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Abstract

The Max Product (MP) is a local, iterative, message passing style algorithm that has been developed
for finding the maximum a posteriori (MAP) assignment of discrete probability distribution specified by
a graphical model. The scope of application of MP is vast and in particular it can serve as a heuristic to
solve any combinatorial optimization problem. Despite thesuccess of MP algorithm in the context of
coding and vision, not much has been theoretically understood about the correctness and convergence of
MP.

The Maximum Weight Independent Set (MWIS) and Maximum Weight Matching (MWM) are clas-
sically well studied combinatorial optimization problems. A lot of work has been done to design efficient
algorithms for finding MWIS and MWM. In this paper, we study application of MP algorithm for MWIS
and MWM for sparse random graphs:G(n, c/n) andGr(n), which aren node random graphs with pa-
rameterc andr respectively. We show that when weights (node or edge depending on MWIS or MWM)
are assigned independently according to exponential distribution, the MP algorithm converges and finds
correct solution for a large range of parametric valuec andr. In particular, we show that for anyǫ > 0,
for large enoughn, the MP becomes1 + ǫ competitive with probability at least1 − ǫ.

Our results build upon the results of Gamarnik, Nowicki and Swirscsz (2005), which established
local optimality propertyof MWIS and MWM for sparse random graphs.

1 Introduction

Graphical models (GM) are a powerful method for representing and manipulating joint probability distri-
butions. They have found major applications in several different research communities such as artificial
intelligence [16], statistics [13], error-control coding[11] and neural networks. Two central problems in
probabilistic inference over graphical models are those ofevaluating themarginal andmaximum a poste-
riori (MAP) probabilities, respectively. In general, calculating the marginal or MAP probabilities for an
ensemble of random variables would require a complete specification of the joint probability distribution.
Further, the complexity of a brute force calculation would be exponential in the size of the ensemble. GMs
assist in exploiting the dependency structure between the random variables, allowing for the design of effi-
cient inference algorithms.

The belief propagation (BP) and max-product algorithms [16] were proposed in order to compute, re-
spectively, the marginal and MAP probabilities efficiently. Comprehensive surveys of various formulations
of BP and its generalization, the junction tree algorithm, can be found in [1, 25, 19]. BP-based message-
passing algorithms have been very successful in the contextof, for example, iterative decoding for turbo
codes and in computer vision. The simplicity, wide scope of application and experimental success of belief
propagation has attracted a lot of attention recently [1, 12, 17, 24].

BP is known to converge to the correct marginal/MAP probabilities on tree graphs [16] or graphs with
a single loop [2, 21]. For graphical models with arbitrary underlying graphs, little is known about the
correctness of BP. Partial progress consists of [22] where correctness of BP for Gaussian GMs is proved,
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[10] where an attenuated modification of BP is shown to work, and [17] where the iterative turbo decoding
algorithm based on BP is shown to work in the asymptotic regime with probabilistic guarantees. To the
best of our knowledge, little theoretical progress has beenin resolving the question: Why does BP work on
arbitrary graphs?

Motivated by the objective of providing justification for the success of BP on arbitrary graphs, we focus
on the application of BP to the two well-known combinatorialoptimization problems: Finding (1) Maximum
Weight Independent Set (MWIS) and (2) Maximum Weight Matching (MWM), in an arbitrary graph. It is
standard to represent combinatorial optimization problems, like finding the MWIS and MWM, as calculating
the MAP probability on a suitably defined GM which encodes thedata and constraints of the optimization
problem. Thus, the max-product algorithm can be viewed at least as a heuristic for solving the problem. In
this paper, we study the performance of the max-product algorithm as a method for finding the MWIS and
MWM on a weighted graph.

It has been empirically observed that MP algorithm works well on random instances of hard optimization
problem. It has been widely believed that the ”large girth” property of such random instances is responsible
for this success. The main result of this paper provides justification of this observation in the context of
MWIS and MWM. In particular, we show that the MP algorithm converges to correct MWIS or MWM when
(1) the underlying graph has large girth, that is, if lengthsof all cycles in the graph are very large (defined
precisely later in the paper), and (2) the weight (node or edge) are assigned independently according to
appropriate distribution. Next, we describe setup, related work and main results.

1.1 Setup

Graph. Consider an undirected graphG = (V,E) with vertex setV and edge-setE. Let the number of
nodes ben, i.e. |V | = n, and(i, j) ∈ E iff nodesi andj are connected to each other. Letd(G) denote
the length of the shortest cycle in the graphG. To each node and edge, non-negative real valued weight
is assigned. Letwi denote weight of nodei andwij denote weight of edge(i, j) ∈ E. In this paper, we
consider sparse random graphs,G(n, c/n) andGr(n) described as follows:

1. TheG(n, c/n) hasn nodes. An edge is present between any node-pairi, j with probability c/n
independently.

2. TheGr(n) hasn nodes. It is formed by sampling one of ther-regularn node graph uniformly at
random.

It is well known that bothG(n, c/n) andGr(n) havelarged(G) for any constantc, r with high probability.
In particular,d(G) → ∞ asn → ∞ with high probability. The weights (both node and edge) are assigned
in an i.i.d. fashion according to a certain distribution. Our interest will be in the exponential distribution
of mean1. In this paper, we follow the notation that the random variables denoting weights (node or edge)
will be represented in capital letters (such asWi) while specific instance will be represented in small letters
(such aswi).
Independent set.A subset of nodes, sayI ⊂ V , is called independent set if no two nodesu, v ∈ I have
edge between them. Weight of an independent setI, denoted byw(I), is the sum of the weights of node in
I, that is

w(I) =
∑

j∈I

wj.

Let I∗ denote a maximum weighted independent set (MWIS), that is

I∗ = arg max
I

w(I).
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In presence of multiple MWIS, letI∗ be any one of them chosen arbitrarily.
Matching. A subset of edges, sayM ⊂ E, is called matching if no two edges ofM share a vertex. Weight
of a matchingM, denoted byw(M), is the sum of the weights of edges inM, that is

w(M) =
∑

(i,j)∈M

wij .

LetM∗ denote the maximum weight matching (MWM), that is

M∗ = arg max
M

w(M).

In presence of multiple MWM, letM∗ be any one of them chosen arbitrarily.

1.2 Related work

In this section, we briefly describe previous work related toMWIS and MWM. Both MWIS and MWM are
well studied combinatorial optimization problems. Hence,it is difficult to be comprehensive in reporting all
relevant work.

First, Maximum Weight Matching. The other variant of MWM is the Minimum Weight Matching,
known as the assignment problem. Both MWM and the assignmentproblems are algorithmically equivalent.
Attempts to find better MWM algorithms contributed to the development of the rich theory of network flow
algorithms [8, 14]. The assignment problem has been studiedin various contexts such as job-assignment in
manufacturing systems [8], switch scheduling algorithms [15] and auction algorithms [6]. Recently, Bayati
et. al. (2005) [31] showed that MP finds MWM in a complete bipartite graph for arbitrary weight as long
as it is unique. They show that MP has complexity similar to that of Auction algorithm or Edmond-Karp’s
algorithm for integer weights. Unfortunately, their results do not extend for arbitrary graphs. In particular,
their results do not say anything about the performance of MPfor sparse random graphs.

Next, Maximum Weight Independent Set. Unlike MWM, the MWIS is known to be NP-hard and hard
to approximate within constant factor. From both algorithmdesign and complexity perspective, this prob-
lem has been very well studied. Many different algorithmic approaches have been designed to find good
algorithms.

