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Abstract—With process variation becoming a growing concern
in deep submicron technologies, the ability to efficiently obtain
an accurate estimate of failure probability of SRAM components
is becoming a central issue. In this paper we present a general
methodology for a fast and accurate evaluation of the failure
probability of memory designs. The proposed statistical method,
which we call importance sampling through norm minimization
principle, reduces the variance of the estimator to produce quick
estimates. It builds upon the importance sampling, while using
a novel norm minimization principle inspired by the classical
theory of Large Deviations. Our method can be applied for a
wide class of problems, and our illustrative examples are the data
retention voltage and the read/write failure tradeoff for 6T SRAM
in 32 nm technology. The method yields computational savings on
the order of 10000x over the standard Monte Carlo approach in
the context of failure probability estimation for SRAM considered
in this paper.

I. INTRODUCTION

The semiconductor chip market is worth well over $200
billion [1], [8]. The significant majority of these chips have a
high demand for embedded memory to enable evermore com-
putationally intensive applications. Take as a representative
example a microprocessor chip for personal computers [19]:
roughly half of its area is dedicated to on-chip memory, com-
prised of 48 million static random access memory (SRAM)
cells. For each metric of cost, performance, and minimum
standby power of such multi-megabit SRAMs, the worst case
cell sets the performance. In this paper we adress this multi-
billion dollar question associated with guaranteeing acceptable
failure rates of SRAM cells.
In the deep sub-micron technology, the random variations

introduced by semiconductor processes poses a new set of
challenges for an efficient cell sizing and design [2]. Therefore,
a priori it is hard to meet the requirement of one-in-million cell
failure rate while being economically viable – poor prediction
can lead to severe mis-estimation of yield. In the context
of SRAM applications, typical interest is in maximizing the
density of the cells, and thus minimizing their size, while
maintaining an acceptable level of the failure probability [7].
However, as previously observed [10], the variations due to
dopant fluctuations increase with the decrease in the gate area.
This situation has created the need for very accurate estimation
of failure probability where neither the worst case analysis
suffices, nor are the analytic models accurate enough [9], [10],
[15].

A de facto way of evaluating the performance under the sta-
tistical variability, or under inadequate analytical description,
is to use extensive Monte Carlo simulations. While Monte
Carlo approach is general, simple to implement, and can
produce accurate estimates, its drawback is in the number
of simulation runs one needs to execute to achieve accurate
estimate, since the number of simulations increases with the
decrease in the probability of the event of interest. Due to
high replication of individual cells in the memory block,
when evaluating the feasibility of a memory design, the major
concern is how to achieve a very low probability of failure on
the per cell basis. There is thus a pressing need for an efficient
statistical method to evaluate very low probabilities.

Previous work. Previous work on using statistical methods for
SRAM performance evaluation includes [12], [6], and [15].
In particular, our work is motivated by the results presented
in [12], where an importance sampling-based approach is
developed, and the work in [6] where a related approach
is used as a part of the evaluation of contending memory
architectures. We improve on this method in terms of mathe-
matical formalization of the approach, resulting accuracy and
computational savings.

Related work. A related line of work was presented in [15],
and recently extended in [16]. The approach in [15] uses a
different statistical tool, known as the Extreme Value Theory
(EVT), to produce the estimates of the probability of very rare
failures. The examples in [15] consider the write time problem
where it is useful to obtain a continuum of values. We view IS
and EVT as complementary approaches, in the sense that one
may be better suited for a specific problem, –e.g. an IS-based
method could be used when pass/failure differentiation is clear,
such as in the case of the static noise margin (SNM), and an
EVT-based method could be used when the tradeoff between
a physically meaningful output value (e.g. delay) and the
probability of failure is of interest over a continuum of values
– whereas these methods can jointly provide a comprehensive
evaluation of circuit design and performance using statistical
ideas.

