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Abstract

The Max Product (MP) is a local, iterative, message passiig algorithm that has been developed
for finding the maximum a posteriori (MAP) assignment of dite probability distribution specified by
a graphical model. The scope of application of MP is vast amhrticular it can serve as a heuristic to
solve any combinatorial optimization problem. Despite shecess of MP algorithm in the context of
coding and vision, not much has been theoretically undedsabout the correctness and convergence of
MP.

The Maximum Weight Independent Set (MWIS) and Maximum WelMhatching (MWM) are clas-
sically well studied combinatorial optimization problendslot of work has been done to design efficient
algorithms for finding MWIS and MWM. In this paper, we studypéipation of MP algorithm for MWIS
and MWM for sparse random graphG{(n, ¢/n) andG,.(n), which aren node random graphs with pa-
rameterc andr respectively. We show that when weights (node or edge dépgod MWIS or MWM)
are assigned independently according to exponentialluision, the MP algorithm converges and finds
correct solution for a large range of parametric val@ndr. In particular, we show that for ary> 0,
for large enough, the MP becomes + ¢ competitive with probability at leadt— e.

Our results build upon the results of Gamarnik, Nowicki amdrScsz (2005), which established
local optimality propertyof MWIS and MWM for sparse random graphs.

1 Introduction

Graphical models (GM) are a powerful method for represgnéind manipulating joint probability distri-
butions. They have found major applications in severakdiifiit research communities such as artificial
intelligence [[16], statisticd [13], error-control codiffil] and neural networks. Two central problems in
probabilistic inference over graphical models are thosevafuating thanarginal and maximum a poste-
riori (MAP) probabilities, respectively. In general, calculgtithe marginal or MAP probabilities for an
ensemble of random variables would require a complete fepeodn of the joint probability distribution.
Further, the complexity of a brute force calculation woudddxponential in the size of the ensemble. GMs
assist in exploiting the dependency structure betweenathgom variables, allowing for the design of effi-
cient inference algorithms.

The belief propagation (BP) and max-product algorithmg {#€ére proposed in order to compute, re-
spectively, the marginal and MAP probabilities efficien®omprehensive surveys of various formulations
of BP and its generalization, the junction tree algorithiam be found in[lil,_25, 19]. BP-based message-
passing algorithms have been very successful in the coofekbr example, iterative decoding for turbo
codes and in computer vision. The simplicity, wide scopeppiiaation and experimental success of belief
propagation has attracted a lot of attention recenily [1I1¥Z24].

BP is known to converge to the correct marginal/MAP prolitiddl on tree graphs [16] or graphs with
a single looplI2|“21]. For graphical models with arbitraryderlying graphs, little is known about the
correctness of BP. Partial progress consists_of [22] whereectness of BP for Gaussian GMs is proved,



[10] where an attenuated modification of BP is shown to wonkl [A7] where the iterative turbo decoding
algorithm based on BP is shown to work in the asymptotic regimith probabilistic guarantees. To the
best of our knowledge, little theoretical progress has lieeesolving the question: Why does BP work on
arbitrary graphs?

Motivated by the objective of providing justification foralsuccess of BP on arbitrary graphs, we focus
on the application of BP to the two well-known combinatogptimization problems: Finding (1) Maximum
Weight Independent Set (MWIS) and (2) Maximum Weight Matgh{MWM), in an arbitrary graph. Itis
standard to represent combinatorial optimization proBldike finding the MWIS and MWM, as calculating
the MAP probability on a suitably defined GM which encodesdhta and constraints of the optimization
problem. Thus, the max-product algorithm can be viewedastlas a heuristic for solving the problem. In
this paper, we study the performance of the max-productitigo as a method for finding the MWIS and
MWM on a weighted graph.

It has been empirically observed that MP algorithm workd eerandom instances of hard optimization
problem. It has been widely believed that the "large girttéperty of such random instances is responsible
for this success. The main result of this paper providesfigeion of this observation in the context of
MWIS and MWM. In particular, we show that the MP algorithm gerges to correct MWIS or MWM when
(1) the underlying graph has large girth, that is, if lengthsll cycles in the graph are very large (defined
precisely later in the paper), and (2) the weight (node oegdge assigned independently according to
appropriate distribution. Next, we describe setup, rdlaterk and main results.