Now, on MWIS and MWM for random graphs with random weights. A lot of work since early 1980s
has concentrated on evaluating asymptotic value of combinatorial optimization problem under natural prob-
abilistic setting. Among the first such results was due to Karp and Sipser[32]. They showed that for sparse
random graph,G(n, c/n) for c ≤ e, a simple linear time algorithm finds maximum independent set and
maximum size matching. As a consequence of this, they obtained exact asymptotic formula for the size
of maximum size matching ! Subsequently, there have been many results on evaluating exact asymptotic
answers for combinatorial optimization problems in probabilistic setup. An excellent reference for such re-
sults is monograph by Steele [34]. In his seminal work, Aldous [4, 3] and Aldous and Steele [26] proposed
method of local weak convergence (LWC) to establish existence of asymptotic limits for combinatorial op-
timization problem. such as the assignment problem. A recent survey of Aldous and Bandopadhyay [5]
presents nice frame-work for evaluating such asymptotic limits as a solution of recursive equations. Re-
cently, the remarkable results of Gamarnik [33] and Gamarnik, Nowicki and Swirscsz [27] build upon the
LWC method to establish asymptotic limits for combinatorial optimization problems such as random linear
constraint satisfaction problem, MWIS and MWM. In summary,the above results have established existence
of asymptotic limits for optimization problems and provided means to evaluate them. Additionally, these
result establish the followinglocal optimality property– decision related to a node under optimization prob-
lem depends on itslocal neighborhood. Thus, these results suggest that these problems should become easy
asymptotically. Further, these provide hope for algorithms like Max-Product to be effective in such setup.
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However, these results do not imply anything about the convergence or correctness of Max Product (Belief
Propagation) algorithms.

Finally, on convergence results for Max Product or Belief Propagation. Initial proposal of Belief prop-
agation or Max Product was meant to work on trees [?]. Earlier in Section 1, we have stated the evolution
and success of BP or MP algorithm.

1.3 Graphical model: MWIS and MWM

Next, we model the problem of finding MWIS and MWM as finding a MAP assignment in a graphical model
where the joint probability distribution can be completelyspecified in terms of the product of functions that
depend on at most two variables (nodes). For details about GMs, we urge the reader to see [13].

GM for MWIS. Now, consider the following GMIS defined onG: Let X1, . . . ,Xn be random variables
corresponding to the vertices ofG and taking values in{0, 1}. TheXi = 1 corresponds to nodei being
present in a set andXi = 0 corresponds to absence. Next, we define a joint probability distribution, denoted
by P IS, onX ∈ {0, 1}n as follows:

P IS
(

X
)

=
1

Z

∏

(i,j)∈E

ψIS
ij (xi, xj)

∏

i

φIS
i (xi), (1)

whereZ is the normalization constant, the compatibility functions,ψIS
·· (·, ·), are defined as

ψIS
ij (r, s) =

{

0 if r = 1 ands = 1
1 Otherwise

and the potentials at the nodes,φIS
· (·), are defined as

φi(r) =

{

ewi if r = 1
1 Otherwise

The above defined GMIS is also called pair-wise Markov random field. The following claims are a
direct consequence of these definitions.

Claim 1.1. For the GMIS as defined above, the joint densityP IS
(

X = (x1, . . . , xn)
)

for X ∈ {0, 1}n is
nonzero if and only if the subsetI(X) = {i ∈ V : xi = 1} is an independent set. Further, when nonzero

P IS
(

X
)

=
1

Z
ew(I(X)).

Claim 1.2. LetX
∗
∈ {0, 1}n be such that

X
∗

= arg max{P IS
(

X
)

}.

Then, the correspondingI(X
∗
) is an MWIS inG.

GM for MWM. Now, consider the following GMM defined onG: Let X1, . . . ,Xn be random variables
corresponding to the vertices ofG such thatXi ∈ {⋆} ∪ N (i), whereN (i) is the set of neighbors ofi, i.e.

N (i) = {j ∈ V : (i, j) ∈ E}.
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TheXi = j ∈ N (i) corresponds to nodei being connected to nodej while Xi = ⋆ corresponds to node
i not connected to any other node. Next, we define a joint probability distribution, denoted byPM , on
X = (x1, . . . , xn) such thatxi ∈ {⋆} ∪ N (i), as follows:

PM
(

X
)

=
1

Z

∏

(i,j)∈E

ψM
ij (xi, xj)

∏

i

φM
i (xi), (2)

whereZ is the normalization constant, the compatibility functions,ψM
·· (·, ·), are defined as

ψIS
ij (r, s) =







0 if r = j andj 6= i
0 if s = i andr 6= j
1 Otherwise

and the potentials at the nodes,φM
· (·), are defined as

φi(r) =

{

ewir if r ∈ N (i)
1 Otherwise

The above defined GMM is also called pair-wise Markov random field. The following claims are a direct
consequence of these definitions.

Claim 1.3. For the GMM as defined above, the joint densityPM
(

X = (x1, . . . , xn)
)

for xi ∈ {⋆} ∪ N (i)
is nonzero if and only if the subsetM(X) = {(i, j) ∈ E : xi = j} is a matching. Further, when nonzero

PM
(

X
)

=
1

Z
e2w(M(X)).

Claim 1.4. LetX
∗

be such that
X

∗
= arg max{PM

(

X
)

}.

Then, the correspondingM(X
∗
) is an MWM inG.

1.4 Max-Product and Min-Sum Algorithms

The claims 1.2 and 1.4 imply that finding the MWIS and MWM respectively are equivalent to finding the
maximum a posteriori (MAP) assignment on the GMIS and GMM respectively. Thus, the standard max-
product algorithm can be used as an iterative strategy for finding MWIS and MWM. Before we describe the
max-product and equivalent min-sum algorithm algorithm for MWIS and MWM, we need some definitions.

Definition 1. For anyp ∈ N, letD ∈ R
p×p be anyp × p matrix andX,Y,Z ∈ R

p×1. Then the operations
∗,⊙ are defined as follows:

D ∗X = Z ⇐⇒ zi = max
1≤j≤p

dijxj , ∀1 ≤ i ≤ p, (3)

X ⊙ Y = Z ⇐⇒ zi = xiyi, ∀1 ≤ i ≤ p. (4)

For X1, . . . ,Xm ∈ R
p×1,

m
⊙

i=1

Xi = X1 ⊙X2 ⊙ . . . ⊙Xm. (5)
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Max-Product for MWIS.

For (i, j) ∈ E, define a2 × 2 compatibility matrixΨIS
ij ∈ R

2×2 such that its(r, s) entry isψIS
ij (r, s),

for 1 ≤ i, j ≤ n. Also, letΦIS
i ∈ R

2×1 be the following:

ΦIS
i = [φIS

αi
(0), φIS(1)]T .

In the description of algorithm, we will not indicate the super-script IS (and later M) as it is clear from
context that theΨ andΦ correspond to IS (or M).

Max-Product Algorithm (MWIS).

(1) LetMk
i→j = [mk

i→j(0),m
k
i→j(1)]

T ∈ R
2×1 denote the messages passed fromi to j in the iteration

k ≥ 0, for every(i, j) ∈ E (or (j, i) ∈ E).

