the definition of Sβ,ku (i) as the set of k rows with minimum
sample variance, that for all v ∈ Sβ,ku (i), s2

uv ≤ ζ + τ + 2γ2. Due to event E3 and
Sβ,ku (i) = S0, this implies that for all v ∈ S0, σ2

x1(u)x1(v) ≤
(
s2
uv + τ

)
− 2γ2 ≤

ζ + 2τ . Therefore for all v ∈ S0,

Var
[
A(u, i)−A(v, i)

∣∣ (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E
]
≤ ζ + 2τ.

Finally we can plug the variance bound into (7.15) and (7.14) to show that

P
(
|“expr”| > ε− ν | (x1(v))v∈[m] = ~y,Sβ,ku (i) = S0, E

)
≤ 1

(ε− ν)2

1

k

∑
v∈S0

√
ζ + 2τ

2

+
γ2

k


≤ 1

(ε− ν)2

(
ζ + 2τ +

γ2

k

)
.

Since this above bound does not depend on the particular choice of ~y and S0, by
plugging into (7.13), it follows that

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε | E
)

(7.16)

≤ 1

(ε− ν)2

(
ζ + 2τ +

γ2

k

)
.(7.17)

7.3. Proof of Theorem 7.6. Lemmas 7.1, 7.2, 7.3, and 7.4 provide probability
bounds on the following events defined in Lemma 7.5:

E1 :=

{
|Sβu (i)| ∈

[
1

2
(m− 1)p,

3

2
(m− 1)p

]}
,

E2 :=
{∣∣µx1(u)x1(v) −muv

∣∣ ≤ ν, ∀ v ∈ Sβu (i)
}
,

E3 :=
{∣∣∣s2

uv − (σ2
x1(u)x1(v) + 2γ2)

∣∣∣ ≤ τ, ∀ v ∈ Sβu (i)
}
,

E4 :=

{{
σ2
x1(u)x1(v)

}(k)

v∈Sβu (i)
≤ ζ
}
.
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Lemma 7.5 provides a bound on the tail of the probability of error conditioned
on the events E1, E2, E3, E4. Theorem 7.6 simply combines the lemmas with the
proper conditioning to prove an upper bound on the tail of the error probability.

PROOF. First of all, note that the error probability can be decomposed into
bounding the probability of violating each event, according to

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε
)

= P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε
∣∣∣E1 ∩ E2 ∩ E3 ∩ E4

)
P (E1 ∩ E2 ∩ E3 ∩ E4)

+ P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε
∣∣∣Ec1 ∪ Ec2 ∪ Ec3 ∪ Ec4)P (Ec1 ∪ Ec2 ∪ Ec3 ∪ Ec4)

≤ P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε
∣∣∣E1 ∩ E2 ∩ E3 ∩ E4

)
+ P (Ec1 ∪ Ec2 ∪ Ec3 ∪ Ec4)

≤ P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε
∣∣∣E1 ∩ E2 ∩ E3 ∩ E4

)
+ P (Ec1) + P (Ec2|E1) + P (Ec3|E1) + P (Ec4|E1) .

The first inequality uses the fact that probabilities cannot exceed 1. The last in-
equality is derived from the additivity of the measure P and the union bound. Be-
cause A ∪B = A ∪ (B ∩Ac),

P (A ∪B) = P (A) + P (B ∩Ac)
= P (A) + P (B|Ac)P (Ac)

≤ P (A) + P (B|Ac) ∵ P (Ac) ≤ 1.

Then we can obtain the last inequality by applying the union bound after taking
A = Ec1 and B = Ec2 ∪ Ec3 ∪ Ec4. By Lemma 7.5,

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε
∣∣∣E1, E2, E3, E4

)
≤ 1

(ε− ν)2

(
ζ + 2τ +

γ2

k

)
.

Using Lemma 7.1, we have

P (Ec1) = P
(
|Sβu (i)| 6∈

[
1

2
(m− 1)p,

3

2
(m− 1)p

])
≤ (m− 1) exp

(
−
(
np2 − β

)2
2np2

)
+ 2 exp

(
−(m− 1)p

12

)
.
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Similarly, by using Lemma 7.2 with union bound,

P (Ec2|E1) = P

 ⋃
v∈Sβu (i)

{
|µx1(u)x1(v) −muv| > ν

}
≤ 3

2
(m− 1)p exp

(
− 3βν2

6B2
0 + 4B0ν

)
,

where we recall that B0 = LDX1 + 2Be. By using Lemma 7.3 with union bound
again,

P (Ec3|E1) = P

 ⋃
v∈Sβu (i)

{∣∣∣s2
uv −

(
σ2
x1(u)x1(v) + 2γ2

ui

)∣∣∣ > τ
}

≤ 3(m− 1)p exp

(
− βτ2

8B2
0

(
2B2

0 + τ
)) .

By Lemma 7.4 with N0 := 1
2(m− 1)pφ1

(√
ζ
L2

)
as previously defined,

P (Ec4|E1) ≤ exp

(
−(N0 − k)2

2N0

)
.

Putting everything together, we obtain the following inequality,

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε
)

≤ 1

(ε− ν)2

(
ζ + 2τ +

γ2

k

)
+ (m− 1) exp

(
−
(
np2 − β

)2
2np2

)
+ 2 exp

(
−(m− 1)p

12

)
(7.18)

+
3

2
(m− 1)p exp

(
− 3βν2

6B2
0 + 4B0ν

)
(7.19)

+ 3(m− 1)p exp

(
− βτ2

8B2
0

(
2B2

0 + τ
))(7.20)

+ exp

(
−(N0 − k)2

2N0

)
.(7.21)

Note that ζ, ν, τ are parameters which are introduced purely for the purpose of
analysis. Requiring all exponential terms decay to 0 as m,n → ∞ restricts the



52 LEE-LI-SHAH-SONG

range of values ζ, ν, τ can take. We will let ν = τ = β−1/3. Also, we enforce

ζ satisfies φ1

(√
ζ
L2

)
≥ cφ (mp)−2/3 so that N0 ≥

cφ
4 (mp)1/3 as described

in the theorem statement. Additionally, we require β → ∞ as m,n → ∞ and
np2 − β ≥ cnp2 for some c > 0. We will show these are sufficient conditions for
the convergence of exponential error terms.

Given a sequence of problems of size (m,n), suppose that p = ω(m−1) and
p = ω(n−1/2). Then mp, np2 → ∞ as m,n → ∞. We may assume without
loss of generality that m and n are large enough such that mp, np2, β ≥ 2 for
simplicity.

Assuming β →∞ as m,n→∞, we can observe that ν, τ → 0 as m,n→∞.
In addition, we have ν ≤ 1, τ ≤ 1, since we assumed β ≥ 2 (hence, ≥ 1).
Therefore, the exponential terms Eq. (7.19) and Eq. (7.20) reduce as follows:

3

2
(m− 1)p exp

(
− 3βν2

6B2
0 + 4B0ν

)
≤ 3

2
(m− 1)p exp

(
− 3

6B2
0 + 4B0

β1/3

)
,

3(m− 1)p exp

(
− βτ2

8B2
0

(
2B2

0 + τ
)) ≤ 3(m− 1)p exp

(
− 1

8B2
0

(
2B2

0 + 1
)β1/3

)
.

In the theorem statement, we assumed that k ≤ ckN0 for some ck ∈ (0, 1), and the
constraints on the parameter ζ, which depend on the latent geometry via φ1, allow
us to reduce the last exponential error term Eq. (7.21) to the following bound:

exp

(
−(N0 − k)2

2N0

)
≤ exp

(
−
cφ (1− ck)2

8
(mp)1/3

)
.

From the assumption np2−β ≥ cnp2 for some c ∈ (0, 1), it follows that−(np2−β)
2

2np2
≤

− c2

2 np
2. Since we assumed β < np2,

(m−1) exp

(
−
(
np2 − β

)2
2np2

)
≤ (m−1) exp

(
−c

2

2
np2

)
≤ (m−1) exp

(
−c

2

2
β

)
.

Finally, we can obtain the following upper bound on Eq. (7.18) using our assump-
tion that β > 1 and mp ≥ 2:

(m− 1) exp

(
−
(
np2 − β

)2
2np2

)
+ 2 exp

(
−(m− 1)p

12

)
≤ (m− 1) exp

(
−c

2

2
β1/3

)
+ 2 exp

(
− 1

24
(mp)1/3

)
.
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By substituting in the above inequalities, the error probability bound reduces to

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε
)

≤ 1(
ε− β−1/3

)2 (ζ + 2β−1/3 +
γ2

k

)
+ 3 exp

(
−c1 (mp)1/3

)
+

(
m+

9

2
mp

)
exp

(
−c2β

1/3
)

where c1 := min
{

1
24 ,

cφ(1−ck)2

8

}
and c2 := min

{
c2

2 ,
3

6B2
0+4B0

, 1
8B2

0(2B2
0+1)

}
are

absolute constants, which may depend only on the geometry of the latent spaces.

7.4. Proof of Theorem 4.1 (Main Result) in the Main Article. Given the error
probability bound in Theorem 7.6, we integrate the probability to provide a bound
on the mean squared error.

PROOF. For a fixed (u, i),

Errk(u, i) , A(u, i)− Âk(u, i)

=
1

|Sβ,ku (i)|

∑
v∈Sβ,ku (i)

(A(u, i)− Âv(u, i))

=
1

|Sβ,ku (i)|

∑
v∈Sβ,ku (i)

(A(u, i)− Z(v, i)−muv) .

By our model assumptions and the definition of B0, it follows that |muv| ≤ B0,
and |A(u, i)−Z(v, i)| ≤ LDX1 +Be ≤ B0. Therefore |Errk(u, i)| ≤ 2B0. Since
Errk(u, i)2 ≥ 0, the mean squared error can be written as the following integral:

MSE(Âk) :=
1

mn

∑
u,i

E
[
Errk(u, i)2

]
=

1

mn

∑
u,i

∫ ∞
0

P
(
Errk(u, i)2 ≥ t

)
dt

=
1

mn

∑
u,i

∫ ∞
0

P
(
Errk(u, i) ≥

√
t
)
dt

=
1

mn

∑
u,i

∫ 4B2
0

0
P
(
Errk(u, i) ≥

√
t
)
dt.
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A probability cannot exceed 1, hence it follows from Theorem 7.6 that for all
(u, i),

P
(
Errk(u, i) ≥

√
t
)
≤
[

F1

(t1/2 − F2)2
+ F3

]
∧ 1,

where F1 = ζ + 2β−1/3 + γ2

k , F2 = β−1/3, and F3 = 3 exp
(
−c1 (mp)1/3

)
+(

m+ 9
2mp

)
exp

(
−c2β

1/3
)
, with the parameters ζ, k, β and constants c1, c2 as de-

scribed in the theorem statement.
Since the function F1

(t1/2−F2)2
+ F3 is monotone decreasing for t > F 2

2 , for any

partitioning parameter t∗ > F 2
2 , it follows that

MSE(Âk) ≤
∫ t∗

0
1dt+

∫ 4B2
0

t∗

(
F1

(t1/2 − F2)2
+ F3

)
dt

= t∗ + 2F1

(
− F2

t1/2 − F2
+ ln(t1/2 − F2)

)∣∣∣∣4B2
0

t∗
+ F3(4B2

0 − t∗)

= t∗ − 2F1F2

2B0 − F2
+ 2F1 ln(2B0 − F2)

+
2F1F2

(t∗)1/2 − F2
− 2F1 ln((t∗)1/2 − F2) + F3(4B2

0 − t∗)

≤ t∗ + 2F1F2

(
1

(t∗)1/2 − F2
− 1

2B0 − F2

)
+ 2F1 ln

(
2B0 − F2

(t∗)1/2 − F2

)
+ 4B2

0F3.

Let’s choose t∗ = (F1 + F2)2, which satisfies t∗ > F 2
2 because F1 > 0. We

can verify that that the definitions of F1 and F2, along with the constraints on the
parameters specified in the theorem statement, guarantee that F1 → 0 and F2 → 0
as n,m → ∞, whereas B0 is a constant. Therefore we can assume n,m are large
enough such that this choice of t∗ ≤ 4B2

0 . By substituting in our choice of t∗, it
follows that

MSE(Âk) ≤ (F1 + F2)2+2F1F2

(
1

F1
− 1

2B0 − F2

)
+2F1 ln

(
2B0 − F2

F1

)
+4B2

0F3.

We assume without loss of generality that m,n are large enough such that F2 <
2B0, which implies

1

F1
− 1

2B0 − F2
≤ 1

F1
and

2B0 − F2

F1
≤ 2B0

F1
.
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Therefore by substitution,

MSE(Âk) ≤ (F1 + F2)2 + 2F2 + 2F1 ln

(
2B0

F1

)
+ 4B2

0F3

= 2F1 ln

(
2B0

F1

)
+ (F1 + F2)2 + 2F2 + 4B2

0F3.(7.22)

This MSE upper bound converges to 0 as F1, F2, F3 → 0.

7.5. Results for Specific Probability Measures. In this section, we simplify the
results from Theorem 4.1 (main article) for specific choices of probability mea-
sures, namely the uniform measure over a d dimensional Euclidean cube, or a mea-
sure which is only supported on finitely many points. Each of these cases leads to a
specific form of the underestimator function φ(·), which gives concrete bounds. We
then choose specific expressions for ζ, and k to ensure that the mean squared error
of our user-user k-nearest neighbor algorithm converges to zero. The parameter ζ
in Theorem statement is introduced purely for the purpose of analysis, and is not
used within the implementation of the the algorithm. Recall that it is used to define
event E4, which holds when the k rows in Sβu (i) with minimum variance all satisfy
σ2
x1(u)x1(v) ≤ ζ. Intuitively, ζ is the thresholding parameter for the membership of

similar neighbors.

PROOF OF COROLLARY 4.3 IN THE MAIN ARTICLE. When the latent space is
a cube in Rd equipped with the uniform probability measure,

φ1

(√
ζ

L2

)
= C(2L)−dζd/2,

where C is a normalization constant to ensure φ1 (X1) = 1. We need to choose ζ
so that ζ ≥

( cφ
C

)2/d
(2L)2(mp)−4/3d to satisfy the constraint on ζ in the statement

of Theorem 4.1 in the main article:

(7.23) φ1

(√
ζ

L2

)
≥ cφ (mp)−2/3 for some cφ ≥ 0.

Therefore, let cφ = 1, and set ζ = (2L)2

C2/d (mp)−4/3d. We can plug it into the expres-
sion F1 in Theorem 4.1 (main article) to get

F1 = ζ + 2β−1/3 +
γ2

k

≤
[

(2L)2

C2/d
+ 2

]
max

{
(mp)−4/3d, β−1/3

}
+
γ2

k
.(7.24)
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The assumption that p ≥ max
{
m−1+δ, n−

1
2

+δ
}

for some δ > 0 guarantees

that mp and np2 diverge to ∞ as m,n → ∞. As a result, F2 = (np2)−1/3 con-
verges to 0.

To ensure F3 → 0 exponentially fast, we additionally require that logm <
(np2)δ

′/3 for some δ′ > 0. Additionally recall that β = np2/2. The second term
of F3 is thus upper bounded by(
m+

9

2
mp

)
exp

(
−c2β

1/3
)
≤ 11

2
m exp

(
−c2(np2/2)1/3

)
≤ exp

(
log

11

2
+ (np2)δ

′/3 − c2(np2/2)1/3

)
≤ exp

(
log

11

2
− (np2)1/3

(
2−1/3c2 − (np2)−(1−δ′)/3

))
.

Therefore, the exponent diverges to −∞ polynomially in np2 as n → ∞ and
hence, F3 decays exponentially to 0 as n→∞.

We observe in Eq. (7.24) that the rate of convergence of F1 is determined by
the slowest among

{
(mp)−4/3d, β−1/3, 1

k

}
. Since F2 = β−1/3 and F3 decays ex-

ponentially fast, we can see that F1 is the critical error term, which converges to 0
most slowly among F1, F2, F3. By definition, F1 ≥ 2F2. Hence, the convergence
rate of MSE in Eq. (7.22) is dominated by the first term 2F1 ln

(
2B0
F1

)
. To be more

concrete, since F1 + F2 = ζ + 3β−1/3 + γ2

k ≤
3
2F1, (F1 + F2)2 ≤ 9

4F
2
1 ≤ 9

4F1.