Our contributions and results. In this work, we focus on
developing a complete and general importance sampling based
method, which may even be viewed as “black-box” that does
not need special tweaking or ad-hoc argument adjustment for
a specific example for it to work. Our method is an impor-



tance sampling approach based on a novel norm minimization
principle. This principle is derived through structural insights
from the classical theory of large deviations. We provide a
sufficient theoretical background and the intuition behind the
method, from an added insight into this approach.
This method can be used for a quick and accurate evaluation

of memory designs that successfully addresses the need for
multiple sizings evaluated in an iterative fashion. It provides
computational speed-ups on the order of up to 10000x while
maintaining the same level of accuracy as the traditional Monte
Carlo approach. We illustrate the method via representative
examples: the data retention problem, and the read and write
stability trade-offs.
Specifically, in the experimental section we present the

analysis of a cell failing at a rate of 10−5 to 10−6: the
corresponding Monte Carlo run length of 40 million took two
months to run, while our method produced the same estimate
of the probability of failure in under two hours. By providing
a quicker way to assess the failure probability, not only can
a single cell sizing be qualified sooner, but successively more
refined choices of device sizes can be tested in the allocated
time frame. The modification of device sizings allows the
SRAM cell designer to obtain lower failure rate at the cost of
larger area. At the same time, the SRAM cell designer must
iterate several times to ensure that area is not inefficiently
wasted for too low of a failure probability.
Another important application of statistical methods in high

performance circuit designs is in evaluation of circuit delays.
Typical integrated circuits contain 102 to 103 timing paths that
could potentially limit performance. An early work [11] in sta-
tistical timing analysis showed the significance of considering
delay distributions in analyzing and optimizing performance
of digital circuits. Subsequent work in the statistical analysis
of timing includes [3], [14], [17]. We are optimistic that the
methodology developed here can be also suitably applied to
the statistical timing analysis.

Organization. In Section II we provide the necessary back-
ground on Monte Carlo and importance sampling-based ap-
proaches. Section III contains the detailed description of the
proposed algorithm. The generality and the applicability of
the algorithm is demonstrated through examples provided in
Section IV which simultaneously highlight both the accuracy
of the resulting predictions as well as the significant com-
putational speed-ups obtained by our approach. Section V
summarizes the main contributions of this paper and proposes
future extensions.

II. BACKGROUND: MONTE CARLO AND IMPORTANCE
SAMPLING

Monte Carlo. Monte Carlo (MC) is a popular statistical
method to estimate probability of certain event A under an
unknown distribution. Usually, such an event is characterized
by a random variable X of interest (whose distribution is
unknown) taking value in a certain range. For example, in
Section IV we will be interested in finding the probability of
failure of an SRAM element, an event characterized by the

Static Noise Margin (SNM) being less than 0. Formally, the
goal is to find p where

p = Pr(X ∈ A).

The MC method generates N independent samples of X , say
X1, . . . , XN and forms an estimate of p, denoted by p̂MC as the
fraction of samples showing event A. For the SRAM example,
it will be the fraction of samples for which the failure occurred,
i.e. SNM < 0. Formally,

p̂MC =
1

N

N∑
i=1

1(Xi ∈ A),

where the truth-indicator 1(ST) takes value 1 if ST is true, and
0 if ST is false. The MC generates unbiased and asymptotically
correct estimate of p (e.g. see [18]). That is,

E[p̂MC] = p, for any N , and p̂MC → p, as N → ∞ .

The quantity of interest is the number of samples required to
obtain an estimate of certain accuracy with desired confidence.
Specifically, for MC it is known that to obtain an estimate with
(1−ε)100% accuracy with (1−δ)100% confidence the number
of samples required, N(ε, δ) scales as

N(ε, δ) ≈
log(1/δ)

pε2
.

Thus, for 90% accuracy (ε = 0.1) and 90% confidence
(δ = 0.1) we need roughly 100/p samples. Therefore, the
MC estimator requires too many samples when the event is
rare (i.e. p very small) – which is indeed the case for the
probability of failure of an SRAM element.

Importance Sampling. The MC takes too many samples to
estimate small p because it requires 1/p samples on average
just to observe the event A (or failure) even once ! Consider
the following scenario: we have a random variable X̂ with
distribution such that p̂ = Pr(X̂ ∈ A) is not rare (say, p̂ is
close to 0.5). Though we do not know distribution of X and
the new variable X̂ , we do know relation between them in
the following sense: let f be the density of X and f̂ be the
density of X̂ , where we do know w, and where

w(x) =
f(x)

f̂(x)
, for all x.