(2) Initially k = 0 and set the messages as follows. LetM0
i→j = [m0

i→j(0),m
0
i→j(1)]

T where

m0
i→j(r) =

{

ewi if r = 0
1 otherwise

(6)

(3) For k ≥ 1, messages in iterationk are obtained from messages of iterationk − 1 recursively as
follows: for every(i, j) ∈ E,

Mk
i→j = ΨT

ij ∗











⊙

ℓ∈N (i)\{j}

Mk−1
ℓ→i



⊙ Φi







(7)

(4) Define the beliefs (2 × 1 vectors) at each nodei ∈ V , in iterationk as follows.

bki =





⊙

ℓ∈N (i)

Mk
ℓ→i



⊙ Φi. (8)

(5) The estimated MWIS at the end of iterationk is Ik, represented byX
k

= (xk
1 , . . . , x

k
n) where

xk
i = 1{bk

i (1)>bk
i (0)}.

(6) Repeat (3)-(5) tillIk converges.

Note 2.For computational stability, it is often recommended that messages be normalized at every iteration.
However, such normalization does not change the output of the algorithm. Since we are only interested in
theoretically analyzing the algorithm, we will ignore the normalization step. Also, the messages are usually
all initialized to one. Although the result doesn’t depend on the initial values, setting them as defined above
makes the analysis and formulas nicer at the end.
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Min-Sum for MWIS.

The max-product and min-sum algorithms can be seen to be equivalent by observing that the logarithm
function is monotone and hencemaxi log(αi) = log(maxi αi). In order to describe the min-sum algorithm,
we need to redefineΦi, 1 ≤ i ≤ n, as follows:

Φi = [0, wi]
T .

Now, the min-sum algorithm is exactly the same as max-product with the equations (6), (7) and (11) replaced
by the following equations respectively.

(a) Replace (6) by the following.

m0
i→j(r) =

{

wi if r = 0
0 otherwise

(9)

(b) Replace (7) by the following.

Mk
i→j = ΨT

ij ∗











∑

ℓ∈N (i)\{j}

Mk−1
ℓ→i



+ Φi







(10)

(c) Replace (11) by the following.

bki =





∑

ℓ∈N (i)

Mk
ℓ→i



+ Φi. (11)

Note 3.The min-sum algorithm involves only summations and subtractions compared to max-product which
involves multiplications and divisions. Computationally, this makes the min-sum algorithm more efficient
and hence very attractive.

Min-Sum for MWM.

We describe only Min-Sum algorithm for MWM as this paper willanalyze Min-Sum algorithm. The
difference between Min-Sum for MWIS and MWM is mainly in the compatibility matrixΨ·· and potential
matrix Φ·. With abuse of notation, re-define the compatibility matrixas follows: for(i, j) ∈ E, define a
n+ 1 × n+ 1 compatibility matrixΨij ∈ R

n+1×n+1 such that

Ψij(r, s) =







0 if r = j ands 6= i
0 if s = i andr 6= j
1 otherwise

Also, letΦi ∈ R
n+1×1 be such that

Φi(j) =

{

wij if (i, j) ∈ E
0 otherwise

7



Min-Sum Algorithm (MWM).

(1) LetMk
i→j = [mk

i→j(1), . . . ,m
k
i→j(n+ 1)]T ∈ R

n+1×1 denote the messages passed fromi to j in the
iterationk ≥ 0, for every(i, j) ∈ E (or (j, i) ∈ E).

(2) Initially k = 0 and set the messages as follows. LetM0
i→j = [m0

i→j(1), . . . ,m
0
i→j(n+ 1)]T where

m0
i→j(r) =

{

wij if r = j
0 otherwise

(12)

(3) For k ≥ 1, messages in iterationk are obtained from messages of iterationk − 1 recursively as
follows: for every(i, j) ∈ E,

Mk
i→j = ΨT

ij ∗











∑

ℓ∈N (i)\{j}

Mk−1
ℓ→i



+ Φi







(13)

(4) Define the beliefs (n+ 1 × 1 vectors) at each nodei ∈ V , in iterationk as follows.

bki =





∑

ℓ∈N (i)

Mk
ℓ→i



+ Φi. (14)

(5) The estimated MWM at the end of iterationk isMk, represented byX
k

= (xk
1 , . . . , x

k
n) where

xk
i = arg max

j∈N (i)∪{n+1}
{bki (j)}.

We note thatxk
i = n+ 1 means that nodei is not connected to any other node in that matching.

(6) Repeat (3)-(5) tillMk converges.

1.5 Main Result

1.5.1 Result for Min-Sum Algorithm for MWIS

We first state a little modification of min-sum algorithm for MWIS before stating the result. This modifica-
tion is related to stopping condition.

Modification. Stop algorithm after large enoughk. Consider the decisions(xk
i ) at the end of iterationk.

The subset,Ik induced by(xk
i ) may not be independent set. We state a simple iterative procedure (can be

made local) to obtain an independent set out ofIk. Intially, setÎk = Ik. Consider nodes in̂Ik in any order
and repeat the following till possible: if a nodei is insideÎk and one or more of its neighbors are also in
Îk, removei and its neighbors from̂Ik. By definition, at the end thêIk is an independent set.

Theorem 1.1. Consider graphG(n, c/n) or Gr(n) with node weights assigned independently according to
exponential distribution of rate1. Let c ≤ 2e and r ≤ 4. Then, for anyǫ > 0, there exists large enough
N IS(ǫ) andT IS(ǫ) such that ifn > N IS(ǫ), then the following holds:

8



(a) For any node inG(n, c/n) or Gr(n), say i, the xk
i converges with probabilty1 at least1 − ǫ for

k ≥ T IS(ǫ).

(b) Let Îk be the independent set obtained by modifying the setIk obtained at the end of iterationk of
min-sum algorithm. Then, the weight ofÎk,W (Îk) is such that fork ≥ T IS(ǫ),

P

(

|W (Îk) −W (I∗)|

W (I∗)
≥ δ(ǫ)

)

≤ ǫ,

whereδ(ǫ) → 0 asǫ→ 0.

1.5.2 Result for Min-Sum Algorithm for MWM.

Similar to MWIS, we make the following modification to stopping condition of min-sum algorithm algo-
rithm for MWM.

Modification. Stop algorithm after large enoughk. Consider the decisions(xk
i ) at the end of iterationk.

The subset of edges,Mk induced by(xk
i ) may not be a matching. We state a simple iterative procedure

(can be made local) to obtain a matching out ofMk. Intially, setM̂k = Mk. Consider edges inM̂k in
any order and repeat the following till possible: if an edge(i, j) ∈ M̂k shares an end-point with any edge
in M̂k, remove(i, j) and the conflicting edge from̂Mk. By definition, at the end thêMk is a matching.

Theorem 1.2. Consider graphG(n, c/n) or Gr(n) with edge weights assigned independently according to
exponential distribution of rate1. Let c > 0 and r ≥ 1. Then, for anyǫ > 0, there exists large enough
NM (ǫ), TM (ǫ) such that forn > NM (ǫ) the following holds:

(a) For any node inG(n, c/n) or Gr(n), say i, the xk
i converges with probabilty2 at least1 − ǫ for

k ≥ TM(ǫ).

(b) Let M̂k be the matching obtained by the modifyingMk obtained at the end of iterationk of the
min-sum algorithm. Then, the weight of̂Mk,W (Mk) is such that fork ≥ TM (ǫ),

P

(

|W (M̂k) −W (M∗)|

W (M∗)
≥ δ(ǫ)

)

≤ ǫ,

whereδ(ǫ) → 0 asǫ→ 0.

1.6 Organization

The rest of the paper is organized as follows: In Section 2, wepresent proof of Theorem 1.1. Simialrly, in
Section 3 we present proof for Theorem 1.2. It is very similarto the proof of Theorem 1.1 and hence only
key ingredients are presented. Finally, we present our conclusions.