Given F1 ≤ 1
2 , we have F1 ≤ ln

(
2B0
F1

)
because B0 ≥ 1 and ln

(
2
x

)
≥ 1 for

0 < x ≤ 1
2 . Therefore,

MSE(Â) ≤ 2F1 ln

(
2B0

F1

)
+ (F1 + F2)2 + 2F2 + 4B2

0F3

≤ 2F1 ln

(
2B0

F1

)
+

9

4
F 2

1 + F1 + 4B2
0F3

≤ 21

4
F1 ln

(
2B0

F1

)
+ 4B2

0F3(7.25)

given F1 ≤ 1
2 , which is satisfied for large enough np2 � 1 and k � 1.

Now suppose that we choose k = 1
8 (mp)1/3. Our choice of ζ = (2L)2

C2/d (mp)−4/3d

guarantees φ1

(√
ζ
L2

)
≥ (mp)−2/3 in Eq. (7.23), and hence, k ≤ ck

2 (m −
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1)pφ1

(√
ζ
L2

)
for ck = 1

2 (we assumed m
2 ≤ m− 1 here). Then

F1 = ζ + 2β−1/3 +
γ2

k

≤
[

(2L)2

C2/d
+ 2 + 8γ2

]
max

{
(mp)−4/3d, β−1/3, (mp)−1/3

}
.

Plugging this into Eq. (7.25) gives a simplified bound in Corollary 4.3.

A slight modification of the above proof yields a proof for the MSE bound when
the latent row feature variable distribution PX1 is only supported on a finite number
of atoms.

PROOF OF COROLLARY 4.4 IN THE MAIN ARTICLE. When the latent space con-
sists of a finite number of points, in other words, PX1 is supported only on a finitely

many points, any choice of ζ > 0 satisfies φ1

(√
ζ
L2

)
≥ minx∈supp(PX1 ){φ1 (x)},

and hence, one can easily find cφ ≥ 0 for which φ1

(√
ζ
L2

)
≥ cφ (mp)−2/3.

We will simply let ζ = β−1/3 in such a case. Again, suppose that we choose
k = 1

8 (mp)1/3. This leads to

F1 = ζ + 2β−1/3 +
γ2

k

≤
[
3 + 8γ2

]
max

{
β−1/3, (mp)−1/3

}
.

The remaining arguments in the proof of Corollary 4.3 with regards to terms F2

and F3 also follow. We plug in this upper bound for F1 again into Eq. (7.25) to
prove Corollary 4.4.

8. Proofs: Tensor Completion. Recall that our tensor completion algorithm
followed from flattening the tensor to a matrix and applying our user-user k-nearest
neighbor method to the resulting matrix. Therefore, the proof follows a similar
outline to the proofs of the matrix results. However, it requires a separate (and
little more involved) proof since in the flattened matrix obtained from tensor, the
row and column latent features are likely to be correlated, not independent from
each other. This subtlety requires careful handling of various arguments which we
present here.

Recall that in Sections 5.1 and 5.2, we presented the latent variable model for a
tensor, and we discussed the procedure for flattening a tensor to a matrix, and the
model for the resulting flattened matrix.
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Tensor Model. We summarize the model and relevant notation for a t-order
tensor TA ∈ Rn1×n2×...nt . For each dimension q ∈ [t], each index αq ∈ [nq] is
associated to a latent feature xq(αq) drawn i.i.d. from the compact metric space Xq
according to probability measure PXq . The space Xq is endowed with metric dXq
and has diameter DXq . The underestimator function φq is defined in (5.1).

An entry of the tensor indexed by ~α = (α1, . . . αt) ∈ [n1]×· · ·×[nt] is described
by the L-Lipschitz function f applied to the latent features according to (5.2).
TZ ∈ Rn1×n2×...nt is the noisy tensor derived from TA by adding independent
noise terms η(~α) to each entry TA(~α) according to (5.4). The additive noise terms
η(~α) are assumed to be independent, zero mean, bounded between [−Be, Be], and
have uniform variance equal to γ2. D denotes the index set of observed entries,
such that ~α ∈ D with probability p and ~α /∈ D with probability 1− p for any index
~α independently of all other entries.

Flattened Matrix. There may be many ways to flatten a tensor into a matrix,
each corresponding to a specific bi-partition of [t] denoted by (I1, I2) where I1 =
{π(1), . . . , π(t1)} and I2 = {π(t1 + 1), . . . , π(t)} for some 1 ≤ t1 ≤ t − 1
and some permutation π : [t] → [t]. Recall t2 = t − t1. Given a partitioning
of the dimensions, the rows of the flattened matrix would correspond to taking
the cartesian product of all dimensions in I1, and the columns of the matrix would
correspond to taking the cartesian product of all dimensions in I2. If the dimensions
of the matrix are denoted by m× n, then m = ×q∈I1 [nq] and n = ×q∈I2 [nq].

A row u in the matrix is associated to a vector of indices ~u = (u1, . . . , ut1) ∈
[nπ(1)] × · · · × [nπ(t1)], and similarly a column i in the matrix is associated to a
vector of indices~i = (i1, . . . , it2) ∈ [nπ(t1+1)]× · · · × [nπ(t)]. The corresponding
row and column features are denoted by

~xπ1 (~u) =
(
xπ1,1(u1), . . . , xπ1,t1(ut1)

)
=
(
xπ(1)(u1), . . . , xπ(t1)(ut1)

)
,

~xπ2 (~i) =
(
xπ2,1(i1), . . . , xπ2,t2(it2)

)
=
(
xπ(t1+1)(i1), . . . , xπ(t1+t2)(it2)

)
.

The latent row features belong to space X π1 = ×q∈I1Xq, and the latent column
features belong to X π2 = ×q∈I2Xq. We let X π1,k denote Xπ(k) for k ∈ [t1], and we
let X π2,k denote Xπ(t1+k) for k ∈ [t2]. We define the metric for the product spaces
according to the max over the distance in the individual latent space associated to
each dimension,

dXπ1 (~x, ~x′) = max
q∈[t1]

(dXπ(q)(xq, x
′
q))(8.1)

dXπ2 (~x, ~x′) = max
q∈[t2]

(dXπ(t1+q)(xq, x
′
q)).(8.2)

Therefore the diameter of X π1 isDXπ1 := max(DXπ1,1 , . . . DXπ1,t1
). The measure as-

sociated to the row latent space is the product measure corresponding toPXπ1,1 . . . PXπ1,t1 ,



BLIND REGRESSION 59

and its underestimator function is denoted by

φπ1 (r) :=
∏
q∈I1

φq(r).

If the tensors TA and TZ are drawn from the tensor latent variable model, then
the entries of the associated matrices A and Z, obtained by flatting the tensors TA
and TZ , can be described as:

A(u, i) = f(~xπ1 (~u), ~xπ2 (~i))(8.3)

Z(u, i) = A(u, i) + η(u, i).(8.4)

This flattened matrix satisfies some of the conditions required in the matrix setting
in Section 2, namely f is Lipschitz, the latent variables are drawn from a bounded
metric space, and the data is observed with additive bounded zero-mean noise. We
define

B0 , LDXπ1 + 2Be,(8.5)

such that for any u, v ∈ [m] and any i ∈ [n],

|Z(u, i)− Z(v, i)| =
∣∣∣f(~x1(~u), ~x2(~i)) + η(u, i)− f(~x1(~v), ~x2(~i))− η(v, i)

∣∣∣
≤ LDXπ1 + 2Be =: B0.

However the flattened matrix does not satisfy the condition that the row and
column latent variables are fully independent. Although the latent variables for
each coordinate of each dimension of the tensor are independently sampled, if two
rows ~u and ~u′ in the flattened matrix correspond to tensor indices that coincide,
i.e. if uh = u′h for any h ∈ [t1], then the corresponding component of the latent
variable xπ1,h(uh) and xπ1,h(u′h) will be correlated, in fact they must be equal. The
correlation structure amongst the rows and columns of the flattened matrix is very
specific and follows from the partitioning and flattening of the tensor to a matrix.
For some column i, recall that Ni ⊂ [n] denote the set of columns which do not
share a tensor coordinate with i, and thus whose latent features are uncorrelated
with ~xπ2 (~i),

Ni := {j ∈ [n] s.t. jk 6= ik for all k ∈ [t2]}.

The number of remaining columns in the matrix after removing one coordinate
from each tesnor dimension is denoted by

|Ni| = n′ :=
∏
q∈I2

(nq − 1).



60 LEE-LI-SHAH-SONG

Proof Outline. The proof follows similar steps to the proof of the matrix re-
sults. The algorithm corresponds to first computing the empirical means and vari-
ances of the differences between pairs of rows in the flattened matrix. These com-
puted variances are used to choose the k-nearest neighbors which are included in
the final estimate. The differences we made to the algorithm is that the set Sβl,βhu (i)
both imposes and upper and lower bound on the overlap between rows. Addition-
ally, since the matrix results from flattening a tensor, the latent variables for rows
and columns are correlated according to the original tensor structure. Therefore, we
modified the computation of empirical means and variances such that when we are
estimating an entry at (u, i), we only consider columns j which do not share any
coordinates in the original tensor representation, i.e. ik 6= jk for all k ∈ [t2]. In this
way, the computation of muv(i), s2

uv(i), and Sβl,βhu (i) become fully independent
from the latent variables associated to i denoted by ~xπ2 (~i).

The key steps of the proof are stated within a few lemmas that mirror the same
format as the matrix proof. However, we will need to modify the proof of these cor-
responding tensor lemmas to account for the fact that the row and column features
are no longer drawn independently from the product spacesX π1 ,X π2 . We first prove
that the overlaps between pairs of rows is sufficiently large, which is presented in
Lemma 8.1 and is equivalent to the corresponding matrix Lemma 7.1. Next we
prove concentration of the empirical means and variances in Lemmas 8.2 and 8.3,
which correspond to the matrix Lemmas 7.2 and 7.3. Then we prove that each row
has sufficiently many “good neighbors”, i.e. other rows whose latent features are
close to the target row’s latent features. This is presented in Lemma 8.4, which cor-
responds to 7.4. The proofs of Lemmas 8.2, 8.3, and 8.4 will need to account for
the correlations across latent variables. Finally, conditioned on these above good
events, we combine them together to prove a bound on the probability of error in
Lemma 8.5.

We first prove that every pair of rows has sufficient, but not too huge overlap
with high probability. Specifically, Lemma 8.1 proves that for any (u, i), the num-
ber of the candidate rows, |Sβl,βhu (i)|, concentrates around (m − 1)p. This relies
on concentration of Binomial random variables via Chernoff’s bound, using the
fact that every entry is independently observed uniformly at random. The proof is
essentially identical to the proof of Lemma 7.1, and the result upper bounds the
probability of the complement of the following good event

E′1 :=

{∣∣∣Sβl,βhu (i)
∣∣∣ ∈ [1

2
(m− 1)p,

3

2
(m− 1)p

]}
.(8.6)

Because |Ouvi | only considers columns that are do not share any tensor coordinates
with i, it is distributed according to a Binomial with parameters n′ and p2, where
n′ =

∏
q∈I2(nq − 1).
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LEMMA 8.1. Given p > 0, 2 ≤ βl < n′p2, n′p2 ≤ βh < n′ and θ ∈ (0, 1), for
any (u, i) ∈ [m]× [n],

P
(
|Sβl,βhu (i)− (m− 1)p| > θ(m− 1)p

)
≤ (m− 1) exp

(
−
(
n′p2 − βl

)2
2n′p2

)
+ (m− 1) exp

(
−
(
βh − n′p2

)2
3n′p2

)

+ 2 exp

(
−θ

2

3
(m− 1)p

)
.

Next, assuming the overlap between two rows u and v is sufficiently large (but
not too large), Lemmas 8.2 and 8.3 prove that the sample mean and variance,
muv(i) and s2

uv(i) of the difference Z(u, i)− Z(v, i) concentrate around their ex-
pectations µ~xπ1 (~u)~xπ1 (~v) and σ2

~xπ1 (~u)~xπ1 (~v) with high probability. For any pair of rows
(u, v) ∈ [m]× [n], we define two levels of empirical means and variances. As de-
fined in the algorithm, muv(i) and s2

uv(i) are computed from the observed entries
in the overlap of u and v, where we recall that j ∈ Ouvi if (u, j) ∈ D, (v, j) ∈ D,
and jk 6= ik for all k ∈ [t2].

muv(i) :=
1

|Ouvi |

 ∑
j∈Ouvi

Z(u, j)− Z(v, j)

 ,
s2
uv(i) :=

1

|Ouvi | − 1

∑
j∈Ouvi

[Z(u, j)− Z(v, j)−muv(i)]
2 .

We define m̃uv(i) and s̃2
uv(i) to be the mean and variances of the differences be-

tween rows u and v in the full matrix Z including the unobserved entries, but not
including all columns j which share a tensor coordinate with i. Recall that the set
Ni denotes columns which have no shared tensor coordinate with i,

Ni := {j ∈ [n] s.t. jk 6= ik for all k ∈ [t2]}.

The remaining number of columns would be |Ni| = n′ =
∏
q∈I2(nq − 1) instead

of n =
∏
q∈I2 nq.

m̃uv(i) :=
1

n′

∑
j∈Ni

[Z(u, j)− Z(v, j)] ,

s̃2
uv(i) :=

1

n′ − 1

∑
j∈Ni

[Z(u, j)− Z(v, j)− m̃uv(i)]
2 .
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While Z may be fully instantiated from the latent row and column variables along
with entrywise noise terms, only the entries denoted by D are actually observed,
such that we are not actually able to compute m̃uv(i) and s̃2

uv(i) from the observed
dataset. Whereas m̃uv(i) and s̃2

uv(i) denote the sample mean and variance between
a pair of rows for the given sampled columns,muv(i) and s2

uv(i) denote the sample
mean and variance between a pair of rows for the observed datapoints, which can be
thought of as drawn uniformly at random without replacement from the columns.
We define µab and σ2

ab to be the mean and variance for a fixed pair of rows with
latent features a, b ∈ X π1 and for a randomly sampled column feature ~xπ2 according
to the product measure over PXπ2,1 . . . PXπ2,t2 :

µab := E~xπ2 [f(a, ~xπ2 )− f(b, ~xπ2 )] ,

σ2
ab := V ar~xπ2 [f(a, ~xπ2 )− f(b, ~xπ2 )] .

Due to the fact that the latent variables across columns in the flattened matrix are
correlated according to the original tensor structure, the simple proof from Lemmas
7.2 and 7.3 are no longer sufficient. Instead we use a 2-step analysis, which arises
from the equivalent perspective of the model as generated from a 2-stage sampling
procedure. In step one, the latent variables and individual noise terms are sampled
according to the distributions specified in the model, i.e. each feature of a coor-
dinate in the original tensor representation is drawn i.i.d. and the noise terms are
independent, zero-mean, and bounded. The matrices A and Z are fully determined
from the latent variables and individual noise terms. In step two, the index set D of
observed entries is sampled such that for any (u, i) ∈ [m]× [n], with probability p,
(u, i) ∈ D independently of other entries. The algorithm only observes the entries
in Z which correspond to indices specified in the set D.

To prove that muv(i) concentrates around µ~xπ1 (~u)~xπ1 (~v), we first show using Mc-
Diarmid’s inequality that m̃uv(i) concentrates around µ~xπ1 (~u)~xπ1 (~v) due to the sam-
pling of the latent variables and independent noise terms. Second we show that
conditioned on |Ouvi |, muv(i) concentrates around m̃uv(i) by the Kontorovich-
Ramanan inequality, since the observed datapoints are sampled without replace-
ment from a finite set of columns. We formally state the result in Lemma 8.2, which
upper bounds the probability of the complement of the following good event

E′2 :=
{∣∣∣muv(i)− µ~xπ1 (~u)~xπ1 (~v)

∣∣∣ ≤ ν, ∀ v ∈ Sβl,βhu (i)
}
.(8.7)
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LEMMA 8.2. Given (u, i) ∈ [m]× [n], for any ν > 0,

P
(∣∣∣muv(i)− µ~xπ1 (~u)~xπ1 (~v)

∣∣∣ > ν
∣∣∣v ∈ Sβl,βhu (i)

)
≤ 2 exp

 −ν2

8(LDXπ1 )2
∑t2

q=1
1

nq−1 + 16B2
e

n′

+ 2 exp

(
−ν2

32B2
0

∆

)
,

where ∆ = min

{
n′2βl

(n′+β2
l )

2 ,
n′2βh

(n′+β2
h)

2

}
.