1.1 Setup

Graph. Consider an undirected grajgh = (V, E) with vertex setl” and edge-sekEl. Let the number of
nodes ben, i.e. |V| = n, and(i,j) € E iff nodesi and;j are connected to each other. l&() denote

the length of the shortest cycle in the graph To each node and edge, non-negative real valued weight
is assigned. Lety; denote weight of nodé andw;; denote weight of edgéi, j) € E. In this paper, we
consider sparse random grapt&y, ¢/n) andG, (n) described as follows:

1. The G(n,c/n) hasn nodes. An edge is present between any node4pgiwith probability ¢/n
independently.

2. The G,(n) hasn nodes. It is formed by sampling one of theegularn node graph uniformly at
random.

It is well known that bothG(n, ¢/n) andG, (n) havelarge d(G) for any constant, » with high probability.

In particular,d(G) — oo asn — oo with high probability. The weights (both node and edge) asgned
in an i.i.d. fashion according to a certain distribution. rinterest will be in the exponential distribution
of meanl. In this paper, we follow the notation that the random vdaalglenoting weights (node or edge)
will be represented in capital letters (suchlEg while specific instance will be represented in small lstter
(such asw;).

Independent set. A subset of nodes, sd C V, is called independent set if no two nodes € 7 have
edge between them. Weight of an independenf sdenoted byw(Z), is the sum of the weights of node in

7, thatis
w(Z) = Z wj.
JET

Let Z* denote a maximum weighted independent set (MWIS), that is

" = argmzaxw(I).



In presence of multiple MWIS, |ef* be any one of them chosen arbitrarily.
Matching. A subset of edges, sayt C FE, is called matching if no two edges 8l share a vertex. Weight
of a matchingM, denoted byw(M), is the sum of the weights of edges.M, that is

w(M) = Z Wij.-

(3,5)eM
Let M* denote the maximum weight matching (MWM), that is
M = argmj\&}lxw(./\/l).

In presence of multiple MWM, let1* be any one of them chosen arbitrarily.

1.2 Related work

In this section, we briefly describe previous work relatetM&/|S and MWM. Both MWIS and MWM are
well studied combinatorial optimization problems. Heritgs difficult to be comprehensive in reporting all
relevant work.

First, Maximum Weight Matching. The other variant of MWM iset Minimum Weight Matching,
known as the assignment problem. Both MWM and the assignprebtems are algorithmically equivalent.
Attempts to find better MWM algorithms contributed to the eleypment of the rich theory of network flow
algorithms [[8[14]. The assignment problem has been studiearious contexts such as job-assignment in
manufacturing system§s|[8], switch scheduling algorithii¥] pnd auction algorithm&][6]. Recently, Bayati
et. al. (2005)[[311] showed that MP finds MWM in a complete hipp@rgraph for arbitrary weight as long
as it is unique. They show that MP has complexity similar &t tf Auction algorithm or Edmond-Karp’s
algorithm for integer weights. Unfortunately, their rasullo not extend for arbitrary graphs. In particular,
their results do not say anything about the performance ofdiBparse random graphs.

Next, Maximum Weight Independent Set. Unlike MWM, the MWESkinown to be NP-hard and hard
to approximate within constant factor. From both algorittiesign and complexity perspective, this prob-
lem has been very well studied. Many different algorithmpprmaches have been designed to find good
algorithms.