2 Proof of Theorem 1.1

The proof of Theorem 1.1 essentially integrates results of [20] and [27]. The proof establishes simple
connection between method of local weak convergence and convergence of max-product for MWIS (and
later for MWM). Structurally, proof is divided into four steps. This four step method is divided into next
four Sub-sections. Combining them provides the proof of Theorem 1.1. We note that this four step method
is quite general and should be useful in providing convergence and correctness of min-sum (or max-product)
algorithm for other questions.

1Here, the probability distribution is induced by the choiceof random weights.
2Here, the probability distribution is induced by the choiceof random edge weights.
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2.1 Min-Sum and Computation Tree

We first introduce a very useful concept of computation tree.The computation tree provides a graphical
interpretation of the min-sum belief at a node, sayi, at a particular time, sayk, in terms of initial messages
and the graph structure. As we shall see, it is key to our proof. To this end, consider a fixed nodei. Let T k

i

be the level-k unrolled tree corresponding toi, defined as follows:T k
i is a weighted tree of heightk + 1,

having nodei as a root. All nodes have labels from the set{1, . . . , n} corresponding to then nodes of the
original graph. The tree is constructed according to the following recursive rule: (a) root has labeli; (b) root
i has a distinct child corresponding to each of its neighbors and these children get label from the original
graph; and (c) a non-leaf node, sayj, with parentℓ has children corresponding to each node inN (i)\{ℓ}
with corresponding label. The node with labelj is assigned weightwj.

TheT k
i is often called the level-k unwrapped graphat nodei corresponding to the GM under consid-

eration. The unwrapped graph in general is constructed by replicating the pairwise compatibility functions
ψij(r, s) and potentialsφi(r), while preserving the local connectivity of the (possibly loopy) graph. They
are constructed so that the messages received by nodei afterk iterations in the actual graph are equivalent
to those that would be received by the rooti in the unwrapped graph, if the messages are passed up along
the tree from the leaves to the root.

Let tki (0) (respectivelyti(1)) be the weight of maximum weight independent set inT k
i such that the root

i is not present (respectively rooti is present). Now, we state the following important lemma that connects
the belief of min-sum algorithm with the above defined computation tree.

Lemma 2.1. At the end of thekth iteration of the min-sum algorithm, the belief at nodei ofG is precisely
bki = [tki (0), t

k
i (1)]T .

Proof. It is known [20] that under the min-sum (or max-product) algorithm, the vectorbki corresponds to
the correct marginals for the rooti of the MAP assignment on the GM corresponding toT k

i . The pairwise
compatibility functions force the MAP assignment on this tree to be an independent set.

By definition, the first (respectively second) marginal ofbki corresponds to the weight or likely-hood
of independent set in whichi is absent (respectively present). The non-normalized min-sum algorithm
considered in this paper makes the exact value of the beliefsbeing equal to the weight of independent set.
This completes the proof of Lemma 2.1.

Alternatively, the Lemma 2.1 can be easily proved using Mathematical Induction onk.

2.2 Computation Tree and Local Topology

Consider a fixed nodei in graphG, as before. ConsiderV k ⊂ V defined as

V k
i = {j ∈ V : there is a path betweeni andj of length no more thank}.

LetEk
i ⊂ E be set of edges incident on these vertices. LetGk

i = (V k
i , E

k
i ) denote the subgraph ofG thus

created. The following Lemma relatesGk
i with the computation treeT k

i .

Lemma 2.2. If Gk
i is a tree for a nodei, then computation tree corresponding to nodei till iteration k, T k

i

is identical toGk
i .

Proof. By definition, the nodes and edges present inT k
i correspond to some nodes and edges inGk

i . The
wayT k

i is constructed, all nodes that are within path-length ofk are present inT k
i . Given this, it is an easy

to check (and well-known) fact that whenGk
i is a tree, theT k

i s also a tree with identical graph structure.
This completes the proof of Lemma 2.2.

Next, we present some conditions that ensure thatGk
i is a tree.

10



Lemma 2.3. Consider a fixed nodei of graphG and a finitek. The following are set of different conditions
that ensure that,Gk

i is a tree.

(a) If the size of the smallest cycle of graphG is at least2k + 2, theGk
i is tree.

(b) If G = Gr(n) with r ≥ 0, then givenk and for anyǫ > 0, there exists large enoughn(ǫ) such that for
n ≥ n(ǫ) theGk

i is tree with probability at least1 − ǫ.

(c) If G = G(n, c/n) with c ≥ 0, then givenk and for anyǫ > 0, there exists large enoughn(ǫ) such
that forn ≥ n(ǫ) theGk

i is tree with probability at least1 − ǫ.

Proof. We first prove (a) and then provide references for (b) and (c).

Proof of (a). SupposeGk
i is not a tree. First note that,Gk

i , by definition is a connected graph. Since, we
have assumed that it is not a tree, here exists a cycle inGk

i , sayC. Next, we show existence of cycle of
length at most2k + 1 and thus contradicting our assumption. To this end, letu, v ∈ V k

i be some two nodes
adjacent inC. By definition, there exists pathsPu andPv of length at mostk starting fromi to nodesu and
v respectively. Using edges of pathsPu, Pv and(u, v), it is straightforward to show existence of a cycle of
length no more than2k+ 1. But this contradicts with the property thatG (and henceGk

i ) does not have any
cycle of length less than2k + 2. Hence, our assumption ofGk

i not being tree is false.
Reference for (b) and (c).The (b) follows from result of [29] and (c) follows from result of [30].

2.3 Min-Sum Beliefs and Bonuses

In this section, we relate the min-sum beliefs with quantitycalledbonus– quantitative measure of advantage
of including a node in Independent set on tree-graphs – originally introduced by Aldous [3] and subsequently
utilized by Gamarnik et. al. [27] and others.

To this end, consider ann node finite rooted tree,H, with node0 as its root. Letn nodes ofH be
numbered0, . . . , n − 1. Let the set of children of nodei be denoted byC(i). LetH(i) denote the subtree
rooted ati (hence,H(0) = H). LetwH(i) denote maximum weight of an independent set inH(i). Define
bonus of a nodei (or sub-treeH(i)) as

BH(i) = wH(i) −
∑

j∈C(i)

wH(j).

If C(i) is empty, that isi is a leaf node thenBH(i) = wH(i) = wi. The above definition implies thatBH(i)

is the difference between weight of maximum weight Independent set inH(i) and the weight of maximum
weight independent set inH(i) not containing the rooti. Intuitively, BH(i) captures thebonusof including
i in the candidate maximum weighted independent set ofH(i). Now, we state the following Lemma,

Lemma 2.4 (Lemma 7, [27]).The bonus at nodei,BH(i) can be recursively evaluate as

BH(i) = max



0, wi −
∑

j∈C(i)

BH(j)



 .

If C(i) is empty thenBH(i) = wi. Further, ifwi >
∑

j∈C(i)BH(j)

(

respectivelywi <
∑

j∈C(i)BH(j)

)

then

all maximum weighted independent set in sub-treeH(i) must containi (respectively must not containi).

Proof. The above Lemma follows from definition. For completeness, we refer reader to [27] for the proof.
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Next, we state a result that relates bonus and min-sum beliefs.

Lemma 2.5. Consider a nodei with T k
i as its computation tree and[tki (0), t

k
i (1)]T as its min-sum beliefs at

the end of iterationk. Then,

BT k
i

= max
(

0, tki (1) − tki (0)
)

,

whereBT k
i

be the bonus forT k
i as defined above.