Similarly, to prove that s2
uv(i) concentrates around σ2

~xπ1 (~u)~xπ1 (~v) + 2γ2, we first
show using McDiarmid’s inequality that s̃2

uv(i) concentrates around σ2
~xπ1 (~u)~xπ1 (~v) +

2γ2 due to the sampling of the latent variables and independent noise terms. Sec-
ond we show that conditioned on |Ouvi |, s2

uv(i) concentrates around s̃2
uv(i) by the

Kontorovich-Ramanan inequality, since the observed datapoints are sampled with-
out replacement from a finite set of columns. We formally state the result in Lemma
8.3, which upper bounds the probability of the complement of the following good
event

E′3 :=
{
s2
uv(i) ∈

[
(1− θ)σ2

~xπ1 (~u)~xπ1 (~v) − τ, (1 + θ)σ2
~xπ1 (~u)~xπ1 (~v) + τ

]
, ∀ v ∈ Sβl,βhu (i)

}
.

(8.8)

LEMMA 8.3. Given u ∈ [m], i ∈ [n], for any τ > 0,

P
(
s2
uv(i)− 2γ2 ∈

[
(1− θ)σ2

~xπ1 (~u)~xπ1 (~v) − τ, (1 + θ)σ2
~xπ1 (~u)~xπ1 (~v) + τ

] ∣∣∣v ∈ Sβl,βhu (i)
)

≤ 2 exp

 −τ2

32L2D2
Xπ1

(
3LDXπ1 + 4Be

)2∑k2
q=1

1
nq−1 +

64B2
e

(
2LDXπ1

+5Be
)2

n′


+ 2 exp

(
−τ2

128B4
0

∆

)
,

where θ =
∑

q∈I2
1

nq−1 is a quantity which depends only on the shape of the given
tensor and vanishes to 0 as nq → ∞,∀q ∈ I2. The overlap-dependent factor in

the exponent ∆ = min

{
n′2βl

(n′+β2
l )

2 ,
n′2βh

(n′+β2
h)

2

}
.

From Lemmas 8.2 and 8.3, we observe that the error bound vanishes as n→∞
if and only if ∆ → ∞, which occurs when βl = ω (1) and βh = o

(
n2/3

)
, since

βl ≤ βh and n′ = Θ(n) by definition.
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In Lemma 8.4, we prove that for any index pair (u, i), there exists k “good”
neighboring rows in Sβl,βhu (i), whose variance σ2

~xπ1 (~u)~xπ1 (~v) is sufficiently small.
Unlike Lemma 7.4, we cannot assume our row features are drawn independently
the product latent space. However, we recall that the row features come from the
original tensor structure, in which for each dimension, the latent feature associ-
ated to each coordinate is drawn independently and identically distributed. Con-
sider a row u in the flattened matrix, with a vector of latent features ~xπ1 (~u) =
(xπ1,1(u1), . . . , xπ1,t1(ut1)). For each dimension of the original tensor q ∈ [t1], by
Chernoff’s bound with high probability there are sufficiently many coordinates
whose latent feature is close to xπ1,q(uq). Then by combining these events by a
simple union bound, it follows that there are sufficiently many rows v ∈ [m] in the
flattened matrix whose latent feature vector ~xπ1 (~v) is close to ~xπ1 (~u), implying that
there are at least k good neighbors. Let

{
σ2
~xπ1 (~u)~xπ1 (~v)

}(k)

v∈Sβl,βhu (i)
denote the value

of the k-th minimum element in the set
{
σ2
~xπ1 (~u)~xπ1 (~v)

}
v∈Sβl,βhu (i)

. The following
Lemma 8.4 upper bounds the probability of the complement of the following good
event

E′4 :=

{{
σ2
~xπ1 (~u)~xπ1 (~v)

}(k)

v∈Sβl,βhu (i)
≤ ζ
}
.(8.9)

LEMMA 8.4. Given u ∈ [m], i ∈ [n], for any ζ > 0 and for any positive

integer k ≤ 1
8mpφ

π
2

(√
ζ
L2

)
= p

8

∏
q∈[t1] nπ(q)φπ(q)

(√
ζ
L2

)
,

P
({

σ2
~xπ1 (~u)~xπ1 (~v)

}(k)

v∈Sβl,βhu (i)
> ζ

∣∣∣∣ |Sβl,βhu (i)| ∈
[

1

2
(m− 1)p,

3

2
(m− 1)p

])
≤
∑
q∈I1

exp

(
−(1− 2−1/t1)2

2
µq

)
+ exp

(
−k

8

)

+ (m− 1) exp

(
−(n′p2 − βl)2

2n′p2

)
+ (m− 1) exp

(
−(βh − n′p2)2

3n′p2

)
,

where µq := nπ(q)φπ(q)

(√
ζ
L2

)
and φπ(q)(r) := ess infx′∈Xπ(q) PXπ(q)

(
dXπ(q)(x, x

′) ≤ r
)

.

Given that there exist k good neighbors in Sβl,βhu (i) whose variance is small,
and conditioned on the event that all the sample variances concentrate, it follows
that the true variance between u and its k nearest neighbors are small with high
probability. Each of these good events were denoted as E′1, E

′
2, E

′
3 and E′4, defined

in (8.6), (8.7), (8.8), and (8.9) respectively, and we let E′ denote the intersection of
these good events,

E′ := E′1 ∩ E′2 ∩ E′3 ∩ E′4.
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We can provide a bound on the tail probability of the estimation error conditioned
on E′ by using Chebyshev’s inequality, similar to that in Lemma 7.5 with minor
changes.

LEMMA 8.5. Given ν > 0, τ > 0, for any ε > ν, ζ ≥ 0 and any positive in-

teger k ≤ 1
8mpφ

π
1

(√
ζ
L2

)
, the tail probability of the estimation error is bounded

by

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε | E′
)
≤ 1

(ε− ν)2

(
(1 + θ)ζ + 2τ

1− θ
+
γ2

k

)
.

where θ =
∑

q∈I2
1

nq−1 is a quantity which depends only on the shape of the given
tensor and vanishes to 0 as nq →∞,∀q ∈ I2.

Then we bound the “bad” event, denoted by the complement of E′ according to
the above definition.

LEMMA 8.6. Suppose that

max
{
m−1+δ, n′−

1
2

+δ
}
≤ p ≤ n′−

1
6
−δ for some δ > 0

∀q ∈ I1, ζ satisfies φq

(√
ζ

L2

)
≥ cqn

− logmp
2 logm

q for some cq > 0,

2 ≤ βl ≤ cl min
{
n′p2, n′1/2

}
for some cl ∈ (0, 1),

ch max
{
n′1/2, n′p2

}
≤ βh ≤ n′

2
3
−δ for some ch > 1 and

k ≤ 1

8
mpφπ1

(√
ζ

L2

)
=
p

8

∏
q∈I1

nqφq

(√
ζ

L2

)
.

Then

P
(
E′c
)
≤ 4(m− 1) exp

(
−C1n

′p2
)

+ 2 exp

(
− 1

24
mp

)
+ 6(m− 1)p exp

(
−C2(nq∗ − 1)1/3

)
+ 6(m− 1)p exp

(
−C3 min

{
n′2/3

4βh
,
β

1/3
l

4

})

+ t1 exp
(
−C4n

1/2
q∗

)
+ exp

(
−k

8

)
.

where q∗ := arg minq∈I1 nq and ν = τ = max

{
(nq∗ − 1)−1/3,

(
n′2

β3
h

)−1/3
, β
−1/3
l

}
.

Here, θ =
∑

q∈I2
1

nq−1 is a quantity which depends only on the shape of the given
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tensor and vanishes to 0 as nq →∞, ∀q ∈ I2. Note that

C1 := min

{
(1− cl)2

2
,
(ch − 1)2

3

}
,

C2 := min

{
1

8L2D2t2 + 16B2
e

,
1

32L2D2(3LD + 4Be)2t2 + 64B2
e (2LD + 5Be)2

}
,

C3 := min

{
1

32(LD + 2Be)2
,

1

128(LD + 2Be)4

}
,

C4 := min
q∈Iq

{
(1− 2−1/t1)2

2
cq

}

are some absolute constants, which may depend only on the geometry of the latent
spaces.

Finally we combine the lemmas which bound each of the deviating events to get
a final bound on the tail probability of the error.

THEOREM 8.7. Suppose that

max
{
m−1+δ, n′−

1
2

+δ
}
≤ p ≤ n′−

1
6
−δ for some δ > 0

∀q ∈ I1, ζ satisfies φq

(√
ζ

L2

)
≥ cqn

− logmp
2 logm

q for some cq > 0,

2 ≤ βl ≤ cl min
{
n′p2, n′1/2

}
for some cl ∈ (0, 1),

ch max
{
n′1/2, n′p2

}
≤ βh ≤ n′

2
3
−δ for some ch > 1 and

k ≤ 1

8
mpφπ1

(√
ζ

L2

)
=
p

8

∏
q∈I1

nqφq

(√
ζ

L2

)
.

For any given ε > max

{
maxq∈I1

(
(nq − 1)−1/3

)
,
(
n′2

β3
h

)−1/3
, β
−1/3
l

}
, the tail

probability of the error of the estimate produced by the user-user k-smoothed vari-
ant of our method with overlap parameters βl, βh is upper bounded by:

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε
)

≤ 1

(ε− ν)2

(
(1 + θ)ζ + 2τ

1− θ
+
γ2

k

)
+ F ′3,
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where

F ′3 = 4(m− 1) exp
(
−C1n

′p2
)

+ 2 exp

(
− 1

24
mp

)
+ 6(m− 1)p exp

(
−C2(nq∗ − 1)1/3

)
+ 6(m− 1)p exp

(
−C3 min

{
n′2/3

4βh
,
β

1/3
l

4

})

+ t1 exp
(
−C4n

1/2
q∗

)
+ exp

(
−k

8

)
,

with q∗ := arg minq∈I1 nq and ν = τ = max

{
(nq∗ − 1)−1/3,

(
n′2

β3
h

)−1/3
, β
−1/3
l

}
.

Here, θ =
∑

q∈I2
1

nq−1 is a quantity which depends only on the shape of the given
tensor and vanishes to 0 as nq →∞, ∀q ∈ I2. Note that

C1 := min

{
(1− cl)2

2
,
(ch − 1)2

3

}
,

C2 := min

{
1

8L2D2t2 + 16B2
e

,
1

32L2D2(3LD + 4Be)2t2 + 64B2
e (2LD + 5Be)2

}
,

C3 := min

{
1

32(LD + 2Be)2
,

1

128(LD + 2Be)4

}
,

C4 := min
q∈Iq

{
(1− 2−1/t1)2

2
cq

}

are some absolute constants, which may depend only on the geometry of the latent
spaces.

By integrating the upper bound on the tail of the error probability, we obtain an
upper bound on the MSE of the estimate, as stated in the final Theorem 5.1.

In this section we prove the five key lemmas introduced in the proof outline.

8.1. Sufficiently many rows with good overlap. Using the fact that every entry
is independently observed uniformly at random, the size of the overlap between
a pair of rows is distributed according to a Binomial random variable. Therefore
Lemma 8.1 follows from a straightforward application of Chernoff’s bound.

PROOF OF LEMMA 8.1. A slight modification of the proof for Lemma 7.1 yields
the result. It suffices to redefine Ruv as

Ruv = I{|Ouvi | ≥ βl}I{|Ouvi | ≤ βh}.
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Since the measurement at each entry still happens i.i.d. with probability p, us-
ing Chernoff’s bound for deviation from mean above and below, we can bound
P (Ruv = 0). By an application of union bound as in Lemma 7.1, we can obtain
the desired result.

8.2. Concentration of mean and variance. Assuming the overlap between two
rows u and v is sufficiently large (but not too large), Lemmas 8.2 and 8.3 prove
that the sample mean and variance, muv(i) and s2

uv(i) of the difference Z(u, i) −
Z(v, i) concentrate around their expectations µ~xπ1 (~u)~xπ1 (~v) and σ2

~xπ1 (~u)~xπ1 (~v) with high
probability. For any pair of rows (u, v) ∈ [m]×[m], recall the following definitions

muv(i) :=
1

|Ouvi |

 ∑
j∈Ouvi

Z(u, j)− Z(v, j)

 ,

s2
uv(i) :=

1

|Ouvi | − 1

∑
j∈Ouvi

(Z(u, j)− Z(v, j)−muv(i))
2 ,

:=
1

2 |Ouvi | (|Ouvi | − 1)

∑
j,h∈Ouvi ×Ouvi

((Z(u, j)− Z(v, j))− (Z(u, h)− Z(v, h)))2 ,

m̃uv(i) :=
1

n′

∑
j∈Ni

(Z(u, j)− Z(v, j)) ,

s̃2
uv(i) :=

1

n′ − 1

∑
j∈Ni

(Z(u, j)− Z(v, j)− m̃uv(i))
2 ,

=
1

2n′(n′ − 1)

∑
j,h∈Ni×Ni

((Z(u, j)− Z(v, j))− (Z(u, h)− Z(v, h)))2 ,

µab := E~xπ2 [f(a, ~xπ2 )− f(b, ~xπ2 )] ,

σ2
ab := V ar~xπ2 [f(a, ~xπ2 )− f(b, ~xπ2 )] .

As Ouvi only contains columns j for which both Z(u, j) and Z(v, j) are observed,
i.e. (u, j) ∈ D and (v, j) ∈ D, the quantities muv(i) and s2

uv(i) can be computed
from the data and are used in the algorithm. m̃uv(i) and s̃2

uv(i) is defined from
the full matrix Z, which is fully determined by the latent row and column latent
variables along with the individual noise terms. However, as many entries are un-
observed, these quantities are not computable from the data and are defined for the
purpose of the analysis.

PROOF OF LEMMA 8.2. Without loss of generality, to simplify the notation,
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assume that i = (nπ(t1+1), . . . nπ(t)). Therefore

Ni = {j ∈ [n] s.t. jk 6= ik for all k ∈ [t2]}
= {j ∈ [n] s.t. jk ∈ [nπ(t1+k) − 1] for all k ∈ [t2]}
= {j ∈ [n] s.t. ~j ∈ ×k∈[t2][nπ(t1+k) − 1]}.

The proof is equivalent for all choice of i ∈ [n] by symmetry.
By the triangle inequality,∣∣∣µ~xπ1 (~u)~xπ1 (~v) −muv(i)

∣∣∣ ≤ ∣∣∣µ~xπ1 (~u)~xπ1 (~v) − m̃uv(i)
∣∣∣+ |m̃uv(i)−muv(i)| .

Therefore,
∣∣∣µ~xπ1 (~u)~xπ1 (~v) −muv(i)

∣∣∣ > ν implies that either
∣∣∣µ~xπ1 (~u)~xπ1 (~v) − m̃uv(i)

∣∣∣
or |m̃uv(i)−muv(i)| are larger than ν/2, such that a simple application of union
bound results in

P
(∣∣∣muv(i)− µ~xπ1 (~u)~xπ1 (~v)

∣∣∣ > ν
∣∣∣v ∈ Sβl,βhu (i)

)
= P

(∣∣∣µ~xπ1 (~u)~xπ1 (~v) − m̃uv(i)
∣∣∣+ |m̃uv(i)−muv(i)| > ν

∣∣∣v ∈ Sβl,βhu (i)
)

≤ P
(∣∣∣µ~xπ1 (~u)~xπ1 (~v) − m̃uv(i)

∣∣∣ > ν
2

∣∣∣v ∈ Sβl,βhu (i)
)

+ P
(
|m̃uv(i)−muv(i)| > ν

2

∣∣∣v ∈ Sβl,βhu (i)
)

To bound the first term, we use McDiarmid’s inequality (Theorem A.4) to show
that m̃uv(i) concentrates around µ~xπ1 (~u)~xπ1 (~v) due to the sampling of the latent
variables and independent noise terms. Conditioned on |Ouvi |, we bound the sec-
ond term using the Kontorovich-Ramanan inequality (Theorem A.5) to show that
muv(i) concentrates around m̃uv(i) since the observed datapoints are sampled
without replacement from a finite set of columns.