Now, on MWIS and MWM for random graphs with random weights. oA df work since early 1980s
has concentrated on evaluating asymptotic value of cortdriahoptimization problem under natural prob-
abilistic setting. Among the first such results was due tgokaard Sipser[32]. They showed that for sparse
random graph((n,c/n) for ¢ < e, a simple linear time algorithm finds maximum independentasel
maximum size matching. As a consequence of this, they aatagxact asymptotic formula for the size
of maximum size matching ! Subsequently, there have beery megolts on evaluating exact asymptotic
answers for combinatorial optimization problems in pralistic setup. An excellent reference for such re-
sults is monograph by Steele [34]. In his seminal work, Akl(d)[3] and Aldous and Steele |26] proposed
method of local weak convergence (LWC) to establish extsari asymptotic limits for combinatorial op-
timization problem. such as the assignment problem. A teservey of Aldous and Bandopadhyay [5]
presents nice frame-work for evaluating such asymptatitdi as a solution of recursive equations. Re-
cently, the remarkable results of Gamarniki[33] and Garkamdowicki and Swirscsz [27] build upon the
LWC method to establish asymptotic limits for combinatbaptimization problems such as random linear
constraint satisfaction problem, MWIS and MWM. In summaing above results have established existence
of asymptotic limits for optimization problems and prowidmeans to evaluate them. Additionally, these
result establish the followinlpcal optimality property- decision related to a node under optimization prob-
lem depends on ite®cal neighborhood. Thus, these results suggest that theseeprsishould become easy
asymptotically. Further, these provide hope for algorgHike Max-Product to be effective in such setup.
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However, these results do not imply anything about the ageree or correctness of Max Product (Belief
Propagation) algorithms.

Finally, on convergence results for Max Product or Beligfgaigation. Initial proposal of Belief prop-
agation or Max Product was meant to work on tregs Earlier in Sectiorf1l, we have stated the evolution
and success of BP or MP algorithm.

1.3 Graphical model: MWIS and MWM

Next, we model the problem of finding MWIS and MWM as finding a FlAssignment in a graphical model
where the joint probability distribution can be completspecified in terms of the product of functions that
depend on at most two variables (nodes). For details aboid, @& urge the reader to séel[13].

GM for MWIS. Now, consider the following GNf defined onG: Let X1, ..., X,, be random variables
corresponding to the vertices 6f and taking values i{0,1}. The X; = 1 corresponds to nodebeing
present in a set an&; = 0 corresponds to absence. Next, we define a joint probabiktyilolition, denoted
by P15, onX € {0,1}" as follows:

PP (X) = % IT i @iz [] o5 @), 1)
( i

i,j)EE

whereZ is the normalization constant, the compatibility funciipn’®(-, ), are defined as

IS _J 0 ifr=1lands=1
Yij (rys) = { 1 Otherwise

and the potentials at the nodeg? (-), are defined as

eV ifr=1
9i(r) = { 1 Otherwise

The above defined GM is also called pair-wise Markov random field. The followingims are a
direct consequence of these definitions.

Claim 1.1. For the GM® as defined above, the joint densiy* (X = (z1,...,2,)) for X € {0,1}" is
nonzero if and only if the subsé&tX) = {i € V : z; = 1} is an independent set. Further, when nonzero

PIS (X) = ev7),
Claim 1.2. LetX" € {0,1}" be such that
X" = argmax{P!® (X))}
Then, the corresponding(X ") is an MWIS inG.

GM for MWM. Now, consider the following GNM defined onG: Let X1,..., X,, be random variables
corresponding to the vertices 6fsuch thatX; € {x} U N (i), whereN (i) is the set of neighbors af i.e.

N@G@) ={jeV:(,j) e B}



The X; = j € N (i) corresponds to nodebeing connected to nodewhile X; = x corresponds to node
i not connected to any other node. Next, we define a joint pitityabistribution, denoted byP*, on
X = (x1,...,7,) such thate; € {x} UN(i), as follows:
— 1
PY(X) = - I o @iz [T @), )

(i.j)ek g

whereZ is the normalization constant, the compatibility functipn (-, -), are defined as

0 ifr=jandj #1
IS o . . .
i (rys)=4¢ 0 if s=dandr #j

1 Otherwise

and the potentials at the nodeg/ (-), are defined as

bilr) = { eWir if r € N(4)

o 1 Otherwise

The above defined GM is also called pair-wise Markov random field. The followirgims are a direct
conseguence of these definitions.

Claim 1.3. For the GM" as defined above, the joint densi®y’ (X = (z1,...,2,)) for z; € {x} UN(3)
is nonzero if and only if the subsét((X) = {(i,j) € E : x; = j} is a matching. Further, when nonzero

1 —
PM (X) — EeQw(M(X)).
Claim 1.4. LetX " be such that
X" = argmax{PM (X))}
Then, the corresponding(X ") is an MWM inG.