Proof. Note thatT k
i is a tree, by construction. Hence,BT k

i
is well-defined. The key to the proof of this

Lemma is: (1) definition ofBT k
i

that it is the difference between weight of maximum independent set and
weight of maximum independent set not containingi, and (2) Lemma 2.1.

Now, if tki (1) ≤ tki (0) then by Lemma 2.1, the difference between weight of maximum independent
set and weight of maximum independent set not containingi is non-positive. Hence,BT k

i
should be0.

Similarly, if tki (1) > tki (0) then by Lemma 2.1 and from definition ofBT k
i

, the(tki (1) − tki (0)) is the same

asBT k
i

. Putting this together, we obtain thatBT k
i

= max
(

0, tki (1) − tki (0)
)

.

The Lemma 2.5 establishes the following crucial relation between bonus and min-sum belief: conver-
gence of min-sum beliefs (in terms of its conclusion for finding maximum independent set) is equivalent to
convergence of bonuses on computation trees (of growing size). We wish to note that similar convergence
on computation tree for general loopy belief propagation algorithm was studied in [28] (see Proposition 3.1,
for example).

2.4 Spatial Independence and Convergence

In this section, we establish the asymptotic independence between the bonus of computation tree at the
root and the initial messages in computation tree as long as the minimum length of cycle in underlying
graphG is large enough (growing to∞ asymptotically). In particular, we are interested in graphG where
G = G(n, c/n) for c ≤ 2e orG = Gr(n) for r ≤ 4 and node weight distribution is exponential of mean1.

Consider a node, sayi. Let its computation tree beT k
i for a largek. Now, consider the top subtree of

T k
i of odd depthd < k (usuallyd ≪ k), denoted byT k

i (d). ThusT k
i (d) can be obtained by removing all

nodes and edges ofT k
i that are beyond depthd from its root. Note that,T k

i (d) is identical toT d
i . Hence, in

what follows we useT k
i (d) andT d

i interchangeably.
Now, consider a particular instance of node weights for all nodes in theT k

i \T
k
i (d). Let they be denoted

by vectorW̄ . Now, consider nodes that are leaves inT k
i (d), denoted byδ(T k

i (d)). Consider one such leaf,
sayℓ ∈ δ(T k

i (d)). This leaf,ℓ, has a computation tree of depthk − d underneath itself. Given̄W , the
messages coming toℓ (under min-sum algorithm) from its children are a function of W̄ . From Lemma 2.5,
we can conclude that the nodeℓ can determine its bonus of node,Bℓ, with respect to the sub-tree rooted atℓ
using the messages coming from its children and its own weight, Wℓ. An application of Lemma 2.4 implies
thatBℓ ∈ [0,Wℓ]. Let the vector of bonus values on the leaf nodes ofT k

i (d) be denoted byb(d) and letB(d)
represent the (compact and bounded) set of allb(d) such that each component of vector is bounded between
0 and the corresponding node weight. Note that since node weights are random variables,B(d) is a random
set. From above discussion, it is clear that irrespective ofgraph structure and node weight for sub-graph
T k

i \T
k
i (d), the vector of boundary bonus values is inB(d). Also, Lemma 2.4 implies that the bonus at root

of T k
i , BT k

i
is independent of everything inT k

i \T
k
i (d), givenb(d). Thus, to prove convergence ofBT k

i
, it

is sufficient to show thatBT k
i

converges for anyb(d) ∈ B(d), . In what follows, our eventual goal will be

to show thatZk
i = 1{B

Tk
i

>0} converges for anyb(d) ∈ B(d) to prove Theorem 1.1.

Before we proceed further, we present some more usesful notation. Let the boundary condition of all
bonus at leaf nodes ofT k

i (d) being0 be represented by0(d) and the boundary condition of all bonus being
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equal to the node weight be denoted byW(d). For any boundary conditionb(d) ∈ B(d), let Ωb(d)(t)

denote the event the bonus at root ofT k
i , BT k

i
is at mostt given the boundary bonus asb(d) ∈ B(d). From

context, it should be clear thatΩ·(·) refers to a fixedd. The following result is a direct adaptation of a result
of [27]. For completeness, we will give an idea for the proof.

Lemma 2.6. Consider a fixedt ∈ R+, any oddd and for any bonus boundary conditionb(d) ∈ B(d),

Ω0(d)(t) ⊆ Ωb(d)(t) ⊆ ΩW(d)(t). (15)

Further, for anyǫ > 0 there exists large enoughd(ǫ) such that for any oddd ≥ d(ǫ) whenGd
i – the subgraph

ofG = G(n, c/n) for c ≤ 2e or G = Gr(n) for r ≤ 4 – is a tree, under the probability distribution induced
by randomness of node weights,

Pr
(

Ω0(d)(t)
)

≤ Pr
(

ΩW(d)(t)
)

≤ Pr
(

Ω0(d)(t)
)

+ ǫ. (16)

Proof. We first prove (15). Letb(d) ∈ B(d) be some boundary bonus condition for treeT d
i . Let b(d)1 ∈

B(d) andb(d)2 ∈ B(d) be two other boundary conditions such that each component ofb(d)1 is smaller
thanb(d); each component ofb(d) is smaller thanb(d)2. Let [BT d

i
|b] denote value of bonus at the root of

T d
i given boundary bonus conditionb ∈ B(d).

Now, as given in the statement of Lemma, letd ≥ 0 be odd. By definition,T k
i is a tree and hence

the bonus for each node ofT k
i is defined recursively as stated in Lemma 2.4. In particular,[BT d

i
|b] can be

recursively evaluated given the boundary bonus condition,b ∈ B(d), and weights of nodes inT d
i . Given this

recursive relation, it is straightforward to verify that the value ofBT d
i

is anti-monotone function of boundary
condition for oddd, that is,

[BT d
i
|b(d)1] ≥ [BT d

i
|b(d)] ≥ [BT d

i
|b(d)2]. (17)

To conclude the proof of (15), in addition to (17), we need thefollowing: (1) Any boundary condition,
b(d) ∈ B(d) is component-wise large than0(d) and component-wise smaller thanW(d); and (2)BT d

i

given boundary conditionb(d) ∈ B(d) is the same asBT k
i

(for k ≥ d), given b(d) as the boundary

condition forT k
i (d). Putting these together, we obtain that for any oddd,

Ω0(d)(t) ⊆ Ωb(d)(t) ⊆ ΩW(d)(t).

Next we prove (16). For this suppose that givenǫ > 0, there is large enoughd(ǫ) (determined later) such
that for some oddd ≥ d(ǫ), Gd

i is a tree. Though, under the statement of Lemma, we are provided the
condition ofGd

i being tree, it is useful to keep in mind that the condition ofGd
i being tree is satisfied with

probability at least1 − ǫ for large enoughn when graphG = Gr(n), r ≥ 2 orG(n, c/n), c > 0, as stated
in Lemma 2.3.