To apply McDiarmid’s inequality for bounding
∣∣∣µ~xπ1 (~u)~xπ1 (~v) − m̃uv(i)

∣∣∣, we de-
fine a function ξab which maps from the latent variables and noise terms to m̃uv(i)
for ~xπ1 (~u) = a and ~xπ1 (~v) = b. We show that this function satisfies the bounded dif-
ference condition. The entries in row u and v of matrix Z are fully determined by
the row latent variables ~xπ1 (~u) and ~xπ1 (~v), the column latent variables {~xπ2 (~j)}j∈Ni ,
and the independent noise terms {η(u, j), η(v, j)}j∈Ni . The n′ column latent vari-
ables are fully determined by the

∑
q∈I2(nq−1) latent variables for corresponding

coordinates in the tensor. Recall that the number of relevant columns in the flat-
tened matrix is n′ =

∏
q∈I2(nq − 1), such that in fact the number of free parame-

ters is significantly smaller than the number of total columns. Each column latent
variable ~xπ2 (~j) is associated to a vector of t2 latent variables in the original tensor,

~xπ2 (~j) =
(
xπ(t1+1)(j1), . . . , xπ(t1+t2)(jt2)

)
.
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Therefore, the set of column latent variables {~xπ2 (~j)}j∈Ni is fully determined by
the corresponding latent variables in the t2 dimensions of the original tensor, de-
scribed by the sets {xπ(t1+1)(j)}j∈[nπ(t1+1)−1], . . . , {xπ(t1+t2)(j)}j∈[nπ(t1+t2)−1].

For a pair of row latent variables a, b ∈ X π1 , we construct function ξab to map
from the column latent variables and individual noise terms to m̃uv(i) conditioned
on ~xπ1 (~u) = a, ~xπ1 (~v) = b,

ξab : ×q∈I2(Xq)nq−1 × R2n′ → R.

The function ξab is defined according to

ξab

(
{xq(l)}q∈I2,l∈[nq−1], {η(u, j), η(v, j)}j∈Ni

)
=

1

n′

∑
j∈Ni

(
f
(
a, ~xπ2 (~j)

)
+ η(u, j)− f

(
b, ~xπ2 (~j)

)
− η(v, j)

)
(8.10)

where ~xπ2 (~j) =
(
xπ2,1(j1), . . . , xπ2,t2(jt2)

)
. We will overload the notation and also

let ξab denote the random variable which is evaluated with respect to the column
latent variables and noise terms, leaving out the terms in the parentheses for read-
ability. We can verify that by construction,

ξ~xπ1 (~u)~xπ1 (~v) = m̃uv(i).

Since the noise terms are zero-mean and ~xπ2 (~j) are identically distributed for all
j ∈ [n],

Eξab = Exπ2
[f(a,xπ2 )− f(b,xπ2 )] = µab.

For any tensor dimension q ∈ I2 and for any coordinate l ∈ [nq − 1], the
associated latent variable xq(l) shows up in exactly n′

nq−1 terms of the summation
in (8.10). We assumed in our model that the function f is L-Lipschitz such that by
for any a, b ∈ X π1 and x2 ∈ X π2 ,

|f (a, x2)− f (b, x2)| ≤ LDXπ1 ,

where we recall that DXπ1 is the diameter of X π1 . Since the above expression only
takes values within [−LDXπ1 , LDXπ1 ], this implies that if we changed a single vari-
able xq(l) arbitrarily, for each of the n′

nq−1 terms which it participates in, the value
will at most change by 2LDXπ1 , which is then divided by n′ from the term in front

of the summation. Thus, the overall value of ξab can change at most by
2LDXπ1
nq−1

when a single latent variable is changed arbitrarily.
For any j ∈ Ni, the noise variables η(u, j) and η(v, j) each only show up in

a single term of the summation in (8.10). Furthermore, we assumed in our model
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statement that the noise is bounded, i.e. η(u, j) ∈ [−Be, Be]. Thus, the overall
value of ξab can change at most by 2Be

n′ when a single additive noise variable is
changed arbitrarily.

By McDiarmid’s inequality, we can conclude that for any ν > 0 and u, v ∈ [m],

P
(∣∣∣m̃uv(i)− µ~xπ1 (~u)~xπ1 (~v)

∣∣∣ ≥ ν
2 | ~x

π
1 (~u) = a, ~xπ1 (~v) = b

)
= P

(
|ξab − Eξab| ≥ ν

2

)
≤ 2 exp

 −ν2

8(LDXπ1 )2
∑

q∈I2
1

nq−1 + 16B2
e

n′

 .

Observe that v ∈ Sβl,βhu (i) only depends on the locations of observed samples,
specified by the set of data indices D, whereas m̃uv(i) and µ~xπ1 (~u)~xπ1 (~v) are com-
pletely independent from D. Additionally since the upper bound does not depend
on a and b, it follows that

P
(∣∣∣m̃uv(i)− µ~xπ1 (~u)~xπ1 (~v)

∣∣∣ ≥ ν
2 | v ∈ S

βl,βh
u (i)

)
≤ 2 exp

 −ν2

8(LDXπ1 )2
∑

q∈I2
1

nq−1 + 16B2
e

n′

 .

Next, we bound |m̃uv(i)−muv(i)| using the Kontorovich-Ramanan inequality.
Recall that the set Ouvi denotes the columns in Ni for which samples have been
observed from both rows u and v. Suppose that |Ouvi | = k, such that Ouvi can be
viewed as k randomly chosen columns out of n′ total columns. This is equivalent
to drawing k elements uniformly at random from a finite population of n′ with-
out replacement. We will define a function ψuvk which maps from the k sampled
columns to the quantity muv(i),

ψuvk : N k
i → R.

Let J1 . . . Jk ∈ Ni denote the randomly selected column indices, then

ψuvk({J1, . . . , Jk}) =
1

k

k∑
l=1

(Z(u, Jl)− Z(v, Jl)).

We can verify that by construction, conditioned on |Ouvi | = k,

ψuvk(Ouvi ) = muv(i) and E[ψuvk(Ouvi )] = m̃uv(i).
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For any two sequences {Jl}, {J ′} ∈ N k
i , the function values differ by

ψuvk({J1, . . . , Jk})− ψuvk({J ′1, . . . , J ′k})

=
1

k

k∑
l=1

(Z(u, Jl)− Z(v, Jl)− Z(u, J ′l ) + Z(v, J ′l ))

=
1

k

∑
l:Jl 6=J ′l

(Z(u, Jl)− Z(v, Jl)− Z(u, J ′l ) + Z(v, J ′l )).

Recall that by definition of B0 in (8.5), for any u, v ∈ [m] and i ∈ [n],

|Z(u, i)− Z(v, i)| ≤ B0,

since the latent space and noise terms are bounded. Therefore, if we consider the
Hamming metric on N k

i , we can verify that ψuvk(·) is (2B0
k )-Lipschitz, since

ψuvk({J1, . . . , Jk})− ψuvk({J ′1, . . . , J ′k}) ≤
2B0

k
|{l : Jl 6= J ′l}|.

Next we compute the mixing coefficient of the randomly chosen columnsOuvi =
{J1, . . . Jk}, as defined in the setup of the Kontorovich-Ramanan inequality (see
Theorem A.5 in Appendix A for details). The sequence of columns (J1, . . . , Jk) is
uniformly distributed amongst all n′!

(n′−k)! possible sequences of choosing k columns
out of n′ total columns without replacement. The mixing coefficient ∆k is defined
according to ∆k := maxs∈[k]

(
1 +

∑k
s′=s+1 λ̄ss′

)
, where

λ̄ss′ := sup
~τ∈Ns−1

i
,

w,ŵ∈Ni

1

2

∑
~τ ′∈N k−s′+1

i

∣∣∣P ((Js′ . . . Jk) = ~τ ′ | (J1 . . . Js) = (~τ , w)
)

− P
(
(Js′ . . . Jk) = ~τ ′ | (J1 . . . Js) = (~τ , ŵ)

) ∣∣∣,
where the supremum is only taken over valid sequences (~τ , w) and (~τ , ŵ) which
do no repeat any elements.

Conditioned on (J1 . . . Js) = (~τ , w), the sequence (Js′ . . . Jk) is equally likely
amongst all sequences of length (k − s′ + 1) chosen from the n′ columns without
replacement as long as they also do not repeat any elements already chosen in the
vector (~τ , w), i.e. all permutations of length (k − s′ + 1) out of n′ − s remaining
columns. Similarly, conditioned on (J1 . . . Js) = (~τ , ŵ), the sequence (Js′ . . . Jk)
is equally likely amongst all permutations of length (k − s′ + 1) out of the n′ − s
remaining columns that do not contain any elements in (~τ , ŵ). There are a total of

(n′−s)!
((n′−s)−(k−s′+1))! such valid permutations.
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Therefore, if τ ′ does not contain symbolsw or ŵ, then the probability of (Js′ . . . Jk)
= ~τ ′ is equal whether conditioned on (J1 . . . Js) = (~τ , w) or (J1 . . . Js) = (~τ , ŵ).
If τ ′ contains both w and ŵ, then it will have probability zero in both condi-
tioned events. If τ ′ contains only one out of either w or ŵ, then the absolute
value of the difference in the conditional probabilities of (Js′ . . . Jk) = ~τ ′ will
be equal to ((n′−s)−(k−s′+1))!

(n′−s)! . The total number of such sequences τ ′ which con-
tain only one out of either w or ŵ (and do not repeat elements in τ ) is equal to
2(k − s′ + 1) (n′−s−1)!

((n′−s−1)−(k−s′))! = 2(k−s′+1)
n′−s

(n′−s)!
((n′−s)−(k−s′+1))! . Therefore,

λ̄ss′ =
(k − s′ + 1)

n′ − s
(n′ − s)!

((n′ − s)− (k − s′ + 1))!

((n′ − s)− (k − s′ + 1))!

(n′ − s)!

=
(k − s′ + 1)

n′ − s
.

We can then compute the mixing coefficient ∆k,

∆k = max
s∈[k]

(
1 +

k∑
s′=s+1

(k − s′ + 1)

n′ − s

)
(8.11)

= max
s∈[k]

(
1 +

(k − s)(k − s+ 1)

2(n′ − s)

)
(8.12)

= 1 +
(k − 1)k

2(n′ − 1)
.(8.13)

The last step follows from showing that the derivative with respect to s is negative,
such that the expression is maximized for the smallest value of s, which is s = 1.

Consequently, it follows from the Kontorovich-Ramanan theorem (Theorem
A.5) that for any ν > 0,

P
(
|muv(i)− m̃uv(i)| ≥ ν

2 | |O
uv
i | = k

)
= P

(
|ψuvk − Eψuvk| ≥ ν

2

)
≤ 2 exp

 −ν2

8k
(

2B0
k

)2 (
1 + (k−1)k

2(n′−1)

)2


= 2 exp

 −kν2

32B2
0

(
1 + (k−1)k

2(n′−1)

)2


≤ 2 exp

(
−ν2

32B2
0

n′2k

(n′ + k2)2

)
.

The last inequality follows when we assume that n′ ≥ 2. Then 2(′n− 1) ≥ n′ and
1 + (k−1)k

2(n′−1) ≤ 1 + k2

n′ , hence, k(
1+

(k−1)k

2(n′−1)

)2 ≥ k(
1+ k2

n′

)2 = n′2k
(n′+k2)2

.
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We would like to compute a lower bound that holds for all k. By taking the
derivative with respect to k,

∂

∂k

n′2k

(n′ + k2)2
=
n′2(n′ + k2)(n′ − 3k2)

(n′ + k2)4
.

Therefore, n′2k
(n′+k2)2

is monotone increasing for k ≤
√

n′

3 , and monotone decreas-

ing for k >
√

n′

3 . In other words, for any k ∈ [βl, βh],

n′2k

(n′ + k2)2 ≥ min

{
n′2βl(

n′ + β2
l

)2 , n′2βh(
n′ + β2

h

)2
}

=: ∆.

Therefore,

P
(
|muv(i)− m̃uv(i)| ≥ ν

2

∣∣∣ v ∈ Sβl,βhu (i)
)

= P
(
|muv(i)− m̃uv(i)| ≥ ν

2 | |O
uv
i | ∈ [βl, βh]

)
≤ 2 exp

(
−ν2

32B2
0

∆

)
.

Finally, we combine the two bounds to obtain the final result.

PROOF OF LEMMA 8.3. Without loss of generality, to simplify the notation,
assume that i = (nπ(t1+1), . . . nπ(t)). Therefore

Ni = {j ∈ [n] s.t. jk 6= ik for all k ∈ [t2]}
= {j ∈ [n] s.t. jk ∈ [nπ(t1+k) − 1] for all k ∈ [t2]}
= {j ∈ [n] s.t. ~j ∈ ×k∈[t2][nπ(t1+k) − 1]}.

The proof is equivalent for all choice of i ∈ [n] by symmetry. Recall that |Ni| =
n′ =

∏
q∈I2(nq − 1).

In this proof, we will show concentration of s2
uv(i) to Es̃2

uv(i), and then show
that Es̃2

uv(i) conditioned on ~xπ1 (~u) and ~xπ1 (~v) is approximately equal to σ2
~xπ1 (~u)~xπ1 (~v)+

2γ2. By the triangle inequality,∣∣Es̃2
uv(i)− s2

uv(i)
∣∣ ≤ ∣∣Es̃2

uv(i)− s̃2
uv(i)

∣∣+
∣∣s̃2
uv(i)− s2

uv(i)
∣∣ .

In a similar vein as in the proof of the Lemma 8.2,
∣∣Es̃2

uv(i)− s2
uv(i)

∣∣ > τ implies
that either

∣∣Es̃2
uv(i)− s̃2

uv(i)
∣∣ > τ/2 or

∣∣s̃2
uv(i)− s2

uv(i)
∣∣ > τ/2. Again, a simple
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application of union bound results in

P
(∣∣Es̃2

uv(i)− s2
uv(i)

∣∣ > τ
∣∣∣ v ∈ Sβl,βhu (i)

)
≤ P

(∣∣Es̃2
uv(i)− s̃2

uv(i)
∣∣ > τ

2

∣∣∣ v ∈ Sβl,βhu (i)
)

+ P
(∣∣s̃2

uv(i)− s2
uv(i)

∣∣ > τ

2

∣∣∣ v ∈ Sβl,βhu (i)
)

To apply McDiarmid’s inequality for bounding
∣∣Es̃2

uv(i)− s̃2
uv(i)

∣∣, we define a
function ξab which maps from the latent variables and noise terms to s̃2

uv(i) for
~xπ1 (~u) = a and ~xπ1 (~v) = b. We show that this function satisfies the bounded dif-
ference condition. The entries in row u and v of matrix Z are fully determined by
the row latent variables ~xπ1 (~u) and ~xπ1 (~v), the column latent variables {~xπ2 (~j)}j∈Ni ,
and the independent noise terms {η(u, j), η(v, j)}j∈Ni .

For a pair of row latent variables a, b ∈ X π1 , we construct function ξab to map
from the column latent variables and individual noise terms to s̃2

uv(i) conditioned
on ~xπ1 (~u) = a, ~xπ1 (~v) = b,

ξab : ×q∈I2(Xq)nq−1 × R2n′ → R.

We define fab and ηuv according to

fab (x) = f(a, x)− f(b, x),

ηuv(j) = η(u, j)− η(v, j).

The function ξab is defined according to

ξab

(
{xq(l)}q∈I2,l∈[nq−1], {η(u, j), η(v, j)}j∈Ni

)

=
1

2n′(n′ − 1)

∑
j,h∈Ni×Ni

(
fab

(
~xπ2 (~j)

)
+ ηuv(j)− fab

(
~xπ2 (~h)

)
− ηuv(h)

)2

(8.14)

where ~xπ2 (~j) =
(
xπ2,1(j1), . . . , xπ2,t2(jt2)

)
. We will overload the notation and also

let ξab denote the random variable which is evaluated with respect to the column
latent variables and noise terms, leaving out the terms in the parentheses for read-
ability. We can verify that by construction,

ξ~xπ1 (~u)~xπ1 (~v) = s̃2
uv(i) and Eξab = E

[
s̃2
uv(i)

∣∣ ~xπ1 (~u) = a, ~xπ1 (~v) = b
]
.

