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ABSTRACT
In the past year or so, an exciting progress has led to through-
put optimal design of CSMA-based algorithms for wireless
networks ([1][4][2][3]). However, such an algorithm suffers
from very poor delay performance. A recent work [6] sug-
gests that it is impossible to design a CSMA-like simple
algorithm that is throughput optimal and induces low delay
for any wireless network. However, wireless networks arising
in practice are formed by nodes placed, possibly arbitrarily,
in some geographic area.
In this paper, we propose a CSMA algorithm with per-

node average-delay bounded by a constant, independent of
the network size, when the network has geometry (precisely,
polynomial growth structure) that is present in any practi-
cal wireless network. Two novel features of our algorithm,
crucial for its performance, are (a) choice of access probabil-
ities as an appropriate function of queue-sizes, and (b) use of
local network topological structures. Essentially, our algo-
rithm is a queue-based CSMA with a minor difference that
at each time instance a very small fraction of frozen nodes
do not execute CSMA. Somewhat surprisingly, appropriate
selection of such frozen nodes, in a distributed manner, lead
to the delay optimal performance.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed
networks, Wireless communication
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1. NETWORK MODEL
Our network is a collection of n queues. Each queue has

a dedicated exogenous arrival process through which new
work arrives in the form of unit-sized packets. Each queue
can be potentially serviced at unit rate, resulting in depar-
tures of packets from it upon completion of their unit service
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requirement. The network will be assumed to be single-hop,
i.e. once work leaves a queue, it leaves the network.

Let t ∈ R+ denote the (continuous) time and τ = ⌊t⌋ ∈ N
denote the corresponding discrete time slot. Let Qi(t) ∈ R+

be the amount of work in the ith queue at time t.
Arrival process is assumed to be discrete-time with unit-

sized packets arriving to queues, for convenience. Let Ai(τ)
denote the total packets that arrive to queue i in [0, τ ] with
assumption that arrivals happen at the end in each time slot,
i.e. arrivals in time slot τ happen at time (τ + 1)− and are
equal to Ai(τ+1)−Ai(τ) packets. For simplicity, we assume
Ai(·) are independent Bernoulli processes with parameter λi.
That is, Ai(τ+1)−Ai(τ) ∈ {0, 1} and Pr(Ai(τ+1)−Ai(τ) =
1) = λi for all i and τ . Denote the arrival rate vector as
λ = [λi]1≤i≤n.

The queues are offered service as per a continuous-time
(i.e. asynchronous/non-slotted) scheduling algorithm. Each
of the n queues is associated with a wireless transmission-
capable device. Under any reasonable model of communica-
tion deployed in practice (e.g. 802.11 standards), transmis-
sions of two devices may interfere with each other. Thus
the scheduling constraint here is that no two devices that
might interfere with each other can transmit at the same
time. This can be naturally modeled as an independent-
set constraint on a graph (called the interference graph)
G = (V,E) with V = {1, . . . , n} representing n nodes and
E = {(i, j) : i and j interfere with each other} .

Interference graphs of our interest are of polynomial growth
with constant rate ρ, which can be defined as follows.

Definition 1 (Graphs with Polynomial Growth).
G = (V,E) is a polynomial growth graph with rate ρ if there
exists a universal constant B such that for any r ∈ N and
v ∈ V ,

|{w ∈ V : dG(w, v) ≤ r}| ≤ B · rρ,
where dG(u, v) denotes the length of the shortest path be-
tween u and v in G.

One can easily verify that the wireless interference network
G in practice (i.e. in R3) has polynomial growth if the mini-
mum distance of two devices is lower bounded by some con-
stant and two far-away devices do not interfere with each
other.

Let N (i) = {j ∈ V : (i, j) ∈ E} denote the neighbors
of node i. We assume that if node i is transmitting, then
all of its neighbors in N (i) can “listen” to it. Given this,
let σ(t) = [σi(t)] denote the collective scheduling decision
at time t ∈ R+, with σi(t) being the rate at which node i
is transmitting. The queueing dynamics induced under the
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above described model can be summarized by the following
equation: for any 0 ≤ s < t and 1 ≤ i ≤ n,

Qi(t) = Qi(s)−
∫ t

s

σi(y)1{Qi(y)>0}dy +Ai(s, t),

where A(s, t) = [Ai(s, t)] denotes the cumulative arrival in
time interval [s, t] and 1{x} denotes the indicator function.