Given thatGd
i is tree, Lemma 2.2 implies thatGd

i = T d
i = T k

i (d). Further, boundary conditionb(d) ∈
B(d) can be seen as a boundary condition for nodes ofGd

i . By definition of bonus, the bonus ofi in Gd
i is

the same as the bonus onT d
i given the identical boundary conditionb(d) ∈ B(d) and the identical graph

structure (and weights).
Let Ω̃·(·) denote the event for bonus ofi in Gd

i , similar to the eventΩ·(·) defined earlier for bonus ofi
in T d

i . Now, results of [27] (Theorems 3 and 9) immediately imply that for large enough oddd ≥ d(ǫ),

Pr
(

Ω̃0(d)(t)
)

≤ Pr
(

Ω̃W(d)(t)
)

≤ Pr
(

Ω̃0(d)(t)
)

+ ǫ. (18)

Repeating what we stated above, that is,Gd
i = T d

i , Ω̃·(·) = Ω·(·). Hence, we obtain that for large enough
oddd ≥ d(ǫ)

Pr
(

Ω0(d)(t)
)

≤ Pr
(

ΩW(d)(t)
)

≤ Pr
(

Ω0(d)(t)
)

+ ǫ. (19)

This completes the proof of Lemma 2.6.
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2.5 Putting Things Together

In this section, we complete the proof of Theorem 1.1. Define

Ω̂− = Ω0(d)(0), and Ω̂+ = Ωc
W(d)(0).

We state the following two Lemmas.

Lemma 2.7. Given oddd, for any boundary bonus conditionb(d) ∈ B(d), theBT k
i
> 0 for anyω ∈ Ω̂+

andBT k
i

= 0 for anyω ∈ Ω̂−.

Proof. It follows directly from definitions of̂Ω+, Ω̂− and Lemma 2.6.

Lemma 2.8. Consider a fixed nodei. Under the setup of Lemma 2.6 (equivalently that of Theorem 1.1), for
any ǫ > 0, there exists large enoughn(ǫ) andk(ǫ) such that for (random) graph withn ≥ n(ǫ), thexk

i of
min-sum algorithm converges to the correct value fork > k(ǫ) with probability3 at least1 − ǫ.

Proof. ConsiderZk
i = 1{B

Tk
i

>0}. Under the setup of Lemma 2.8, we first show equivalence between

convergence ofZk
i andxk

i . Since weights are distributed according to exponential random variable, the
probability ofWi being equal to the sum of bonuses of nodes that are children ofi in T k

i is 0. Hence, from
Lemma 2.4, with probability1 either i belongs to all maximum weight Independent set inT k

i or it does
not belong all maximum weight Independent set inT k

i . Consequently, another use of Lemma 2.4 implies
thatZk

i is an indicator of event thati belongs to all maximum weight Independent set. Nowi belongs to
or does not belong to all maximum weight independent set withprobability 1. Hence Lemma 2.1 implies
that tki (0) 6= tki (1) with probability 1. Hence, Lemma 2.1 and definition ofxk

i implies thatxk
i = Zk

i with
probability1. Hence, in order to prove convergence, it is sufficient to prove that there existsk(ǫ) such that
for k ≥ k(ǫ), Zk

i converges with probability at least1 − ǫ. Next, we use Lemmas 2.6 and 2.7 to do so.
From Lemma 2.7, fork > d theZk

i converges on set̂Ω = Ω̂+ ∪ Ω̂− as defined above. Now, it is
sufficient to show that probability of̂Ω is at least1− ǫ. To this end, consider the following. Considerd(ǫ/2)
as in Lemma 2.6. Consider smallest oddd ≥ d(ǫ/2). From Lemma 2.3, there exists large enoughn(ǫ) such
that forn ≥ n(ǫ), for a given nodei theGd

i (eitherGr(n) or G(n, c/n)) is tree with probability at least
1 − ǫ/2. That is,

Pr
(

Gd
i is not tree

)

≤ ǫ/2. (20)

For any oddd, Ω0(d)(0) ⊆ ΩW(d)(0) and hence by Lemma 2.6, given thatd ≥ d(ǫ/2),

Pr
(

ΩW(d)(0)\Ω0(d)(0)|G
d
i is tree

)

≤ ǫ/2. (21)

From (20) and (21) it immediately follows that

Pr
(

ΩW(d)(0)\Ω0(d)(0)
)

≤ ǫ. (22)

Now, consider the following.

Pr(Ω̂) = Pr(Ω̂+ ∪ Ω̂−) = Pr(Ω̂+) + Pr(Ω̂− ∩ Ω̂c
+)

= Pr(Ω̂+) + Pr(Ω̂−) (23)

= Pr
(

Ωc
W(d)(0)

)

+ Pr
(

Ω0(d)(0)
)

= 1 −
{

Pr
(

ΩW(d)(0)
)

− Pr
(

Ω0(d)(0)
)}

.

= 1 − Pr
(

ΩW(d)(0)\Ω0(d)(0)
)

.

≥ 1 − ǫ, (24)
3Recall that the probability is induced by random graph and random node weights.
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where (24) follows from (22) and the (23) follows fromΩ0(d)(0) ⊆ ΩW(d)(0) due to Lemma 2.6. This
shows thatxk

i converges with probability at least1 − ǫ for large enoughk and graph sizen. To prove the
correctness ofxk

i note the following: to obtain (22) and subsequently (24), wehave used the fact that the
neighborhood of nodei till depthd,Gd

i is tree and hence identical toT k
i (d) or T d

i . Now, under event̂Ω, the
bonus value at nodei in T k

i orGd
i is determined by the graph structure (including weights)T d

i orGd
i . Since

Gd
i = T d

i and event̂Ω holds, the positivity of bonus values inGd
i is the same as inT d

i (for all boundary
conditions). This establishes the correctness ofxk

i as it is indicator of bonus being positive or zero. This
completes the proof of Lemma 2.8.

We note that the value ofk(ǫ) can be set at the smallest oddd ≥ d(ǫ/2), while n(ǫ) is determined by
the need of (20).

Finally, we wrap up the proof of Theorem 1.1 as follows.

Proof of Theorem 1.1.We first present the proof of (a) and then proof of (b).

Proof of (a). Consider any node, sayi of graphG. The Lemma 2.8 shows that for anyǫ > 0, there exists
large enoughn(ǫ), k(ǫ) such that for graph with nodesn ≥ n(ǫ), the decision variable of min-sum at node
i, xk

i , converges fork ≥ k(ǫ) with probability at least1 − ǫ. This completes the proof of convergence as
claimed in Theorem 1.1(a).

Proof of (b). Consider the decisions of min-sum algorithm in terms ofIk at the end of iterationk. Using
Lemma 2.8 and Markov’s inequality, we obtain that fork ≥ k(ǫ2/4), the size of the symmetric difference
of Ik andI∗, Ik∆I∗, is at mostǫn with probability at least1 − ǫ/4. Define a node as a ”bad” node if it
belongs toIk but does not belong toI∗. A node that is not ”bad” is ”good”. By definition, number of bad
nodes is no more than size of the setIk∆I∗. Hence, number of bad nodes is no more thanǫn under the
above setup.

By definition two ”good” nodes can not be neighbors as well as present inIk. Hence, under the modi-
fication procedure described before the statement of Theorem 1.1, removal of each node fromIk to obtain
eventualÎk, can be associated with the presence of a ”bad” neighbor. Using this property, the difference
between̂Ik andI∗ can be bounded by the size of neighborhood4 of anyǫn nodes inG. ForGr(n), it is no
more thanrǫn. ForG(n, c/n), using the property that for largen, the number of neighbors of each node is
like Poisson(c), we can show that the neighborhood of anyǫn nodes is no more thanǫ1n with probability
at least1 − ǫ/4, whereǫ1 → 0 asǫ → 0. Thus, till now we have obtained that for someǫ2 > 0 such that
ǫ2 → 0 asǫ→ 0,

Pr
(

|Îk∆I∗| ≥ ǫ2n
)

≤ ǫ/2. (25)

Now, using property of exponential variables, the weight ofany ǫ2n nodes can be upper bounded byǫ3n
with probability at least1 − ǫ/4, where againǫ3 → 0 asǫ2 → 0. Also, it is easy to see that both inGr(n)
with r ≤ 4 or G(n, c/n) with c ≤ 2e, the weight ofI∗ is at leastαn, for some constantα > 0, with
probability at least1 − ǫ/4 for large enoughn. From (25) and above discussion, it is easy to see that for
someδ(ǫ) > 0 whereδ(ǫ) → 0 asǫ→ 0,

P

(

|W (Îk) −W (I∗)|

W (I∗)
≥ δ(ǫ)

)

≤ ǫ. (26)

This completes the proof of Theorem 1.1.