In such a scenario, we can indeed speed-up the MC method
by first finding p̂ quickly using samples of X̂ and then using
the knowledge of function w appropriately. This is the key
idea behind Importance Sampling (IS).
Formally, under importance sampling we obtain N indepen-

dent samples of X̂ , say X̂1, . . . , X̂N . Then, the estimator of
p, denoted by p̂IS is

p̂IS =
1

N

N∑
i=1

w(X̂i)1(X̂i ∈ A).

It can be easily verified that p̂IS is unbiased and asymptotically
correct estimator of p, as in

E[p̂IS] = p, for any N , and p̂IS → p, as N → ∞ .



However, the IS estimator is useful only if the number of
samples required for the given accuracy and confidence is
less than that required by the MC estimator. Of course, MC
is a special case of IS (i.e. choose X̂ = X). However,
the challenge lies in systematic design of X̂ so that the
function w(·) is well-known, and the computational speedup
is significant. Addressing this challenge requires problem
dependent creative solution. In this paper, we shall put-forth
a novel method, based on a new norm minimization principle,
to address this challenge for a class of problems. We establish
the effectiveness of our solution in the context of evaluating
the probability of failure of SRAM elements in Section IV.
Before presenting the algorithm in Section III, we establish
some useful definitions.

Figure of merit. An important question concerned with the
simulation setup is the following: given the requirement of (1−
ε)100% accuracy with (1− δ)100% confidence, when should
we stop the simulation? For this, we use the notion of figure
of merit. Specifically, given an estimator p̂, let its variance at
the end of an N -sample simulation run be V AR(p̂). For MC,
it is

V AR(p̂MC) =
1

N

(
p̂MC − p̂2

MC

)
. (1)

For IS, it is given by

V AR(p̂IS) =
1

N2

(
N∑

i=1

w(X̂i)
21(X̂i ∈ A) − Np̂2

IS

)
. (2)

Given the variance VAR(p̂), figure of merit ρ(p̂) is defined as

ρ(p̂) =

√
V AR(p̂)

p̂
. (3)

This figure of merit can be used as follows: suppose we stop
when the figure of merit, ρ(p̂) ≤ ε

√
log(1/δ). Then, we can

declare that the estimate of p is (1 − ε)100% accurate with
confidence at least (1− δ)100%. For example, if we stop our
algorithm when ρ(p̂) = 0.1, then we have both the accuracy
and confidence of 90% each.

A useful example of X̂ . Here, we present an example of X̂
when we can evaluate function w even though we do not have
a handle on distribution of X or X̂ . This example will be
used in the algorithm described in Section III, as well as its
applications in Section IV. Suppose X is some (possibly, non-
linear and complicated) function of a collection of independent
Gaussian variables. Specifically, let X = F (Y1, . . . , YM )
where each Yi is an independent Gaussian random variable
with mean μi and variance σ2

i , i.e. Yi ∼ N (μi, σ
2
i ), and X

takes real values. In Section IV, X will be SNM, M = 6 and
Y1, . . . , Y6 will be certain input threshold voltages. Due to the
lack of knowledge of F , we do not have information about
distribution of X . To obtain X̂ , we will shift the input mean of
Y1, . . . , YM . Specifically, we consider Ŷ1, . . . , ŶM where Ŷi is
a Gaussian random variable with mean μi + si and the same
variance σ2

i . Now, X̂ = F (Ŷ1, . . . , ŶM ). Again, we do not
know the distribution of X̂ . Fortunately, we know the function

w since we are going to sample Y s or Ŷ s. Specifically, w is
defined (with a little abuse of notation) as

w(ŷ1, . . . , ŷM ) =
f(ŷ1, . . . , ŷM )

f̂(ŷ1, . . . , ŷM )

=
exp

(
−

∑M
i=1

(ŷi−μi)
2

2σ2

i

)
exp

(
−

∑M
i=1

(ŷi−μi−si)2

2σ2

i

)