For any tensor dimension q ∈ I2 and for any coordinate l ∈ [nq − 1], the
associated latent variable xq(l) shows up in at most 2n′(n′−1)

nq−1 terms out of n′(n′−1)
of the summation in (8.14), used to evaluate ξab. We assumed in our model that the
function f is L-Lipschitz such that by for any a, b ∈ X π1 and x2 ∈ X π2 ,

|f (a, x2)− f (b, x2)| ≤ LDXπ1 ,
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where we recall that DXπ1 is the diameter of X π1 .Therefore,∣∣∣fab (~xπ2 (~j)
)
− fab

(
~xπ2 (~j′)

)∣∣∣ ≤ 2LDXπ1 .

We assumed that the noise was bounded such that |ηuv(j)| ≤ 2Be. Therefore,∣∣∣fab (~xπ2 (~j)
)

+ ηuv(j)− fab
(
~xπ2 (~j′)

)
− ηuv(j′)

∣∣∣ ≤ 2LDXπ1 + 4Be.

If we changed a single variable xq(l) arbitrarily, for each of the 2n′(n′−1)
nq−1 terms

which it participates in, the value of the summand[
fab

(
~xπ2 (~j)

)
+ ηuv(j)− fab

(
~xπ2 (~j′)

)
− ηuv(j′)

]2

will at most change by 2
(
2LDXπ1 + 4Be

) (
2LDXπ1

)
+
(
2LDXπ1

)2 because if we
consider a perturbation ∆, (X + ∆)2 −X2 = 2X∆ + ∆2, which is then divided
by 2n′(n′ − 1) from the term in front of the summation. Thus, the overall value of
ξab can change at most by

1

nq − 1

(
2
(
2LDXπ1 + 4Be

) (
2LDXπ1

)
+
(
2LDXπ1

)2)
=

4LDXπ1
nq − 1

(
3LDXπ1 + 4Be

)
when a single latent variable is changed arbitrarily.

For any j ∈ Ni, the noise variables η(u, j) and η(v, j) each shows up in exactly
2(n′−1) terms of the summation in (8.14). Furthermore, we assumed in our model
statement that the noise is bounded, i.e. η(u, j) ∈ [−Be, Be]. Thus, by a similar
argument as above, the overall value of ξab can change at most by

1

n′

[
2
(
2LDXπ1 + 4Be

)
(2Be) + (2Be)

2
]

=
4Be
n′
(
2LDXπ1 + 5Be

)
when a single additive noise variable is changed arbitrarily.

By McDiarmid’s inequality, we can conclude that for any τ > 0 and u, v ∈ [m],

P
(∣∣s̃2

uv(i)− Es̃2
uv(i)

∣∣ ≥ τ
2 | ~x

π
1 (~u) = a, ~xπ1 (~v) = b

)
= P

(
|ξab − Eξab| ≥ τ

2

)
≤ 2 exp

 −τ2

32L2D2
Xπ1

(
3LDXπ1 + 4Be

)2∑t2
q=1

1
nq−1 +

64B2
e

(
2LDXπ1

+5Be
)2

n′

 .

Observe that v ∈ Sβl,βhu (i) only depends on the locations of observed samples,
specified by the set of data indices D, whereas s̃uv and σ~xπ1 (~u)~xπ1 (~v) are completely
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independent fromD. Additionally since the upper bound does not depend on a and
b, it follows that

P
(∣∣s̃2

uv(i)− Es̃2
uv(i)

∣∣ ≥ τ
2 | v ∈ S

βl,βh
u (i)

)

≤ 2 exp

 −τ2

32L2D2
Xπ1

(
3LDXπ1 + 4Be

)2∑t2
q=1

1
nq−1 +

64B2
e

(
2LDXπ1

+5Be
)2

n′

 .

Next, we bound
∣∣s̃2
uv(i)− s2

uv(i)
∣∣ using the Kontorovich-Ramanan inequality.

Recall that the setOuvi denotes the columns for which samples have been observed
from both rows u and v. Suppose that |Ouvi | = k, such thatOuvi can be viewed as k
randomly chosen columns out of n′ total columns. This is equivalent to drawing k
elements uniformly at random from a finite population of n′ without replacement.
We will define a function ψuvk : N k

i → R, which maps from the k sampled
columns to the quantity s2

uv(i). Let J1 . . . Jk ∈ Ni denote the selected column
indices, then

ψuvk({J1, . . . , Jk})

=
1

2k(k − 1)

k∑
l=1

k∑
l′=1

(Z(u, Jl)− Z(v, Jl)− Z(u, Jl′) + Z(v, Jl′))
2 .(8.15)

We can verify that by construction, conditioned on |Ouvi | = k, ψuvk(Ouvi ) =
s2
uv(i). Next we show that its expectation conditioned on the matrix Z equals
s̃2
uv(i). Since we condition on the matrix Z, the randomness only comes from the

randomly sampled columns Ouvi = {Jl}l∈[k]. Observe that the randomly chosen
column indices Jl and Jl′ are identically distributed, and thus Z(u, Jl)− Z(v, Jl)
and Z(u, Jl′)−Z(v, Jl′) are also identically distributed. Recall from (8.16) that if
two variables are identically distributed, then the expectation of the square of their
difference is equal to two times the variance minus the covariance. Therefore if we
let Xl := Z(u, Jl)− Z(v, Jl),

E [ψuvk(Ouvi )] =
1

k(k − 1)

k∑
l=1

k∑
l′=1

(Var[Xl]− Cov[Xl, Xl′ ])

= Var[Xl]−
1

k(k − 1)

k∑
l=1

∑
l′ 6=l

Cov[Xl, Xl′ ].

Conditioned on Z, for l 6= l′, the random variables Xl and Xl′ are determined by
the sampled columns Jl and Jl′ , which can be viewed as two samples drawn from
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a finite population of size n′ without replacement. Therefore, their covariance is
equal to − 1

n′−1 times the variance of the population. Therefore,

E [ψuvk(Ouvi )] = Var[Xl] +
1

k(k − 1)(n′ − 1)

k∑
l=1

∑
l′ 6=l

Var[Xl] =
n′

(n′ − 1)
Var[Xl].

By construction, conditioned on Z, the variance ofXl with respect to the randomly
chosen column index Jl is equal to n′−1

n′ s̃
2
uv(i), and the mean of Xl with respect to

the randomly chosen column index Jl is equal to m̃uv. Therefore E [ψuvk(Ouvi )] =
s̃2
uv(i).

Next we show that the function ψuvk is Lipschitz with respect to the Hamming
metric on N k

i , and we compute the associated Lipschitz constant. The definition
of ψuvk in (8.15) involves a double summation, and a particular index variable Jl
shows up in exactly 2(k−1) of these terms in the summation. Consider two sets of
column indices {Jl ∈ Ni}l∈[k] and {J ′l ∈ Ni}l∈[k]. For each position l0 at which
they differ, i.e. Jl0 6= J ′l0 , we can bound the maximum resulting difference in the
function value of ψuvk. By definition of B0 in (8.5), for any u, v ∈ [m] and i ∈ [n],
|Z(u, i)− Z(v, i)| ≤ B0, since the latent space and noise terms are bounded. For
any Jl, J ′l ∈ [n], it follows that(

Z(u, Jl)− Z(v, Jl)− Z(u, J ′l ) + Z(v, J ′l )
)2 ≤ 4B2

0 .

The difference in the value of ψuvl evaluated with column indices {Jl}l∈[k] versus
{J ′l}l∈[k] is bounded above by

ψuvk({Jl}l∈[k])− ψuvk({J ′l}l∈[k]) ≤
1

2k(k − 1)
2(k − 1)|{l : Jl 6= J ′l}|(4B2

0)

=
4B2

0

k
|{l : Jl 6= J ′l}|.

Therefore, if we consider the Hamming metric on N k
i , the function ψuvk(·) is(

4B2
0
k

)
-Lipschitz.

Next we compute the mixing coefficient of the randomly chosen columnsOuvi =
{J1, . . . Jk}, as defined in the setup of the Kontorovich-Ramanan inequality (see
Theorem A.5 in Appendix A for details). This is exactly the same with the argu-
ment in the proof of Lemma 8.2. We just restate the mixing coefficient ∆k obtained
in (8.12):

∆k = 1 +
(k − 1)k

2(n′ − 1)
.
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Consequently, it follows from the Kontorovich-Ramanan theorem (Theorem A.5)
that for any ν > 0,

P
(∣∣s2

uv(i)− s̃2
uv(i)

∣∣ ≥ τ
2 | |O

uv
i | = k

)
= P

(
|ψuvk − Eψuvk| ≥ τ

2

)
≤ 2 exp

 −τ2

8k
(

4B2
0
k

)2 (
1 + (k−1)k

2(n′−1)

)2


= 2 exp

 −kτ2

128B4
0

(
1 + (k−1)k

2(n′−1)

)2


≤ 2 exp

(
−τ2

128B4
0

n′2k

(n′ + k2)2

)
.

The last inequality follows when we assume that n′ ≥ 2. Then 2(n′ − 1) ≥ n′ and
1 + (k−1)k

2(n′−1) ≤ 1 + k2

n′ , hence, k(
1+

(k−1)k

2(n′−1)

)2 ≥ k(
1+ k2

n′

)2 = n′2k
(n′+k2)2

.

We would like to compute a lower bound that holds for all k. By taking the
derivative with respect to k,

∂

∂k

n′2k

(n′ + k2)2
=
n′2(n′ + k2)(n′ − 3k2)

(n′ + k2)4
.

Therefore, n′2k
(n′+k2)2

is monotone increasing for k ≤
√

n′

3 , and monotone decreas-

ing for k >
√

n′

3 . In other words, for any k ∈ [βl, βh],

n′2k

(n′ + k2)2 ≥ min

{
n′2βl(

n′ + β2
l

)2 , n′2βh(
n′ + β2

h

)2
}

=: ∆.

Therefore,

P
(∣∣s2

uv(i)− s̃2
uv(i)

∣∣ ≥ τ
2

∣∣∣ v ∈ Sβl,βhu (i)
)

= P
(∣∣s2

uv(i)− s̃2
uv(i)

∣∣ ≥ τ
2 | |O

uv
i | ∈ [βl, βh]

)
≤ 2 exp

(
−τ2

128B4
0

∆

)
.

Combining the two bounds on
∣∣s2
uv(i)− s̃2

uv(i)
∣∣ and

∣∣s̃2
uv(i)− Es̃2

uv(i)
∣∣ leads to a

bound on the probability that
∣∣s2
uv(i)− Es̃2

uv(i)
∣∣ ≥ τ .

Lastly, we bound the difference between Es̃2
uv(i) and σ2

~xπ1 (~u)~xπ1 (~v) +2γ2. By def-
inition, we can write s̃2

uv(i), conditioned on ~xπ1 (~u) = a and ~xπ1 (~v) = b, according



80 LEE-LI-SHAH-SONG

to

s̃2
uv(i) =

1

2n′(n′ − 1)

∑
j,h∈Ni×Ni

(Xj −Xh)2 ,

where we define the variables

Xj = Z(u, j)− Z(v, j) = fab

(
~xπ2 (~j)

)
+ ηuv(~j)

for all j ∈ [n]. Since the noise terms are i.i.d, and since ~xπ2 (~j) are identically
distributed for all j ∈ Ni, {Xj}j∈Ni are also identically distributed. When random
variables Xj and Xh are identically distributed,

E
[
(Xj −Xh)2

]
= E

[
X2
j − 2XjXh +X2

h

]
= 2E

[
X2
j

]
− 2E [XjXh]

= 2Var[Xj ]− 2Cov[Xj , Xh].(8.16)

If h = j, then Cov[Xj , Xh] = Var[Xj ]. Therefore, by substitution and using the
fact that {Xj}j∈Ni are identically distributed, it follows that

E
[
s̃2
uv(i)

∣∣ ~xπ1 (~u) = a, ~xπ1 (~v) = b
]

=
1

n′(n′ − 1)

∑
j∈Ni

∑
h6=j,h∈Ni

(Var[Xj ]− Cov[Xj , Xh])

= Var[Xj ]−
1

n′(n′ − 1)

∑
j∈Ni

∑
h6=j,h∈Ni

Cov[Xj , Xh].

First we can show that because the noise terms are independent, and by definition
of σ2

ab, the variance is equal to

Var[Xj ] = Var[fab
(
~xπ2 (~j)

)
+ ηuv(~j)]

= Var[fab
(
~xπ2 (~j)

)
] + Var[ηuv(~j)]

= σ2
ab + 2γ2.

Next we bound the contribution from the covariance terms. By definition,

Cov(Xj , Xh) = Cov
(
fab

(
~xπ2 (~j)

)
+ ηuv(~j), fab

(
~xπ2 (~h)

)
+ ηuv(~h)

)
= Cov

(
fab

(
~xπ2 (~j)

)
, fab

(
~xπ2 (~h)

))
+ Cov

(
ηuv(~j), ηuv(~h)

)
.
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Since the noise terms are independent across entries, Cov
(
ηuv(~j), ηuv(~h)

)
= 0

if j 6= h. If the Hamming distance between ~j and ~h is t2, it means that the entry
corresponding to j and h in the original tensor do not share any coordinates, and
therefore their associated latent variables ~xπ2 (~j) and ~xπ2 (~h) are independent, such

that Cov
(
fab

(
~xπ2 (~j)

)
, fab

(
~xπ2 (~h)

))
is equal to zero. For each j, there can exist

at most
∑

q∈I2
n′

nq−1 indices h ∈ Ni (including j itself) for which dH(~j,~h) < t2,

where dH(~j,~h) = |{l : jl 6= hl}| denotes the Hamming distance between ~j and ~h.
Furthermore, we know that the absolute value of the covariance of two identically
distributed random variables is always less than the variance. We assume without
loss of generality that nq ≥ 2, otherwise Ni would be an empty set. It follows that∣∣∣∣∣∣ 1

n′(n′ − 1)

∑
j∈Ni

∑
h6=j,h∈Ni

Cov(Xj , Xh)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

n′(n′ − 1)

∑
j∈Ni

∑
h:h6=j,

dH (~j,~h)<t2

Cov
(
fab

(
~xπ2 (~j)

)
, fab

(
~xπ2 (~h)

))∣∣∣∣∣∣∣∣
≤ 1

n′(n′ − 1)

∑
j∈Ni

∑
h:h 6=j,

dH (~j,~h)<t2

Var
(
fab

(
~xπ2 (~j)

))

≤
σ2
ab

n′ − 1

∑
q∈I2

(
n′

nq − 1
− 1

)
≤

σ2
ab

n′ − 1

∑
q∈I2

(
n′ − 1

nq − 1

) ∵ nq ≥ 2,∀q ∈ I2

= σ2
ab

∑
q∈I2

1

nq − 1


Therefore, it follows that

(1− θ)σ2
~xπ1 (~u)~xπ1 (~v) + 2γ2 ≤ Es̃2

uv(i) ≤ (1 + θ)σ2
~xπ1 (~u)~xπ1 (~v) + 2γ2,

where θ =
∑

q∈I2
1

nq−1 , which converges to 0 as nq →∞ for all q ∈ I2.
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8.3. Sufficiently Many Good Neighbors.

PROOF OF LEMMA 8.4. According to the Bayes’ rule, the conditional proba-
bility of interest can be written as

P
({

σ2
~xπ1 (~u)~xπ1 (~v)

}(k)

v∈Sβl,βhu (i)
> ζ

∣∣∣∣ |Sβl,βhu (i)| ∈
[

1

2
(m− 1)p,

3

2
(m− 1)p

])

=

P
({

σ2
~xπ1 (~u)~xπ1 (~v)

}(k)

v∈Sβl,βhu (i)
> ζ

⋂
|Sβl,βhu (i)| ∈

[
1
2(m− 1)p, 3

2(m− 1)p
])

P
(
|Sβl,βhu (i)| ∈

[
1
2(m− 1)p, 3

2(m− 1)p
])

≤ 2P
({

σ2
~xπ1 (~u)~xπ1 (~v)

}(k)

v∈Sβl,βhu (i)
> ζ

)
,

assuming that P
(
|Sβl,βhu (i)| ∈

[
1
2(m− 1)p, 3

2(m− 1)p
])
≥ 1

2 , which is true when
m and n are sufficiently large from Lemma 8.1.