4Here, the neighborhood of a nodev ∈ G is the set of its immediate neighbors inG, i.e. {u ∈ G : (u, v) ∈ E}.
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3 Proof of Theorem 1.2

The proof of Theorem 1.2 is very similar to that of Theorem 1.1. Similar to Theorem 1.1, we will use
results of [20] and [27] for establishing the proof of Theorem 1.2. In what follows, the proof is described in
different sub-sections with details omitted when they are similar to that presented in proof of Theorem 1.1.

3.1 Min-Sum and Computation Tree

The computation tree for min-sum algorithm for MWM is identical to that described in Section 2.1 with
the following difference: the edges of computation tree areassigned weightwuv if the end points of edge
correspond to nodesu andv of G. For MWM, the node weights are irrelevant.

As before, letT k
i denote the computation tree of min-sum algorithm for nodei till iteration k. Let

tki (j), j ∈ N (i) ∪ {n + 1} denote the weight of maximum weight matching onT k
i among all matchings

under which root nodei is connected toj under the matching (recall thati connected ton+ 1 means that it
is not connected to any node). Letbki = [bki (1), . . . , b

k
i (n+ 1)]T denote the belief vector at nodei at the end

of iterationk under min-sum algorithm for MWM. Then, we state the following result similar to Lemma
2.1.

Lemma 3.1. For anyj ∈ N (i) ∪ {n+ 1},

bki (j) = tki (j).

Like Lemma 2.1, the proof follows from [20].

3.2 Computation Tree and Local Topology

As in Section 2.2, with respect to a nodei andk ≥ 0, the subgraph ofG, Gk
i can be defined. The Lemmas

2.2 and 2.3 hold verbatim.

3.3 Min-Sum Beliefs and Bonuses

Similar to independent set, bonus for each node, can be defined in the case of matching as well. In particular,
bonusof a nodei is the difference between weight of maximum weight matchingin G and weight of
maximum weight matching that does not matchi to any node inG. Given this definition, lets consider
bonus on trees.

To this end, consider ann node finite rooted tree,H, with node0 as its root and its nodes numbered
0, . . . , n − 1. Let the set of children of nodei be denoted byC(i). Let H(i) denote the subtree rooted
at i (hence,H(0) = H). Let edges ofH be assigned non-negative weights. LetwH(i) denote maximum
weight of matching inH(i). Define bonus ofi, denoted byBH(i), to be the difference betweenwH(i) and
the maximum weight of any matching inH(i) that does not allowi to be matched with any node. The
following was stated and proved in [27] (earlier, considered by [3]).

Lemma 3.2 (Lemma 8, [27]).The bonus at nodei,BH(i) can be recursively evaluate as

BH(i) = max

(

0, max
j∈C(i)

(wi,j −BH(j))

)

.

If C(i) is empty thenBH(i) = 0. Further, ifwi,j − BH(j) > wi,j′ − BH(j′), ∀j
′ ∈ C(i)\{j} andwi,j −

BH(j) > 0 then every maximum weight matching inH(i) contains edge(i, j). If wi,j − BH(j) < 0, ∀j ∈
C(i), then all maximum weight matchings inH(i) do not contain any edge incident oni.
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Next, we state a result that relates bonus and min-sum beliefs.

Lemma 3.3. Consider a nodei with T k
i as its computation tree and[tki (1), . . . , t

k
i (n + 1)] be its min-sum

beliefs at the end of iterationk. Then,

BT k
i

= max

(

0, max
j∈N (i)

(tki (j) − tki (n+ 1))

)

,

whereBT k
i

be the bonus forT k
i as defined above.

Proof. Note thatT k
i is a tree, by construction. Hence,BT k

i
is well-defined as above. The key to the proof of

this Lemma is: (1) definition ofBT k
i

that it is the difference between weight of maximum weight matching
and weight of maximum independent set not containingi, and (2) Lemma 3.1.

Now, if for all j ∈ N (i), tki (j) ≤ tk(n + 1) then by Lemma 3.1 and definition of bonus,BT k
i

=

0. Else, under the maximum weight matching inT k
i , root nodei must be connected toj∗, wherej∗ =

arg maxj∈N (i) t
k
i (j). Hence, the bonusBT k

i
should be equal totki (j

∗) − tki (n + 1). This completes the
proof of Lemma 3.3.

3.4 Spatial Independence and Convergence

In this section, we use results of [27] to establish asymptotic independence between the bonus of computa-
tion tree at the root and the initial messages in computationtree. In particular, we are interested in graphG
whereG = G(n, c/n) for c > 0 or G = Gr(n) for r ≥ 2 and node weight distribution is exponential of
mean1.

As in Lemma 2.2 and proof of Theorem 1.1, we will considerG (G(n, c/n) orGr(n)) with large enough
n so that thed depth neighborhood of nodei, Gd

i is a tree. This happens with probability at least1 − ǫ/2
for appropriate choice ofn givend. Henceforth, we assume that for our choice ofd andǫ, n is chosen to be
large enough.

Given this, consider computation treeT k
i for a largek. Now, consider the top subtree ofT k

i of odd
depthd < k, denoted byT k

i (d), which is the same asT d
i . The Lemma 3.2 suggests that if bonus values at

the boundary nodes ofT k
i (d) is fixed and edge weights forT k

i (d) are known thenBT k
i

can be determined

without knowledge of everything inT k
i \T

k
i (d). Further, by Lemma 3.2 bonus at a nodej is non-negative

and no larger than the maximum of the edge weights incident onit. Let W ∗
j denote this quantity for node

j. LetB(d) denote the set of vectors representing boundary bonus condition for T k
i (d) with the component

of boundary condition, corresponding to a boundary nodej, is between[0,W ∗
j ]. As before, let0(d) denote

boundary condition when all nodes have bonus0 and letW∗(d) denote boundary condition when all nodes
have maximal bonus. Let rooti in T k

i haveNi = N (i) children. Let the subtrees with each of these children
at root be numbered1, . . . , Ni. Let the boundary bonus condition for subtreej be denoted byb(d)j. Recall
that forGr(n) Ni = r while for G(n, c/n) it is distributed like Poisson(c). Thus, any boundary condition
in B(d) can also be represented as tuple(b(d)j)1≤j≤Ni

. For simplicity, we present it as(b(d)j). Let

b(d)+j , 1 ≤ j ≤ Ni denote the boundary condition when each leaf node forjth subtree is conditioned

to have maximal bonus while all leaf nodes in other subtree are conditioned to be0. Similarly, letb(d)−j
denote boundary condition when all boundary nodes are set tohave maximal bonus value, but leaf nodes of
subtreej. Now, define the following events.

(a) For anyt ≥ 0 andb(d) ∈ B(d), let Ωb(d)(t) denote the event that bonusBT k
i

is at mostt given
boundary conditionb(d).
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(b) Let Ωj,b(d) ⊂ Ωc
b(d)(0) denote the event that the bonusBT k

i
is positive and edge(i, j) presents

maximum benefit (i.e.(i, j) should be part of MWM) given boundary condition asb(d).