= exp

(
−

M∑
i=1

si(2(ŷi − μi) − si)

2σ2
i

)
.(4)

In this case, the IS estimator for p = Pr(X ∈ A) is as follows:
obtain N independent samples of the M -vector, Ŷ1, . . . , ŶN

where Ŷk = (Ŷ k
1 , . . . , Ŷ k

M ) with Ŷ k
i ∼ N (μi + si, σ

2
i ) for

1 ≤ k ≤ N . Then, the estimator of p is

p̂IS(s) =
1

N

N∑
k=1

w(Ŷk)1(F (Ŷk) ∈ A), (5)

with value of w(Ŷk) as in (4). Here we note the dependence of
an estimator on the shift-vector s = (s1, . . . , sM ) by denoting
it as p̂IS(s).

III. IMPORTANCE SAMPLING THROUGH NORM
MINIMIZATION

Here, we present our novel algorithm for importance sam-
pling based on a “norm minimization” principle. We consider
the setup as described in the example above. We wish to
find p = Pr(X ∈ A) for some rare event A with X =
F (Y1, . . . , YM ) of unknown distribution (or function F ), with
Yi ∼ N (μi, σ

2
i ). We will use importance sampling estimator

p̂IS(s) with certain shift-vector s. The key question is: what
should be the value of s, say s∗, to achieve good speed-up?
In what follows, we present an algorithm to find such

s∗. The algorithm is based on the insight from the classical
theory of Large Deviations [4]: When a rare event happens, it
happens in the most likely manner; therefore the probability
of a rare event can be estimated by that of this most likely
aspect of it. In the case of our setup, this insight translates into
choosing s that minimizes a certain norm (see discussion later
in this Section). We present the algorithm below, followed by
cost of algorithm and a brief discussion about its theoretical
justification.

IS through Norm Minimization Algorithm. The algorithm
has two main steps: (1) find a good shift-vector s∗, and (2)
run IS based on s∗. We describe them separately as follows.

Step 1: Find s∗. This step includes two sub-steps: (a) filtering
for reasonable shifts to obtain a collection F ; and (b) obtaining
the minimal norm shift in F .

(a) By a reasonable shift, s, we mean that the probability
of occurrence of the event A is approximately 0.5 under the
associated values. In order to look for all such reasonable s,
we will do the following. Sample s uniformly from a region
R, where

R = {(s1, . . . , sM ) : −L ≤ si−μi ≤ L, for all 1 ≤ i ≤ M},



for some large L1. For a given sampled s, include it in F if we
find that probability of A is ≈ 0.52. The number of samples
to calibrate F can be chosen to be some large fixed number,
or, more generally, it can be adaptively improved as discussed
under cost of algorithm.

(b) Once F is chosen as per (a), choose s∗ as the following
minimizer of the L2 norm:

s∗ = arg min

M∑
i=1

s2
i

σ2
i

over s ∈ F . (6)

Step 2: IS using s∗. Given the s∗, run IS to obtain the

estimate p̂IS(s
∗) as explained in (5) with function w given in

(4). Run the algorithm for N large enough so that the figure
of merit ρ(p̂IS(s

∗)), evaluated as per (3) is less than 0.1 –
here (2) need to be used. This method produces an estimate
with 90% accuracy of 90% confidence. More generally, run
the algorithm until ρ(p̂IS(s

∗)) becomes less than ε
√

log(1/δ)
for (1 − ε)100% accuracy with (1 − δ)100% confidence.

Cost of Algorithm. Here we discuss the cost of the algorithm
in terms of the number of samples required. The algorithm,
as described above, includes sampling in both steps. In Step
1, the sampling is required to calibrate F . In Step 2, the
sampling is required to obtain p̂IS(s

∗) with small figure of
merit. We would like the cost of Step 1 to be no more than
of Step 2. To achieve this goal, our approach is to calibrate F
adaptively. Specifically, we start with some large number, say
N0 of samples (of shifts) to calibrate F . Then based on this
F , we obtain the best s∗ and run Step 2. Either our algorithm
stops within N0 samples (of s∗ shifted r.v.), as we reach small
enough figure of merit, or not. In the latter case, we go back to
Step 1, sample N0 more shifts, obtain possibly large F , find
new s∗ and then repeat Step 2 for N0 more steps; and repeat
the above. As experiments in Section IV suggest, this approach
is very successful for evaluating the failure probability of a
memory element. An important feature of our algorithm is its
general applicability, and the excellent speed up in simulations.