We can observe that this probability can be represented equivalently as

P
({

σ2
~xπ1 (~u)~xπ1 (~v)

}(k)

v∈Sβl,βhu (i)
> ζ

)
= P

 ∑
v∈Sβl,βhu (i)

I
{
σ2
~xπ1 (~u)~xπ1 (~v) ≤ ζ

}
< k


= P

(∑
v

I
{
v ∈ Sβl,βhu (i)

}
I
{
σ2
~xπ1 (~u)~xπ1 (~v) ≤ ζ

}
< k

)
.

For anyN , define eventQ :=
{∑

v I
{
σ2
~xπ1 (~u)~xπ1 (~v) ≤ ζ

}
< N

}
. Therefore we can

condition on event Q to show that

P

(∑
v

I
{
v ∈ Sβl,βhu (i)

}
I
{
σ2
~xπ1 (~u)~xπ1 (~v) ≤ ζ

}
< k

)

= P

(∑
v

I
{
v ∈ Sβl,βhu (i)

}
I
{
σ2
~xπ1 (~u)~xπ1 (~v) ≤ ζ

}
< k

∣∣∣∣∣Q
)
P (Q) +

+ P

(∑
v

I
{
v ∈ Sβl,βhu (i)

}
I
{
σ2
~xπ1 (~u)~xπ1 (~v) ≤ ζ

}
< k

∣∣∣∣∣Qc
)
P (Qc)

≤ P (Q) + P

(∑
v

I
{
v ∈ Sβl,βhu (i)

}
I
{
σ2
~xπ1 (~u)~xπ1 (~v) ≤ ζ

}
< k

∣∣∣∣∣Qc
)
.

First we provide a bound for P (Q). For any a, b ∈ X π1 , and random variable
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x2 ∈ X π2 , by the L-Lipschitz property of function f ,

σ2
ab = Varx2 [f(a,x2)− f(b,x2)]

≤ Ex2 [(f(a,x2)− f(b,x2))2]

≤ L2dXπ1 (a, b)2,(8.17)

where we recall that the metric dXπ1 is defined as the maximum over the distance
in each of the t1 dimensions. Therefore,

dXπ(q)(xπ(q)(uq), xπ(q)(vq)) ≤ ζ1/2L−1 for all q ∈ [t1]

implies that dXπ1 (~xπ1 (~u), ~xπ1 (~v)) is less than ζ1/2L−1, which implies σ2
~xπ1 (~u)~xπ1 (~v) ≤

ζ by substituting into (8.17). For any t1-sequence of positive integers (N1, N2, . . . , Nt1)
such that

∏
q∈[t1]Nq ≥ N ,

⋂
q∈[t1]

 ∑
l∈[nπ(q)]

I
{
dXπ(q)

(
xπ(q)(uq), xπ(q)(l)

)
≤ ζ1/2L−1

}
≥ Nq


=⇒

{∑
v

I
{
σ2
~xπ1 (~u)~xπ1 (~v) ≤ ζ

}
≥ N

}
.

Therefore, we have the following inequality from applying the union bound:

P (Q) = P

(∑
v

I
{
σ2
~xπ1 (~u)~xπ1 (~v) ≤ ζ

}
< N

)

≤
∑
q∈[t1]

P

 ∑
l∈[nπ(q)]

I
{
dXπ(q)

(
xπ(q)(uq),xπ(q)(l)

)
≤ ζ1/2L−1

}
< Nq

 .

Because {xπ(q)(l)}l∈[nπ(q)] are drawn i.i.d. from Xπ(q), the indicator variables are
i.i.d. Bernoulli random variables whose success parameter is at least φπ(q)

(
ζ1/2L−1

)
by definition of the underestimator function φπ(q). Therefore, by Chernoff’s bound,
it follows that

P

 ∑
l∈[nπ(q)]

I
{
dXπ(q)

(
xπ(q)(uq),xπ(q)(l)

)
≤ ζ1/2L−1

}
< Nq


≤ P

(
Binomial

(
nπ(q), φπ(q)

(
ζ1/2L−1

))
≤ Nq

)
≤ exp

(
−(µq −Nq)

2

2µq

)
,(8.18)
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for Nq < µq where µq := nπ(q)φπ(q)

(
ζ1/2L−1

)
. Given parameter N and informa-

tion on the underestimator functions {φπ(q)}q∈[t1], we can optimize the choice of

{Nq}q∈[t1] by balancing (µq−Nq)2
2µq

.

Next we provide a bound for P
(∑

v∈Sβl,βhu (i)
I
{
σ2
~xπ1 (~u)~xπ1 (~v) ≤ ζ

}
< k

∣∣∣Qc).

The event
{
v ∈ Sβl,βhu (i)

}
is solely determined by the locations of the sampled

datapoints represented in index setD, thus it is completely independent from the la-
tent variables and the entry values. Thus it is independent from

{
σ2
~xπ1 (~u)~xπ1 (~v) ≤ ζ

}
as long as v 6= u. Therefore, the probability of interest

P

(∑
v

I
{
v ∈ Sβl,βhu (i)

}
I
{
σ2
~xπ1 (~u)~xπ1 (~v) ≤ ζ

}
< k

∣∣∣∣∣Qc
)

= P

 ∑
v:σ2

~xπ1 (~u)~xπ1 (~v)
≤ζ

I
{
v ∈ Sβl,βhu (i)

}
< k

∣∣∣∣∣∣∣Qc


≤ P

 N∑
v=1,v 6=u

I
{
v ∈ Sβl,βhu (i)

}
< k


= P

(∣∣Sβl,βhu (i) ∩ ([N ] \ {u})
∣∣ < k

)
,

where we used the fact that Qc implies by definition that the set of rows v such
that I

{
σ2
~xπ1 (~u)~xπ1 (~v) ≤ ζ

}
is larger than N and the probability of event of interest is

monotonically decreasing in the number of such vs. Recall that Lemma 8.1 proved
concentration of |Sβl,βhu (i)|. By the same proof as Lemma 8.1, replacing m with
N , it follows that for k < Np,

P
(
|Sβl,βhu (i) ∩ ([N ] \ {u})| < k

)
≤ exp

(
−((N − 1)p− k)2

2(N − 1)p

)(8.19)

+ (N − 1) exp

(
−(n′p2 − βl)2

2n′p2

)
+ (N − 1) exp

(
−(βh − n′p2)2

3n′p2

)
.

(8.20)

We choose Nq = 2−1/t1µq = 2−1/t1nπ(q)φπ(q)

(
ζ1/2L−1

)
, such that it also

follows that

N =
∏
q∈[t1]

Nq =
1

2

∏
q∈[t1]

nπ(q)φπ(q)

(
ζ1/2L−1

)
=

1

2
mφπ1

(
ζ1/2L−1

)
.



BLIND REGRESSION 85

Therefore, given the constraint on k such that k ≤ 1
8mpφ

π
1

(
ζ1/2L−1

)
, we can

verify that k < Np.
With this choice of Nq, the expression in (8.18) is upper bounded by

exp

(
−(µq −Nq)

2

2µq

)
= exp

(
−(1− 2−1/t1)2

2
µq

)
.

Since we may assume N ≥ 2 (because N = 1 gives a meaningless event E and
we are considering the large tensor limit as nq →∞,∀q), it holds thatN−1 ≥ N

2 .
Therefore, the first expression in (8.19) is upper bounded by

exp

(
−((N − 1)p− k)2

2(N − 1)p

)
≤ exp

(
−
(

1
4Np

)2
2Np

)
= exp

(
−Np

32

)
≤ exp

(
−k

8

)
.

UsingN ≤
∏
q∈I1 nq = m in (8.19) and combining everything together, we obtain

the desired result.

8.4. Tail Probability Bound Conditioned on Good Events.

PROOF OF LEMMA 8.5. We redefine Sk so that it denotes the set of the k best
row indices v in Sβl,βhu (i) which have minimum sample variance s2

uv(i). We define
Errk(u, i) := A(u, i)− Âk(u, i) and are interested in its probabilistic tail bound.
By the same argument as in the proof of Lemma 7.5, its absolute value can be
bounded as below∣∣∣A(u, i)− Âk(u, i)

∣∣∣
≤

∣∣∣∣∣∣ 1

|Sk|
∑
v∈Sk

(
A(u, i)−A(v, i)− η(v, i)− µ~xπ1 (~u)~xπ1 (~v)

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

|Sk|
∑
v∈Sk

muv(i)− µ~xπ1 (~u)~xπ1 (~v)

∣∣∣∣∣∣ .
Recall that we denote E′ := E′1 ∩ E′2 ∩ E′3 ∩ E′4. Following the same lines of
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argument as in the proof of Lemma 7.5, we can show that

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε | E′
)

≤ P

∣∣∣∣∣∣ 1

|Sk|
∑
v∈Sk

(
A(u, i)−A(v, i)− η(v, i)− µ~xπ1 (~u)~xπ1 (~v)

)∣∣∣∣∣∣ > ε− ν

∣∣∣∣∣∣ E′


=

∫
~y∈(Xπ1 )m

∑
S0⊂[n]:|S0|=k

P
(
|“expr”| > ε− ν | (~xπ1 (~v))v∈[m] = ~y, Sk = S0, E

′
)

P
(

(~xπ1 (~v))v∈[m] = ~y, Sk = S0 | E′
)
d~y,

where “expr” denotes the expression 1
|Sk|

∑
v∈Sk

(
A(u, i)−A(v, i)− η(v, i)− µ~xπ1 (~u)~xπ1 (~v)

)
.

Recall that we modified the tensor algorithm such that the overlap Ouvi , sample
variance s2

uv(i), row base Sβl,βhu (i), and thus the set Sk are computed from the
data matrix after removing all columns j which share any of the original tensor
coordinates, i.e. jk = ik for any k ∈ [t2]. Therefore, the event E′ and the set
Sk are independent from the i-th column latent feature ~x2(~i) and the noise terms
η(v, i) for any v ∈ [m]. Let ~x2 be a random variable sampled independently from
the product space PXπ2 . Then we can verify that

E[A(u, i)−A(v, i)− η(v, i)− µ~xπ1 (~u)~xπ1 (~v) | (~xπ1 (~v))v∈[m] = ~y, Sk = S0, E
′]

= E[f(~xπ1 (~u), ~xπ2 (~i))− f(~xπ1 (~v), ~xπ2 (~i))− η(v, i) | (~xπ1 (~v))v∈[m] = ~y, Sk = S0, E
′]− µyuyv

= E[f(yu, ~x2)− f(yv, ~x2)− η(v, i) | (~xπ1 (~v))v∈[m] = ~y, Sk = S0, E
′]− µyuyv

= 0.

Next we apply Chebyshev’s inequality and Cauchy-Schwarz inequality along
with the fact that η(v, i) is independent from E′ because the events in E′ do not
depend on the data observed from column i.

P
(
|“expr”| > ε− ν | (~xπ1 (~v)))v∈[m] = ~y, Sk = S0, E

)
≤

Var
[

1
|Sk|

∑
v∈Sk (A(u, i)−A(v, i)− η(v, i))

∣∣∣ (~xπ1 (~v))v∈[m] = ~y, Sk = S0, E
′
]

(ε− ν)2

≤ 1

(ε− ν)2

1

k

∑
v∈S0

√
Var
[
A(u, i)−A(v, i)

∣∣ (~xπ1 (~v))v∈[m] = ~y, Sk = S0, E′
]2

+
γ2

k

 .

Next we will bound Var
[
A(u, i)−A(v, i)

∣∣ (~xπ1 (~v))v∈[m] = ~y, Sk = S0, E
′
]
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for any v ∈ S0. Therefore,

Var
[
A(u, i)−A(v, i)

∣∣ (~xπ1 (~v))v∈[m] = ~y, Sk = S0, E
′
]

= Var
[
f(yu, ~x2(~i))− f(yv, ~x2(~i))

∣∣ (~xπ1 (~v))v∈[m] = ~y, Sk = S0, E
′
]

= Var
[
f(yu, ~x2)− f(yv, ~x2)

∣∣ (~xπ1 (~v))v∈[m] = ~y, Sk = S0, E
′
]

= σ2
yuyv .

Let Ṽ denote the subset of rows v ∈ Sβl,βhu (i) such that σ2
~xπ1 (~u)~xπ1 (~v) ≤ ζ. Con-

ditioned on E4, the size of set Ṽ must be at least k. Conditioned on E′3, for every
v ∈ Ṽ ⊂ Sβl,βhu (i),

s2
uv(i) ≤ (1 + θ)σ2

~xπ1 (~u)~xπ1 (~v) + 2γ2 + τ ≤ (1 + θ) ζ + 2γ2 + τ.

Therefore, it follows by definition of Sk as the set of k rows with minimum sam-
ple variance, that for all v ∈ Sk, s2

uv(i) ≤ (1 + θ) ζ + τ + 2γ2. Again due
to event E′3, this implies that for all v ∈ Sk, σ2

~xπ1 (~u)~xπ1 (~v) ≤
(1+θ)ζ+2τ

1−θ because

(1− θ)σ2
~xπ1 (~u)~xπ1 (~v) − τ ≤ s

2
uv(i)− 2γ2. Therefore for all v ∈ Sk,

Var
[
A(u, i)−A(v, i)

∣∣ (~xπ1 (~v))v∈[m] = ~y, Sk = S0, E
′
]
≤ (1 + θ)ζ + 2τ

1− θ
.

Finally we can show that

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε | (~xπ1 (~v))v∈[m] = ~y, Sk = S0, E
′
)

≤ 1

(ε− ν)2

(
(1 + θ)ζ + 2τ

1− θ
+
γ2

k

)
.

Since this bound does not depend on the choice of ~y and S0, when we integrate
over all choices of ~y and S0, we obtain the same bound.

PROOF OF LEMMA 8.6. We restate the following conditioning events (defined
in Lemma 8.5) for readability:

E′ := E′1 ∩ E′2 ∩ E′3 ∩ E′4,

E′1 :=

{∣∣∣Sβl,βhu (i)
∣∣∣ ∈ [1

2
(m− 1)p,

3

2
(m− 1)p

]}
,

E′2 :=
{∣∣∣muv − µ~xπ1 (~u)~xπ1 (~v)

∣∣∣ ≤ ν, ∀ v ∈ Sβl,βhu (i)
}
,

E′3 :=
{
s2
uv(i) ∈

[
(1− θ)σ2

~xπ1 (~u)~xπ1 (~v) − τ, (1 + θ)σ2
~xπ1 (~u)~xπ1 (~v) + τ

]
, ∀ v ∈ Sβl,βhu (i)

}
,

E′4 :=

{{
σ2
~xπ1 (~u)~xπ1 (~v)

}(k)

v∈Sβl,βhu (i)
≤ ζ
}
,
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First of all, note that (see the proof of Theorem 7.6 for more detail)

P
(
E′c
)
≤ P

(
E′c1
)

+ P
(
E′c2 |E′1

)
+ P

(
E′c3 |E′1

)
+ P

(
E′c4 |E′1

)
.

Using Lemma 8.1, we have

P
(
E′c1
)

= P
(
|Sβl,βhu (i)| 6∈

[
1

2
(m− 1)p,

3

2
(m− 1)p

])
≤ (m− 1) exp

(
−
(
n′p2 − βl

)2
2n′p2

)
+ (m− 1) exp

(
−
(
βh − n′p2

)2
3n′p2

)

+ 2 exp

(
−(m− 1)p

12

)
.

Similarly, by using Lemma 8.2 with union bound,

P
(
E′c2 |E′1

)
= P

 ⋃
v∈Sβl,βhu (i)

{
|µ~xπ1 (~u)~xπ1 (~v) −muv| > ν

}
≤ 3(m− 1)p exp

(
−ν2

8L2D2θ + 16B2
e

n′

)

+ 3(m− 1)p exp

(
−ν2

32(LD + 2Be)2
∆

)
,

where we recall that ∆ = min

{
n′2βl

(n′+β2
l )

2 ,
n′2βh

(n′+β2
h)

2

}
and θ =

∑
q∈I2

1
nq−1 is

a quantity which depends only on the shape of the given tensor instance, and it
vanishes to 0 as nq →∞, ∀q ∈ I2.