2. MAIN RESULT
In a nutshell, our algorithm is an asynchronous CSMA in

which each wireless node adapts its medium access proba-
bilities as function of its current queue-size. That is, a node
attempts transmission in a regular, asynchronous manner:
if it finds the medium busy then it does not transmit, else
it transmits with probability that depends on its queue-size.
In addition, at each time each node is in one of two states,
frozen (colored red) or unfrozen (colored green). The frozen
(i.e. red) nodes do not change their transmission state but
unfrozen (i.e. green) nodes execute the queue-based CSMA
mentioned above and details are given in Section 2.1.
As we shall find, the performance of such an algorithm

is crucially determined by the precise choices of (a) frozen
nodes and (b) queue-based access probabilities. We describe
these in Sections 2.2 and 2.3, respectively. We note that
while the algorithm is inspired by and similar to that in [4,
5], the choice of weights differs crucially in addition to the
selection of frozen nodes.

2.1 CSMA Algorithm
As explained above, the CSMA algorithm will be executed

by green or unfrozen nodes. Let t ∈ R+ denote the time and
W (t) = [Wi(t)] denote the vector of weights at nodes at
time t. As explained in Section 2.3, the weights W (t) will
be essentially some function of the queue-sizes Q(t).
Each node i has an independent Exponential clock of rate

1. Upon a clock tick of node i at time t, it does the following:

◦ Node i “listens to” or “senses” the medium.

◦ If any neighbor is transmitting, i.e. medium is busy,
then σi(t

+) = 0.

◦ Else (i.e. medium is free), set σi(t
+) = 1 with proba-

bility exp(Wi(t))
1+exp(Wi(t))

, and σi(t
+) = 0 otherwise.

Note that due to the property of continuous random vari-
ables, no two clock ticks at different nodes will happen at
the same time (with probability 1).

2.2 Coloring Scheme
In this section, we provide details of the randomized col-

oring or freezing decisions. They are updated regularly L
time apart. That is, the decisions are made at times Tk,
where Tk = kL, k ∈ Z+. Here we present the centralized
description of this algorithm that is run at each time Tk, but
one can easily find its simple distributed implementation.
Initially, all nodes are uncolored. Repeat the following

until all nodes are colored by green or red:

(a) Choose an uncolored node u ∈ V uniformly at random.

(b) Draw a random integer R ∈ [1,K] according to a dis-
tribution described below that depends on K and pa-
rameter ε > 0.

(c) Color all nodes in {w ∈ V : dG(u,w) < R} as green.

(d) Color all nodes in {w ∈ V : dG(u,w) = R} as red.

Note that a node may be re-colored multiple times until the
loop terminates. In above, K and ε is some constants, which
will be decided later, and shall affect the performance of the
algorithm. The distribution of R used in step (b) above,
parameterized by K and ε > 0, is essentially a truncated (at
K) Geometric with parameter ε:

Pr[R = i] =

{
ε(1− ε)i−1 if 1 ≤ i ≤ K

(1− ε)K−1 if i = K
.

2.3 Design of Weight
By removing red nodes from G, the graph is partitioned

into connected components of green nodes. For each green
node i, Qmax,i(t) denotes the maximum queue size at time
t in the partition containing it. Based on this notation, the
weight at green node i in the kth time interval [Tk, Tk+1) is
defined as

Wi(t) = C
Qi(Tk)

Qmax,i(Tk)
, for t ∈ [Tk, Tk+1),

where C is a constant and we use notation 0/0 = 1. Thus,
the weight of each node is updated regularly L time apart,
at times Tk, k ∈ Z+.

Here we have assumed that every node i knows the maxi-
mum queue-size in the virtual partition that it belongs. This
can be computed using a simple distributed mechanism.

2.4 Optimality: Throughput & Delay
These weight and coloring scheme with proper choices of

L, C, K and ε lead the following throughput optimality and
optimal delay property of the algorithm.

Theorem 1. Suppose λ is in the capacity region and G
is a polynomial growth graph of rate ρ. Then, there exist
constants

L , L(ρ, δ), C , C(ρ, δ), K , K(ρ, δ), ε , ε(δ),

such that the (appropriately defined) network Markov pro-
cess is positive Harris recurrent with its unique stationary
distribution π. Further,∑

i∈V

Eπ [Qi] = O(n).
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