Discussion. The classical Large Deviation Theory [4] deals
with estimation of probabilities of rare events. Since these
estimates are distribution dependent, they are not of much use
in our context. However, the theory does provide the following
important structural insight: when a rare event happens, it
happens in the most likely manner. Next, we explain how this
leads to the “norm minimization principle” used in Step 1(b)
of the algorithm.
Our interest is in the rare event A. Conditioned on the event

A happening, as per the above insight,X must be taking values
around a most likely x∗ ∈ A. Now, recall that X is a function
of vector Y = (Y1, . . . , YM ): X = F (Y). Let Y(x∗) be the
set of all y = (y1, . . . , yM ) so that F (y) = x∗. Since all
Y1, . . . , YM are independent Gaussian random variables, the

1The choice of L can be made judiciously depending on the magnitude of
the probability of the rare event.
2This point can be easily checked with the help of few, say 100 trials, per

choice of s.

Fig. 1. Illustration of the minimum norm principle. The circular contours
represent the equiprobable elements under Gaussian distribution. The closest
point (with respect to the mean-vector) on boundary of F represents the most
likely way for the rare event A to happen.

Fig. 2. The schematic of the 6T memory element along with the illustration of
the variation of the individual threshold voltages. The BSIM VTH0 parameters
in the simulation model are −450mV and 509mV for the PMOS and NMOS
devices, respectively. Each variation is modelled as an independent Gaussian
random variable of zero mean and standard deviation of σ = 36mV for
PMOS devices, and σ = 50mV for NMOS devices.

most probable Y value in Y(x∗) is the following minimizer
of the L2 norm:

arg min
∑

i

(yi − μi)
2

σ2
i

over y = (y1, . . . , yM ) ∈ Y(x∗).

If we call si = yi − μi, then the above minimization is
the same as the (6) in Step 1(b) with the difference of F
in place of Y(x∗). Even though the exact identification of
Y(x∗) is computationally intractable, our Step 1(a) suggests
a computationally feasible approximation to it. A pictorial
description of this discussion is presented in Figure 1.

IV. EXPERIMENTAL RESULTS

In this section we provide illustrative examples of our
method. While the method itself works independent of the
concrete application, or the exact details of the underlying
parameters, we focus on the relevant examples of the SRAM
cell analysis, since these elements are known to suffer from
process variation in deeply scaled semiconductor technologies.
This work employs 32nm bulk CMOS predictive technology



VDD (mV) MC est. MC σ equiv. MC no. of runs IS est. IS σ equiv. IS no. of runs speed-up σ equiv. rel. error (×100%)
275 5.4 × 10−3 2.5491 2 × 104 4.9 × 10−3 2.5828 103 20x 1.3
300 3.65 × 10−4 3.3781 1.2 × 106 4.4 × 10−4 3.3263 3 × 103 100x 1.53
400 3.1 × 10−6 4.5195 4 × 107 3.0 × 10−6 4.5264 104 10000x 0.15

TABLE I

COMPARISON OF THE MONTE CARLO - BASED ESTIMATOR AND THE PROPOSED IMPORTANCE SAMPLER. NOTE THE EXTREMELY CLOSE AGREEMENT IN

THE ESTIMATED PROBABILITY OF FAILURE, WHILE THE NUMBER OF TRIALS IS REDUCED 10000 TIMES.

models [21]. The results elucidate the important features and
benefits of the proposed method.