By using Lemma 8.3 with union bound again,

P
(
E′c3 |E′1

)
= P

 ⋃
v∈Sβu (i)

{
s2
uv(i) ∈

[
(1− θ)σ2

~xπ1 (~u)~xπ1 (~v) − τ, (1 + θ)σ2
~xπ1 (~u)~xπ1 (~v) + τ

]}
≤ 3(m− 1)p exp

(
−τ2

32L2D2 (3LD + 4Be)
2 θ + 64B2

e (2LD+5Be)
2

n′

)

+ 3(m− 1)p exp

(
−τ2

128(LD + 2Be)4
∆

)
.

By Lemma 8.4 with µq := nqφq

(√
ζ
L2

)
and φq(r) := ess infx′∈Xq PXq

(
dXq(x, x

′) ≤ r
)
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as previously defined,

P
(
E′c4 |E′1

)
≤
∑
q∈I1

exp

(
−(1− 2−1/t1)2

2
µq

)
+ exp

(
−k

8

)

+ (m− 1) exp

(
−(n′p2 − βl)2

2n′p2

)
+ (m− 1) exp

(
−(βh − n′p2)2

3n′p2

)
.

Putting everything together, we obtain the following bound

P
(
E′c
)
≤ 2(m− 1) exp

(
−
(
n′p2 − βl

)2
2n′p2

)
+ 2(m− 1) exp

(
−
(
βh − n′p2

)2
3n′p2

)(8.21)

+ 2 exp

(
−(m− 1)p

12

)(8.22)

+ 3(m− 1)p exp

(
−ν2

8L2D2θ + 16B2
e

n′

)(8.23)

+ 3(m− 1)p exp

(
−ν2

32(LD + 2Be)2
∆

)(8.24)

+ 3(m− 1)p exp

(
−τ2

32L2D2 (3LD + 4Be)
2 θ + 64B2

e (2LD+5Be)
2

n′

)(8.25)

+ 3(m− 1)p exp

(
−τ2

128(LD + 2Be)4
∆

)(8.26)

+
∑
q∈I1

exp

(
−(1− 2−1/t1)2

2
µq

)
+ exp

(
−k

8

)
.

(8.27)

Note that ζ, ν, τ are parameters which are introduced purely for the purpose of
analysis. Requiring all exponential terms decay to 0 as m,n → ∞ restricts the
range of values ζ, ν, τ can take. Define q∗ := arg minq∈I1 nq. Then we choose0

ν = τ = max

{
(nq∗ − 1)−1/3,

(
n′2

β3
h

)−1/3
, β
−1/3
l

}
. Also, we enforce ζ satisfies
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φq

(√
ζ
L2

)
≥ cqn

− logmp
2 logm

q so that µq ≥ cqn
δ/2
q even for the worst choice of p, and

mpφπ1

(√
ζ
L2

)
≥
(∏

q∈I1 cq

)√
mp as described in the theorem statement.

Additionally, we require βl, βh → ∞ as m,n → ∞ while n′p2 − βl, βh −
n′p2 → ∞ as well. We will assume βh ≤ n′2/3−δ for convenience in analy-
sis. Lastly, we want k → ∞, which is possible while satisfying the constraint

k ≤ 1
8mpφ

π
1

(√
ζ
L2

)
=

∏
q∈I1

cq

8

√
mp, which originated from Lemma 8.5. Let’s

suppose that we take k =

∏
q∈I1

cq

8

√
mp by default. We will show these are suffi-

cient conditions for the convergence of exponential error terms.
Given a sequence of problems of size (m,n), suppose that p = ω(m−1) and

p = ω(n′−1/2). Then mp, n′p2 → ∞ as m,n → ∞, since n′ = Θ(n). We
may assume without loss of generality that m and n′ are large enough such that
mp, n′p2 ≥ 2. As nq →∞,∀q, we can observe that ν, τ → 0. In addition, we have
ν ≤ 1, τ ≤ 1, since we assumed βh ≤ n′2/3−δ.

Now we will clean up the exponential error terms in Eq. (8.21)-(8.27) to obtain
simpler yet more enlightening forms.

Eq. (8.21): Since βl ≤ cln
′p2, we have (n′p2 − βl)2 ≥

[
(1− cl)n′p2

]2. Sim-
ilarly, βh ≥ chn

′p2 implies that (βh − n′p2)2 ≥
[
(ch − 1)n′p2

]2. Therefore, the
terms in Eq. (8.21) are upper bounded by

2(m− 1) exp

(
−(1− cl)2

2
n′p2

)
+ 2(m− 1) exp

(
−(ch − 1)2

3
n′p2

)
.

Eq. (8.22): The term in Eq. (8.22) is upper bounded by 2 exp
(
− 1

24mp
)
, using

the fact that m − 1 ≥ m
2 for m ≥ 2, which is implied by our assumption that

mp ≥ 2.
Eq. (8.23) and (8.25): Due to our choice of ν (and τ ), we have ν ≥ (nq∗−1)−1/3

where q∗ = arg maxq∈I1
(
(nq − 1)−1/3

)
. For any constants A,B > 0, because

(nq−1)−1 ≤ (nq∗−1)−1,∀q ∈ I2, and n′ =
∏
q∈I2(nq−1) ≥ nq∗−1, it follows

that

ν2

A
∑

q∈I2
1

nq−1 +B 1
n′
≥ (nq∗ − 1)−2/3

(At2 +B) (nq∗ − 1)−1
=

(nq∗ − 1)1/3

At2 +B
.

Eq. (8.24) and (8.26): Again from our choice of ν (and τ ), the following in-

equality is true: ν ≥ max

{(
n′2

β3
h

)−1/3
, β
−1/3
l

}
. Meanwhile, ∆ := min {∆l,∆h}

where ∆l := n′2βl
(n′+β2

l )2
and ∆h := n′2βh

(n′+β2
h)2

. Therefore, ν2∆ ≥ min

{(
n′2

β3
h

)−2/3
∆h, β

−2/3
l ∆l

}
.
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From the assumption βh ≥
√
n′,(

n′2

β3
h

)−2/3

∆h =

(
n′2

β3
h

)−2/3
n′2βh(
n′ + β2

h

)2
≥
(
n′2

β3
h

)−2/3
n′2βh(
2β2

h

)2
=
n′2/3

4βh
.

Because we assumed βh ≤ n′2/3−δ, this value diverges no slower than n′δ/4 as
n′ = Θ(n)→∞.

Similarly, from the assumption βl ≤
√
n′,

β
−2/3
l ∆l = β

−2/3
l

n′2βl(
n′ + β2

l

)2
≥ β−2/3

l

n′2βl

(2n′)2

=
β

1/3
l

4
.

Eq. (8.27): µq = nqφq

(√
ζ
L2

)
≥ cqn

1− logmp
2 logm

q ≥ cqn
1− logm

2 logm
q = cqn

1/2
q be-

cause p ≤ 1. We will leave k as a free parameter, but our default choice for k,

which is
∏
q∈I1

cq

8

√
mp, diverges as m→∞.

Consequently, we have

P
(
E′c
)
≤ 4(m− 1) exp

(
−c1n

′p2
)

+ 2 exp

(
− 1

24
mp

)
+ 6(m− 1)p exp

(
−c2(nq∗ − 1)1/3

)
+ 6(m− 1)p exp

(
−c3 min

{
n′2/3

4βh
,
β

1/3
l

4

})

+ t1 exp
(
−c4n

1/2
q∗

)
+ exp

(
−k

8

)
,
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where

q∗ := arg min
q∈I1

nq,

c1 := min

{
(1− cl)2

2
,
(ch − 1)2

3

}
,

c2 := min

{
1

8L2D2t2 + 16B2
e

,
1

32L2D2(3LD + 4Be)2t2 + 64B2
e (2LD + 5Be)2

}
,

c3 := min

{
1

32(LD + 2Be)2
,

1

128(LD + 2Be)4

}
,

c4 := min
q∈Iq

{
(1− 2−1/t1)2

2
cq

}
.

Note that c1, c2, c3, c4 are absolute constants, which may depend only on the ge-
ometry of the latent spaces.

8.5. Proof of Main Results for Tensor Completion.

PROOF OF THEOREM 8.7. The proof follows from simply combining the re-
sults from Lemmas 8.5 and 8.6. By conditioning on event E′, it follows that

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε
)
≤ P

(∣∣∣A(u, i)− Âk(u, i)
∣∣∣ > ε

∣∣∣E′)+ P
(
E′c
)
.

By Lemma 8.5,

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε
∣∣∣E′) ≤ 1

(ε− ν)2

(
(1 + θ)ζ + 2τ

1− θ
+
γ2

k

)
.

By Lemma 8.6, P (E′c) ≤ F ′3 for

F ′3 = 4(m− 1) exp
(
−c1n

′p2
)

+ 2 exp

(
− 1

24
mp

)
+ 6(m− 1)p exp

(
−c2(nq∗ − 1)1/3

)
+ 6(m− 1)p exp

(
−c3 min

{
n′2/3

4βh
,
β

1/3
l

4

})

+ t1 exp
(
−c4n

1/2
q∗

)
+ exp

(
−k

8

)
,

where q∗ := arg minq∈I1 nq, and c1, c2, c3, c4 are some absolute constants derived
in Lemma 8.6, which may depend only on the geometry of the latent spaces.
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Therefore,

P
(∣∣∣A(u, i)− Âk(u, i)

∣∣∣ > ε
)
≤ 1

(ε− ν)2

(
(1 + θ)ζ + 2τ

1− θ
+
γ2

k

)
+ F ′3.

PROOF OF THEOREM 5.1 IN THE MAIN ARTICLE. The proof is the same with
that of Theorem 4.1 (main article), and follows by integrating the tail of the proba-
bility bound presented in Theorem 8.7.

8.6. Results Given an Optimal Flattening and Uniform Probability Measure.
In this section, we simplify the results from Theorem 5.1 (main article) when the
latent probability measure is a uniform measure over a d dimensional Euclidean
cube. We thus compute the specific form of the underestimator function φπ1 (·),
which leads to concrete bounds. We then choose specific expressions for ζ, and k
to ensure that the mean squared error of our user-user k-nearest neighbor algorithm
converges to zero. The parameter ζ in Theorem 5.1 (main article) is introduced
purely for the purpose of analysis, and is not used within the implementation of
the the algorithm. Recall that it is used to define event E′4, which holds when the k
rows in Sβl,βhu (i) with minimum variance all satisfy σ~xπ1 (~u)~xπ1 (~v) ≤ ζ. Intuitively, ζ
is the thresholding parameter for the membership of similar neighbors.

PROOF OF COROLLARY 5.3 IN THE MAIN ARTICLE. Recall that we assumed
an equilateral tensor with nq = l for all q ∈ [t], and we assumed that the algorithm
is applied to a user-optimally flattened tensor, such that |I1| = t−b2t

3 c, and |I2| =
b2t

3 c. Therefore,

l
t
3 ≤ m = lt−b

2t
3
c ≤ ld

t
3
e,

lb
2t
3
c ≤ n = lb

2t
3
c ≤ l

2t
3 ,

(l − 1)b
2t
3
c ≤ n = (l − 1)b

2t
3
c ≤ (l − 1)

2t
3 .

When the latent space for each coordinate q ∈ I1 is a cube in Rd equipped with
the uniform probability measure, then for q ∈ I1,

φq

(√
ζ

L2

)
= C(2L)−dζd/2,

where C is a normalization constant to ensure φq(Xq) = 1. Therefore, the corre-



94 LEE-LI-SHAH-SONG

sponding underestimator function of the corresponding product space is

φπ1

(√
ζ

L2

)
=
∏
q∈I1

φq

(√
ζ

L2

)

=
(
C(2L)−dζd/2

)t1
.

As specified in the conditions of Theorem 5.1 (main article), we need to choose ζ
so that for all q,

(8.28) φq

(√
ζ

L2

)
= C(2L)−dζd/2 ≥ cqn

− logmp
2 logm

q for some cq ≥ 0.

Therefore we need

ζ ≥
(cq
C

)2/d
(2L)2n

− logmp
d logm

q(8.29)

for all q. Since m = l|I1| and nq = l ∀ q, it follows that

n
− logmp

logm
q = l

− logmp
|I1| log l = (mp)

− 1
|I1| .

Therefore, we will let cq = 1, and choose ζ = (2L)2

C
2
d

(mp)
− 1
d|I1| , which satisfies

the above conditions.

Since we have φq

(√
ζ
L2

)
≥ (mp)

− 1
2|I1| for each q ∈ I1, taking k = 1

8

√
mp

satisfies the required condition that

k =
mp

8

(
(mp)

− 1
2|I1|

)|I1|
≤ mp

8
φπq

(√
ζ

L2

)
.

The assumption that p ≥ max
{
m−1+δ, n′−

1
2

+δ
}

for some δ > 0 guarantees

that mp and n′p2 diverge to∞ as m,n→∞, which occurs when l →∞. For the
choice of βl = 1

2 min
{
n′p2,

√
n′
}

and βh = 2 max
{
n′p2,

√
n′
}

, we can verify

that F ′2 → 0 and l→∞. By definition

F ′2 = max

{
(nq∗ − 1)−1/3 ,

(
n′2

β3
h

)−1/3

, β
−1/3
l

}
.
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Each of these terms shrink to 0 as l → ∞, using the fact that p ≥ n′−
1
2

+δ, and
p ≤ n′−

1
6
−δ for some δ > 0,

(nq∗ − 1)−1/3 = (l − 1)−1/3,(
n′2

β3
h

)−1/3

=
2 max

{
n′p2,

√
n′
}

n′2/3
≤ 2 max

{
n′−2δ, n′−1/6

}
,

β
−1/3
l =

(
1

2
min

{
n′p2,

√
n′
})−1/3

≤
(

1

2
min

{
n′2δ,

√
n′
})−1/3

.

Next, we will show F ′1 → 0 as l→∞. First of all, θ =
∑

q∈I1
1

nq−1 =
t−b 2t

3
c

l−1 ≤
t
l−1 → 0 as l → ∞. To be more specific, we can assume that θ ≤ 1

2 whenever
l ≥ 2t + 1. Therefore, by plugging in the conditions on θ and the expressions for
ζ, k, n′, and F ′2, it follows that

F ′1 =
(1 + θ)ζ + 2F ′2

1− θ
+
γ2

k

≤ 3ζ + 4F ′2 +
γ2

k

≤
[
3

(2L)2

C
2
d

+ 4 + 8γ2

]
max

{
(mp)

− 1
d|I1| , (l − 1)−

1
3 ,

βh

(l − 1)
2
3
|I2|

, β
− 1

3
l , (mp)−

1
2

}
→ 0 as l→∞.

To show that F ′3 decays exponentially fast as l grows, we need to show that the
exponents in each of the terms in F ′3 (see the expression in Theorem 5.1 in the main
article) grow faster than the multiplicative coefficients in front. The multiplicative
factors 4(m− 1)p, 6(m− 1)p, t1 contribute at most only a logarithmic increase in
l when included into the exponents. By showing that the exponents grow polyno-
mially with l, it follows that F ′3 decays exponentially with l. We can verify this by
simply plugging in the choices for n′, m, nq, k, βl and βh, and additionally using

the conditions that max
{
m−1+δ, n′−

1
2

+δ
}
≤ p ≤ n′−

1
6
−δ for some δ > 0. We list

the simplified expressions for each of the terms in the exponents below, showing
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that they indeed increase polynomially in l.

n′p2 ≥ (l − 1)
2t
3
δ,

mp ≥ l
t
3
δ,

(nq∗ − 1)1/3 = (l − 1)1/3,

n
1/2
q∗ = l1/2,

k =
1

8

√
m ≥ 1

8
l
t
6

n′
2
3

βh
=

1

2
min

{
n′

1
6 ,
n′

2
3

n′p2

}
≥ 1

2
min

{
n′

1
6 , n′2δ

}
β

1
3
l

4
=

1

4 3
√

2
min

{(
n′p2

) 1
3 , n′

1
6

}
≥ 1

4 3
√

2
min

{
n′

2
3
δ, n′

1
6

}
.