Next, we state a result similar to Lemma 2.6. We omit proof as it is similar to that of Lemma 2.6 and uses
result (Theorems 3 and 9) of [27] for matching.

Lemma 3.4. Consider a fixedt ∈ R+, any oddd and for any bonus boundary conditionb(d) ∈ B(d),

Ω0(d)(t) ⊆ Ωb(d)(t) ⊆ ΩW∗(d)(t), (27)

and
Ωj,b(d)+j

⊆ Ωj,b(d) ⊆ Ωj,b(d)−j
. (28)

Further, for anyǫ > 0 there exists large enoughd(ǫ) such that for any oddd ≥ d(ǫ) whenGd
i – the subgraph

ofG = G(n, c/n) for c > 0 or G = Gr(n) for r ≥ 2 – is a tree, under the probability distribution induced
by randomness of edge weights,

Pr
(

Ω0(d)(t)
)

≤ Pr
(

ΩW(d)(t)
)

≤ Pr
(

Ω0(d)(t)
)

+ ǫ, (29)

and
Pr
(

Ω
j,b(d)+j

)

≤ Pr
(

Ω
j,b(d)−j

)

≤ Pr
(

Ω
j,b(d)+j

)

+ ǫ, (30)

3.5 Putting Things Together

Similar to proof of Theorem 1.1 presented in Section 2.5, theproof of Theorem 1.2 follows from Lemmas
3.1- 3.4. We omit details as they are identical to the proof ofTheorem 1.1.

4 Conclusion

In this paper, we established convergence and correctness of the recently well studied Max Product algorithm
for Maximum Weight Independent Set and Maximum Weight Matching for sparse random graphs. Our
results crucially utilized results of [27].

As a conclusion of our work, we find that the following three properties are sufficient to establish the
correctness (approximation with anyǫ) and convergence of max-product algorithm: (1) Locally tree-like
graph, (2) Monotone property of ”bonus” style function, and(3) Spatial independence orlocal optimality
property.

For many questions where the method of local weak convergence seem to work, the above properties
seem to hold. This suggests that for such questions, Max Product can be used as algorithm to find good
solutions.
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[7] P. Brémaud, “Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues,”Springer, 1991.

[8] J. Edmonds and R. Karp, “Theoretical Improvements in Algorithmic Efficiency for Network Flow Prob-
lems,”Jour. of the ACM, Vol. 19, pp 248-264, 1972.

[9] B. J. Frey, R. Koetter and A. Vardy, “Skewness and pseudocodewords in iterative decoding”Proc. 1998
IEEE Int. Symp. Information Theory, Cambridge, MA, p. 148, 1998.

[10] B.J. Frey, R. Koetter, “Exact inference using the attenuated max-product algorithm”, inAdvanced
Mean Field Methods: Theory and Practice, ed. Manfred Opper and David Saad, MIT Press, 2000.

[11] R. G. Gallager, “Low Density Parity Check Codes,”MIT Press, Cambridge, MA, 1963.

[12] G. B. Horn, “Iterative Decoding and Pseudocodewords,”Ph.D. dissertation, Dept. elect. Eng., Calif.
Inst. Technol., Pasadena, CA, 1999.

[13] S. Lauritzen, “Graphical models,”Oxford University Press, 1996.

[14] E. Lawler, “Combinatorial Optimization: Networks andMatroids”, Holt, Rinehart and Winston, New
York, 1976.

[15] N. McKeown, V. Anantharam and J. Walrand, “Achieving 100 % Throughput in an Input-Queued
Switch,” Infocom, Vol. 1, pp 296-302, 1996.

[16] J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,” San Fran-
cisco, CA: Morgan Kaufmann, 1988.

[17] T. Richardson and R. Urbanke, “The Capacity of Low-Density Parity Check Codes under Message-
Passing Decoding,”IEEE Trans. Info. Theory, Vol. 47, pp 599-618, 2001.

[18] M. Wainwright, T. Jaakkola and A. Willsky, “Tree Consistency and Bounds on the Performance of the
Max-Product Algorithm and its Generalizations,”Statistics and Computing, Vol. 14, pp 143-166, 2004.

[19] M. Wainwright, M. Jordan, “Graphical models, exponential families, and variational inference,”Tech.
Report, Dept. of Stat.,University of Cal., Berkeley, 2003.

[20] Y. Weiss, “Belief propagation and revision in networkswith loops,” MIT AI Lab., Tech. Rep. 1616,
1997.

[21] Y. Weiss, “Correctness of local probability propagation in graphical models with loops,”Neural Com-
put., Vol. 12, pp. 1-42, 2000.

[22] Y. Weiss and W. Freeman, “Correctness of belief propagation in Gaussian graphical models of arbitrary
topology,” Neural Comput., Vol. 13, Issue 10, pp 2173-2200, 2001

19



[23] Y. Weiss W. Freeman, “On the optimality of solutions of the max-product belief propagation algorithm
in arbitrary graphs.,”IEEE Trans. Info. Theory, Vol. 47, pp 736-744, 2001.

[24] J. Yedidia, W. Freeman and Y. Weiss, “Generalized Belief Propagation,”Mitsubishi Elect. Res. Lab.,
TR-2000-26, 2000.

[25] J. Yedidia, W. Freeman and Y. Weiss, “Understanding Belief Propagation and its Generalizations,”
Mitsubishi Elect. Res. Lab., TR-2001-22, 2000.

[26] D Aldous and J. M. Steele,“The objective method: Probabilistic combinatorial optimization and local
weak convergence,” Discrete Combinatorial Probability, H. Kesten Ed., Springer-Verlag, 2003.

[27] D. Gamarnik, T. Nowicki and G. Swirscsz, “Maximum Weight Independent Set and Matching in
Sparse Random Graphs. Exact Results using the Local Weak Convergence Method,” available at
arXiv.org asarXiv:math.PR/0309441.

[28] S. C. Tatikonda and M. I. Jordan, “Loopy Belief Propagation and Gibbs Measure,” Berkeley Working
Paper, 2002.

[29] S. Janson, T. Luczak and A. Rucinski, “Random Graphs,” John Wiley and Sons Inc., 2000.

[30] J. H. Spencer, “Ten Lectures on Probabilistic Method,”Second Ed., SIAM 1994.

[31] M. Bayati, D. Shah and M. Sharma, “Maximum Weight Matching via Max Product Belief Propaga-
tion,” To appear in the proceedings ofISIT , 2005.

[32] R. Karp and M. Sipser, “Maximum matchings in sparse random graphs,” In proceedings ofFOCS,
1981.

[33] D. Gamarnik,“Linear phase transition in random linearconstraint satisfaction problems,” Probability
Theory and Related Fields, 2004.

[34] J. Michael Steele, “Probability Theory and Combinatorial Optimization,” SIAM book, 1997.

20

http://arxiv.org/abs/math/0309441

	Introduction
	Setup
	Related work
	Graphical model: MWIS and MWM
	Max-Product and Min-Sum Algorithms
	Main Result
	Result for Min-Sum Algorithm for MWIS
	Result for Min-Sum Algorithm for MWM.

	Organization

	Proof of Theorem ??
	Min-Sum and Computation Tree
	Computation Tree and Local Topology
	Min-Sum Beliefs and Bonuses
	Spatial Independence and Convergence
	Putting Things Together

	Proof of Theorem ?? 
	Min-Sum and Computation Tree
	Computation Tree and Local Topology
	Min-Sum Beliefs and Bonuses
	Spatial Independence and Convergence
	Putting Things Together

	Conclusion