A. Example 1: data retention

Our first example considers the data retention voltage (DRV)
for a six transistor memory element, shown in Figure 2. It
is widely used in 6T and 8T embedded SRAM memories in
microprocessors and other systems on a chip. Specifically we
ask how low can the supply voltage, VDD, be set such that the
original data state on the two nodes Q and bQ does not flip.
In an ideal process the DRV is arbitrarily low; however, the
variation of the electrical behavior of each of the six transistors
introduces an asymmetry that will favor one data state over
another.
IS results. Our main results are summarized in Table I.
Note the exceptionally close agreement between the estimates
produced by the IS and MC methods, in particular the relative
difference in terms of equivalent σ (defined as the deviation
of the standard Gaussian random variable) is within 1.53%.
As the table indicates, the computational savings also become
more pronounced as the probability of failure gets smaller,
which is a (known) feature of a well-designed variance re-
duction estimator. For consistency, we report the results at
ρ = 0.1 throughout, which as previously argued guarantees
90% confidence with 90% accuracy.
For this problem, there are M = 6 input parameters, as

indicated in Figure 2. Each is modelled as an independent
Gaussian random variable, with the means and variances as
indicated in the same figure. The rare event of interest is the
failure {SNM ≤ 0}, i.e. the collapse of the SNM curve (cf.
Figures 4 for an illustration). By symmetry and geometrical
construction of the butterfly curve it is sufficient to consider
the collapse of a single lobe in both MC and IS. Using
the algorithm outlined in the previous section we obtain the
following:
Step 1(a) The boundary is determined by separating regions

where SNM ≤ 0 (fail) and where SNM > 0 (pass), and is
obtained by uniformly sampling an appropriate space of VT

shifts. As an example, for VDD = 400mV , a ten thousand
point uniform random sampling of VT shifts over [0, 4σVT

]
or [−4σVT

, 0] (appropriately chosen for each device to de-
grade the corresponding butterfly lobe) produces roughly 3300
candidate shifts3. The resulting set of failing 6-dimensional

3While a 10 000 point sampling is an overkill at this stage, it also results
in several, i.e. more than one, valid candidate shifts to be used in Step 2, and
as we will see, these are all equally successful choices.

vectors are sorted in the ascending order of the resulting SNM
magnitude.
Step 1(b) Out of the subset of vectors yielding low SNM

magnitude select any mean shift vector m that yields a low
L2. Some representative examples of such candidate vectors
are given in Table II for the VDD = 400mV case.

A closer look at numbers. Details of the evolution of
the simulation runs under VDD = 400mV are given in
Figure 3, with the importance sampler run using the mean
shifts given by the rows of Table II. Observe an extremely
close agreement between the final predictions, whilst with the
proposed approach the predictions settle around the final value
10000 times sooner than the Monte Carlo based approach.
Recall that the algorithm can pick either one of the candidate
shifts, and run the rest of the importance sampling on; as such
it is robust to the precise details of the chosen vector, and is
equipped with a flexibility to choose among several equally
successful choices. Also note the suppressed variability of the
IS plot relative to the MC plot. Note also that at the 103

and even 104 trials, a Monte Carlo run erroneously reports
no errors – there is simply not enough gathered statistics to
produce the estimate.
As a useful visual tool, Figure 4 illustrates the butterfly

curves corresponding to the nominal values of threshold volt-
ages (top graph) and corresponding to the values offset by the
amount listed in the first row of Table II (bottom graph). Note
that how in the latter case, the butterfly curve is on the verge
of collapsing. The exact same butterfly curves, i.e. same as the
bottom one in Figure 4, are obtained for the remaining rows of
Table II. As expected, it is the joint effect of individual shifts
that matters the most; as such can be achieved using different
combinations of individual shifts. An interesting observation
regarding the entries in Table II can be made:
Although all shifts exhibit the correct skew between sym-

metric device pairs—namely, pfet 1 is strengthened as pfet 2
is weakened, nfet 3 is weakened as nfet 4 is strengthened,
and nfet 5 is strengthened as nfet 6 is weakened—the degree
of skews between these individual pairs differs significantly
across the three choices. At the same time, the norm stays
similar across the three shifts because a smaller skew in one
pair is balanced by a larger skew in the other two pairs.
Furthermore, when one considers the data state being upset

(in this case Q = 0V undesirably flipping to Q = 400mV ),
circuit operation insight highlights three key ratioed strengths
of device pairs: 1 versus 3, 2 versus 4, and 5 versus 3. Table II
shows that the amount of shifts in magnitude given to the
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Fig. 3. Top: Zoomed-in plot of the evolutions of the estimates for the two approaches. Note how the IS curves very quickly settle around the convergent
value. Bottom: Plot of ρ for the two approaches. Note the almost parallel nature of the curves.