From the definition of expression F ′1 in Theorem 5.1 (main article), it follows

that F ′1 ≥
2F ′2
1−θ ≥ 2F ′2, because θ =

∑
q∈I2

1
nq−1 =

b 2t
3
c

l−1 ∈ (0, 1]. Therefore, if
we can certify that F ′3 decays exponentially fast as l (and thus n and m) grows,
and that F ′1 ≤ 1

2 when l is sufficiently large compared to t, then by the same lines
of argument as in the proof of Corollary 4.3 (main article), we can argue that F ′1
dominates the mean-squared-error thereby achieving a similar form of diminishing
error bound.

We then simplify the remaining terms assuming F ′1 ≤ 1
2 . This can be assumed

once we show that F ′1 → 0 as l → ∞, which can be deduced from observing that
F ′2 → 0, ζ → 0, θ → 0, and k → ∞ as l → ∞ as l → ∞. If F ′1 ≤ 1

2 is assumed,
we can apply the same idea as in the proof of Corollary 4.3 (main article), where we
upper bound F ′2 ≤ 1

2F
′
1, and then simplify the terms in the MSE bound presented

in Theorem 5.1 (main article) using log
(

2B0
F ′1

)
≥ 1 as long as F ′1 ≤ 1

2 andB0 ≥ 1:

MSE(Â) ≤ 2F ′1 ln

(
2B0

F ′1

)
+
(
F ′1 + F ′2

)2
+ 2F ′2 + 4B2

0F
′
3

≤ 2F ′1 ln

(
2B0

F ′1

)
+

9

4
F ′1 + F ′1 + 4B2

0F
′
3

≤ 21

4
F ′1 ln

(
2B0

F ′1

)
+ 4B2

0F
′
3.(8.30)

Plugging the bounds for F ′1 and F ′3 into Eq. (8.30) gives the simplified bound
presented in Corollary 5.3 (main article).
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APPENDIX A: AUXILIARY CONCENTRATION INEQUALITIES

Chernoff bound. There are various forms of Chernoff bounds, each of which
are tuned to different assumptions. The following theorem gives the bound for a
sum of independent Bernoulli trials.

THEOREM A.1. Let X =
∑n

i=1Xi, where Xi = 1 with probability pi, and
Xi = 0 with probability 1 − pi, and Xi’s are independent. Let µ = E [X] =∑n

i=1 pi. Then

1. Upper tail: P (X ≥ (1 + δ)µ) ≤ exp
(
− δ2

2+δµ
)

for all δ > 0.

2. Lower tail: P (X ≤ (1− δ)µ) ≤ exp
(
− δ2

2 µ
)

for all 0 < δ < 1.

For δ ∈ (0, 1), we can combine the upper and lower tails to obtain the following
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simpler bound:

P (|X − µ| ≥ δµ) ≤ 2 exp

(
−µδ

2

3

)
for all 0 < δ < 1.

Bernstein’s inequality. We will present a form of Bernstein’s inequality for
bounded random variables.

THEOREM A.2. Suppose that X1, . . . , Xn are independent random variables
with zero mean, and that there exists a constant M such that |Xi| ≤M with prob-
ability 1 for each i. Let S̄ := 1

n

∑n
i=1Xi. Let variance of each random variable

Xi be bounded above by V , i.e. Var(Xi) ≤ V for 1 ≤ i ≤ n. Then for any t ≥ 0,

P
(∣∣S̄∣∣ ≥ t) ≤ 2 exp

(
− 3nt2

6V + 2Mt

)
.

Maurer-Pontil Inequality. This inequality provides bounds for the concentra-
tion of sample variance.

LEMMA A.3 (Maurer-Pontil Inequality Maurer and Pontil (2009) Theorem 7).
For n ≥ 2, let X1, . . . Xn be independent random variables such that Xi ∈ [a, b].
Let V (X) denote their sample variance, i.e., V (X) = 1

2n(n−1)

∑
i,j(Xi − Xj)

2.
Let σ2 = E [V (X)] denote the true variance. For any s > 0,

P
(
V (X)− σ2 < −s

)
≤ exp

(
− (n− 1)s2

2(b− a)2σ2

)
,

and

P
(
V (X)− σ2 > s

)
≤ exp

(
− (n− 1)s2

(b− a)2 (2σ2 + s)

)
.

McDiarmid’s inequality. While the previous inequalities showed concentration
for specific quantities like the mean and variance, McDiarmid’s inequality provides
concentration results for general functions that satisfy the bounded difference con-
dition.

THEOREM A.4. Let X1, . . . , Xn be independent random variables such that
for each i ∈ [n], Xi ∈ Xi. Let ξ :

∏n
i=1Xi → R be a function of (X1, . . . , Xn)

that satisfies ∀i,∀x1, . . . , xn, ∀x′i ∈ Xi,∣∣ξ (x1, . . . , xi, . . . , xn)− ξ
(
x1, . . . , x

′
i, . . . , xn

)∣∣ ≤ ci.
Then for all ε > 0,

P (ξ − E [ξ] ≥ ε) ≤ exp

(
−2ε2∑n
i=1 c

2
i

)
.
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By considering the negation of the function −ξ in lieu of ξ, one can obtain the
same tail bound for the opposite direction.

Kontorovich-Ramanan inequality. While the previous concentration inequal-
ities require the independence assumption, the Kontorovich-Ramanan inequality
uses the martingale method to provide concentration results for a class of depen-
dent random sequences on a countable state space. We setup some definitions and
notations used in the theorem statement. The theorem and its proof is presented in
section 1.2 of Kontorovich and Ramanan (2008).

Consider a sequence of random variables (X1, . . . , Xn) each of which takes
values in a countable space X . Let the σ-algebra be the power set of X n, which
we denote by F . Let P denote the probability measure on (X n,F). Let X n be
equipped with the Hamming metric d : X n × X n → R+, defined by d(x, y) :=∑n

i=1 I {xi 6= yi}.
The total variation distance ‖P −Q‖TV between probability measures P and

Q defined on a countable space X with σ-algebra F is defined as

‖P −Q‖TV := sup
A∈F
|P (A)−Q(A)| = 1

2

∑
x∈X
|P (x)−Q(x)| .

Given 1 ≤ i < j ≤ n, let xji denote the subsequence (xi, xi+1, . . . , xj). When
i = 1, xj1 will be written as xj for simplicity. For any 1 ≤ i < j ≤ n, xi−1 ∈
X i−1 and w, ŵ ∈ X , define λij to be the total variation distance between the
probability measures on Xn

j conditioned on the sequences of the first i letters and
differing only at the i-th position. We denote the respective probability measures
by PXn

j |Xi=xi−1w and PXn
j |Xi=xi−1ŵ. Then

λij
(
xi−1, w, ŵ

)
:=
∥∥∥PXn

j |Xi=xi−1w − PXn
j |Xi=xi−1ŵ

∥∥∥
TV

.

Define λ̄ij to be the supremum over possible choices of w, ŵ, and sequences xi−1

which have positive probability,

λ̄ij := sup
xi−1∈X i−1,w,ŵ∈X

P(Xi=xi−1w)>0,P(Xi=xi−1ŵ)>0

λij
(
xi−1, w, ŵ

)
.

Finally, we define the mixing coefficient ∆n to be

∆n := max
i∈[n]

1 +

n∑
j=i+1

λ̄ij

 .

We use a slightly different notation from the original paper; they used ∆n to denote
a matrix, and consider its operator norm, which we denote directly by ∆n.
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THEOREM A.5. Suppose X is a countable space, F is the power set of X n, P
is a probability measure on (X n,F) and ψ : X n → R is a L-Lipschitz function
with respect to the Hamming metric on X n and has mixing coefficient ∆n. Then
for any ε > 0,

P (|ψ − Eψ| ≥ ε) ≤ 2 exp

(
−ε2

2nL2∆2
n

)
.

APPENDIX B: GEOMETRY OF LATENT PROBABILITY MEASURE

Existence of φ(·). We show that a compact metric space admits the underesti-
mator function which we denote by φ throughout this paper. For that purpose, we
define the notion of regular points. We let B (x, r) denote the open ball of radius r
centered at x.

DEFINITION B.1. Let (X, d) be a compact metric space and µ be a Borel
probability measure on it. A point x ∈ X is called regular if µ (B(x, r)) > 0, for
all r > 0.

LEMMA B.1. LetR := {x ∈ X : x is regular}. ThenR is closed, i.e., R̄ = R.

PROOF. Suppose that x ∈ R̄. For any r > 0, we can find a point x0 ∈ R such
that d(x, x0) < r

2 . We have µ
(
B
(
x0,

r
2

))
> 0 because x0 ∈ R. It follows from

B
(
x0,

r
2

)
⊂ B(x, r) that µ (B(x, r)) ≥ µ

(
B
(
x0,

r
2

))
> 0. Therefore, x ∈ R by

definition. From this, we have R̄ ⊂ R, hence, R̄ = R.

LEMMA B.2. If S ⊂ X satisfies µ(S) > 0, then there exists at least one
regular point in the clousre of S, i.e., R ∩ S̄ 6= ∅.

PROOF. Assume there exists a set S for which µ(S) > 0 and R ∩ S̄ = ∅. We
know that S̄ is compact because it is a closed subset of X . For n = 1, 2, . . ., we
consider a sequence of open coverings, Gn :=

{
B(x, 1

n) : x ∈ S̄
}

, each of which is
the family of open balls with radius 1

n centered at x ∈ S̄. Due to the compactness of

S̄, we can find finite a subcover G′n =
{
B

(n)
1 , . . . , B

(n)
Nn

}
⊂ Gn for each n. Here,

Nn := |G′n| is dependent on the choice of a subcover, and hence, not uniquely
defined, however, we have Nn <∞.

For all n = 1, 2, . . ., S ⊂ S̄ ⊂ ∪Nni=1B
(n)
i since G′n is still a cover of S̄. Therefore,

we have µ(S) ≤ µ
(
∪Nni=1B

(n)
i

)
≤ Nn maxi µ

(
B

(n)
i

)
. Let zn denote the center

of B(n)
i∗ where i∗ := arg maxi µ

(
B

(n)
i

)
. From the construction, zn ∈ S̄. Since X

is a metric space, S̄ is not only compact, but also sequentially compact. Therefore,
there is a convergent subsequence of {zn}, which converges to a point z∗ ∈ S̄.
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This z∗ is a regular point. For any r > 0, we can find n(r) > 2
r such that

d(zn(r), z
∗) < r

2 , since {zn} has a convergent subseqeunce. Because

B

(
zn(r),

1

n(r)

)
⊂ B

(
zn(r),

r

2

)
⊂ B(z∗, r),

we can conclude that µ (B(z∗, r)) ≥ µ
(
B
(
zn(r),

1
n(r)

))
≥ µ(S)

Nn(r)
> 0. There-

fore, z∗ ∈ R, and R ∩ S̄ 6= ∅.

The following lemma ascertains that the set of regular points has the full mea-
sure, i.e., for almost every point in compact X , we can find a neighborhood of
strictly positive measure.

LEMMA B.3. Let (X, d) be a compact metric space and µ be a Borel prob-
ability measure on it. Define R := {x ∈ X : x is regular}. Then R has the full
measure in X , i.e., µ(R) = 1.

PROOF. For n = 1, 2, . . . ,, letFn :=
{
B(x, 1

n) : x ∈ X
}

be the family of open
balls with radius 1/n centered at x ∈ X , each of which forms an open cover of X .
Due to the compactness ofX , we can find a finite subcoverF ′n ⊂ Fn. Furthermore,
we will filter out all zero-measure balls in F ′n and leave only those having positive
measure by defining

F ′′n :=
{
B ∈ F ′n : µ(B) > 0

}
.

Note that the choice of F ′n (and hence, that of F ′′n also) is not unique. We sup-
pose F ′′n is fixed from now on, but the following arguments hold for any choice of
subcovering F ′′n .

Next, we claim that ∪B∈F ′′nB ⊂ ∪x∈RB
(
x, 2

n

)
= R + B

(
0, 2

n

)
. From the

construction above, µ(B) > 0 for all B ∈ F ′′n . By Lemma B.2, there exists a
regular point xB ∈ R ∩ B̄. Since F ′′n is a subfamily of Fn, B = B

(
x0,

1
n

)
for

some x0 ∈ X . Therefore, for every z ∈ B, d(xB, z) ≤ d(xB, x0) + d(x0, z) <
2
n by triangle inequality. It follows that B ⊂ B

(
xB,

2
n

)
. Finally, ∪B∈F ′′nB ⊂

∪B∈F ′′nB
(
xB,

2
n

)
⊂ ∪x∈RB

(
x, 2

n

)
.

For each n = 1, 2, . . ., µ
(
∪B∈F ′′nB

)
= 1. Because ∪B∈F ′nB =

(
∪B∈F ′′nB

)
∪(

∪B∈F ′n\F ′′nB
)
, we have µ

(
∪B∈F ′nB

)
≤ µ

(
∪B∈F ′′nB

)
+ µ

(
∪B∈F ′n\F ′′nB

)
. Since

F ′n \ F ′′n consists of a finite number of balls each of which has measure zero,
µ
(
∪B∈F ′n\F ′′nB

)
= 0. Therefore, µ

(
∪B∈F ′nB

)
≤ µ

(
∪B∈F ′′nB

)
.

Combining these with the fact that X ⊂ ∪B∈F ′nB, we can conclude that

µ

(
R+B

(
0,

2

n

))
≥ µ

(
∪B∈F ′′nB

)
≥ µ

(
∪B∈F ′nB

)
≥ µ(X) = 1.
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Because R̄ = ∩∞n=1

(
R+B

(
0, 2

n

))
and

{
R+B

(
0, 2

n1

)}∞
n=1

consists of a de-
creasing nested set,

µ
(
R̄
)

= µ

(
lim
N→∞

∩Nn=1

(
R+B

(
0,

2

n

)))
= lim

N→∞
µ ∩Nn=1

(
R+B

(
0,

2

n

))
= lim

N→∞
µ

(
R+B

(
0,

2

N

))
= 1.

LEMMA B.4. Let (X, d) be a compact metric space, and µ be a Borel proba-
bility measure on it. Then there exists a function φ on (X, d, µ) which satisfies

1. φ : R++ → (0, 1],
2. φ is nondecreasing, and
3. µ (B(x, r)) ≥ φ(r), for all regular x ∈ X and for all r > 0.

PROOF. We define φ(r) := infx∈R µ (B(x, r)) and will show this φ satisfies
the desired properties.

For any given r > 0, consider the open cover Gr :=
{
B
(
x, r2

)
: x ∈ R

}
of R. We know that R is compact because it is a closed subset of X , which
is compact. Therefore, we can find a finite subcover G′r =

{
B
(
zi,

r
2

)}N(r)

i=1
⊂

Gr of R. For every x ∈ R, there should exist z such that B
(
z, r2
)
∈ G′r and

d(x, z) < r
2 because G′r is a cover of R. Therefore, µ (B (x, r)) ≥ µ

(
B
(
z, r2
))
≥

mini=1,...,N(r) µ
(
B
(
zi,

r
2

))
> 0.

Suppose that r1 > r2 > 0. By definition φ(r1) = infx µ (B (x, r1)) and hence,
for any ε > 0, there exists x0(ε) ∈ R such that µ (B (x0(ε), r1)) < φ(r1) + ε.
For every x ∈ R, we have µ (B (x, r2)) ≤ µ (B (x, r1)) because B (x, r2) ⊂
B (x, r1). It follows that φ(r2) ≤ µ (B (x0(ε), r2)) ≤ µ (B (x0(ε), r1)) < φ(r1)+
ε. By taking the limit ε→ 0, we can conclude that φ(r2) ≤ φ(r1). Therefore, φ is
nondecreasing.

The last property is obvious from the definition of φ: for all x ∈ R, µ (B(x, r)) ≥
infx∈R µ (B(x, r)) = φ(r).

Let us consider two examples.

EXAMPLE 1. Suppose PX1 is a uniform measure over a unit cube in d dimen-
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sional Euclidean space. Then

inf
x0∈X1

PX1 (dX1(x, x0) ≤ r) = min

{
1,
(r

2

)d}
.

EXAMPLE 2. Suppose PX1 is supported only on a finite number of points, i.e.,
|suppPX1 | = N . Then for any r ≥ 0,

inf
x0∈X1

PX1 (dX1(x, x0) ≤ r) ≥ min
i=1,...,N

φ1 (xi) .
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