V T1 shift V T2 shift V T3 shift V T4 shift V T5 shift V T6 shift SNM value L2 norm
MS1 0.5091 -2.3923 1.7185 -3.5374 -0.7017 0.9689 -0.000265 4.7833
MS2 1.4651 -2.0932 0.8809 -3.8175 -0.7908 0.7313 -0.000023 4.7997
MS3 1.1703 -2.9488 0.02344 -3.5605 -0.7888 0.04651 -0.000567 4.8340

TABLE II

SEVERAL CANDIDATE MEAN-SHIFT VECTORS PRODUCED BY OUR METHOD FOR EXAMPLE 1. EACH ENTRY IS NORMALIZED TO BE A MULTIPLE OF

SIGMA OF A STANDARD NORMAL VARIABLE. EACH ROW CORRESPONDS TO THE LOW SNM VALUE AND LOW L2 NORM WHILE THE individual MEAN

SHIFTS ON THE PER TRANSISTOR BASIS VARY SUBSTANTIALLY FROM ONE CHOICE TO ANOTHER.

individual members in a ratioed pair are not identical and,
therefore, naı̈vely applying a common and large mean shift to
all devices will not capture the typically rare events associated
with Table II.
In contrast to applying the importance sampling estimator

using the set of shifts based on the L2 minimization, if one
obliviously chooses the set of shifts based on the low SNM
value alone (and thus possibly a larger L2 norm), the com-
putational speed-up and the benefit of using the importance
sampling algorithm will be potentially diminishing. We have
in fact experimented with various choices, and as the Large
Deviations Theory suggests (and practice confirms), larger L2

norms cannot accurately capture the failing region under the
same number of trials, see also Figure 1.

Reporting pfail vs. σ. While we have plotted the absolute
pfail estimates over time to contrast the time-wise evolution
of the two approaches in Figure 3, the σ-equivalent results

are reported in Table I. Note the remarkably close agreement
between the two predictions. We also use this opportunity
to emphasize the importance of quoting the absolute pfail

estimates, along with the conventional σ-style reporting [12],
[15].
As a concrete example, consider a memory block consisting

of N cells, and with the ability to overcome up to R errors,
due to the additional layer of error-correcting capability. The
quantity of interest is the overall yield, expressed as

Y =

R∑
k=0

(
N
k

)
pR(1 − p)N−R . (7)

Consider numerical values N = 5× 105 and R = 3. Suppose
the Monte Carlo estimate of the per-cell probability of failure
is 3.1× 10−6, as in the example considered here. In terms of
the equivalent σ characterization, it corresponds to the value
of 4.51. The yield Y is then 92%. Note that the importance
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Fig. 4. Butterfly plots for the data retention condition at VDD = 400mV .
Top: Nominal VT values exhibit two well separated and stable solutions at
Q = 0V and Q = 400mV . Bottom: Mean-shifted VT values as obtained
by the algorithm, produce a butterfly on the verge of collapsing to only one
stable solution at . Note how under the latter values the butterfly curve is on
the verge of collapsing to Q = 0.

sampling based prediction of pfail has essentially the same
yield estimate at 93%, and the equivalent σ is 4.52. If however
one were to report the performance of a proposed estimator in
terms of multiples of σ only, the estimate of the overall yield
could be highly inaccurate.
For example, underestimating σ by only 5% at the failure

rate of 3.1 × 10−6 results in the erroneous yield prediction
of only 38%, which is very far from the 93% value of the
actual yield. Such gross mis-estimates of the yield can severely
impact the design cycles and the overall production cost.
We also point out that our predictions outperform [12] under

the σ-style reporting; compare Table 5 in [12] and Table I
above. The former lists 0.7σ discrepancy at MC σ equiv. =
4.15, whereas in our simulations the difference between the
two is only 0.0069 at MC σ equiv. = 4.15, while the total
number of runs needed to reach such an estimate is lower,
and is moreover governed by the objective figure of merit.
Finally, our numerical result of pfail = 3×10−6 at VDD =

400mV is a tolerable failure rate for many practical applica-
tions, and, therefore, predicts the DRV for 32nm technology
to be around 400mV for high density bit cells.

B. Example 2: Read and write trade-off

While our previous example illustrated the success of the
method where a single mode of failure is of interest – e.g. the

data retention problem – in this example we demonstrate how
the method can be equally successfully applied where multiple
(and not necessarily mutually exclusive) modes of failure can
occur. This is of particular interest in the design trade-off
between the read and the write processes; our experiment
addresses 4 different modes of failure: (I) read of 0, (II) read
of 1, (III) write of 0, and (IV) write of 1.
Step 1(a). A thousand point uniform random sampling of
VT shifts over [−4σVT

, 4σVT
] is run to simultaneously es-

tablish the boundaries separating pass/fail regions for each
of the events (I) –(IV). Step 2(b). The four mean shifts,
corresponding to the events (I) – (IV) are obtained based on
the minimization of the individual L2 norms of the points
on the boundaries, and are listed in Table III. The time-wise
evolution of IS and MC are plotted in Figure 5, highlighting
the 150x speed-up of our method.

V. CONCLUSION

Process variability has become a growing issue for scaled
technologies. Using the worst-case analysis is no longer suit-
able, and the analytical evaluations have become difficult. A
way to estimate the performance is by using the standard
Monte Carlo techniques. While the Monte Carlo approach is
general enough in that it does not assume a particular structure
of the functional description of the event of interest, its major
drawback is that it is a very time- and resource-consuming
exercise for estimating low probabilities of failure.
A present challenge is to design an efficient algorithm,

which like Monte Carlo does not rely on the analytical
description, while it also provides computational savings over
the standard Monte Carlo approach.
In this paper we presented a highly efficient and general

method for a quick evaluation of SRAM designs. The pro-
posed methodology utilizes importance sampling as a suitable
statistical tool for a quick evaluation of the circuit perfor-
mance, equipped with a novel, large-deviations inspired, norm
minimization approach. The computational advantage of the
proposed methodology is illustrated through accompanying
examples, which demonstrate up to the 10000X speed-up with
no performance loss relative to the standard Monte Carlo
based approaches, and significantly better accuracy, and the
computational speed-up over the previous method [12].
While this work focused on very accurate evaluation of the

functionality of a large memory block, the added benefit of the
computational speed-ups obtained by the proposed stochastic
method is that it can also enable exploratory study and design
of SRAMs [6], and improve upon recently proposed Monte-
Carlo based designs [5], [20]. An interesting and a fruitful
future research direction is in developing statistical methods,
along the lines of the large deviations approach presented here,
for addressing the problem of accurate timing analysis. We
envision the method presented here to become a key ingredient
of a statistical tool for highly efficient circuit design and
evaluation we will develop in the future.
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V T1 shift V T2 shift V T3 shift V T4 shift V T5 shift V T6 shift SNM value L2 norm
Read 1 -0.7752 1.0799 -2.1426 2.5867 -0.9971 -1.9935 -0.00337 4.2447
Write 1 1.2629 1.5273 -1.2539 0.1306 1.743 3.0466 -0.00555 4.2234
Write 0 1.0105 -1.0915 -0.09699 -1.5308 2.7524 2.7007 -0.00518 4.4085
Read 0 1.1873 -1.9851 3.0305 -0.73 -1.8197 -0.4385 -0.00146 4.3094

TABLE III

MEAN-SHIFT VECTORS PRODUCED BY OUR METHOD FOR EXAMPLE 2 FOR VARIOUS MODES OF FAILURE UNDER VDD = 625mV . WHILE THE FAILURE

RATE IS IMPRACTICALLY HIGH (FOR REASONABLY SIZED MEMORIES), IT DOES ILLUSTRATE THE CONCEPT OF BALANCING FAILURE MODES.
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Fig. 5. Time evolution of IS and MC for Experiment 2. These results illustrate an efficient design where the probability of different mode failures are
balanced.
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