1.4 Max-Product and Min-Sum Algorithms

The claimd_T.R andl.4 imply that finding the MWIS and MWM redtpely are equivalent to finding the
maximum a posteriori (MAP) assignment on the &GMand GMY respectively. Thus, the standard max-
product algorithm can be used as an iterative strategy foingnMWIS and MWM. Before we describe the
max-product and equivalent min-sum algorithm algorithmMIS and MWM, we need some definitions.

Definition 1. For anyp € N, let D € RP*? be anyp x p matrix andX,Y, Z € RP*!, Then the operations
x, © are defined as follows:

Dx X =7 <= 2z = max d;jzj, V1 <1 <p, 3)
1<j<p
XY =7 <z, =x;y;, V1 <1 < p. 4)
For X1,...,X,, € RP¥1,
m
OXi=X10X0...0 X, (5)

1=1



Max-Product for MWIS.

For (i,j) € E, define & x 2 compatibility matrix¥/° € R**2 such that itgr, s) entry isy/(r, s),
for 1 <i,5 < n. Also, letd!5 € R?*! be the following:

o = [¢15(0),¢" (1))

In the description of algorithm, we will not indicate the swscript IS (and later M) as it is clear from
context that thel and® correspond to IS (or M).

Max-Product Algorithm (MWIS).

(1) Let M ; = [mF_;(0),m}_;(1)]" € R**! denote the messages passed fictm ; in the iteration

k >0, for every(i, j) € E (or (j,i) € E).

(2) Initially & = 0 and set the messages as follows. Lt ; = [m_;(0),m{_;(1)]" where

1—] s Mo —g
0 e ifr=0
miny(r) = { 1 otherwise ©)

(3) Fork > 1, messages in iteratioh are obtained from messages of iteration- 1 recursively as
follows: for every(i,j) € E,

ME, = Wl« GO Moo, )
LeN )\ {5}

(4) Define the beliefsX x 1 vectors) at each nodec V, in iterationk as follows.

b = @ My ;| © ;. (8)
LeN (i)

(5) The estimated MWIS at the end of iteratibiis 7%, represented by © = (z¥, ..., 2F) where
7! = Lap)suk o)

(6) Repeat (3)-(5) tillZ* converges.

Note 2. For computational stability, it is often recommended thassages be normalized at every iteration.
However, such normalization does not change the outputecéldporithm. Since we are only interested in
theoretically analyzing the algorithm, we will ignore thermalization step. Also, the messages are usually
all initialized to one. Although the result doesn’t depemdioe initial values, setting them as defined above
makes the analysis and formulas nicer at the end.



Min-Sum for MWIS.

The max-product and min-sum algorithms can be seen to beadeni by observing that the logarithm
function is monotone and henaeax; log(«;) = log(max; «;). In order to describe the min-sum algorithm,
we need to redefin@;, 1 <7 < n, as follows:

(I)Z' = [0, w,-]T.
Now, the min-sum algorithm is exactly the same as max-priodiih the equationd{6)[17) and{11) replaced
by the following equations respectively.
(a) Replacel{6) by the following.

0 Jw; ifr=0
My (1) = { 0 otherwise ©)

(b) Replacell7) by the following.

k T k—1
MF,; = my*{ Z MH)+<I>Z} (10)

CeN(@\{i}

(c) Replacel(11) by the following.

bE = (Z M;;i> + ;. (11)
)

LeN (i

Note 3. The min-sum algorithm involves only summations and sukittas compared to max-product which
involves multiplications and divisions. Computationallifis makes the min-sum algorithm more efficient
and hence very attractive.

Min-Sum for MWM.

We describe only Min-Sum algorithm for MWM as this paper vaitialyze Min-Sum algorithm. The
difference between Min-Sum for MWIS and MWM is mainly in thenapatibility matrix¥.. and potential
matrix .. With abuse of notation, re-define the compatibility matsfollows: for(i,j) € E, define a
n+1 x n+ 1 compatibility matrix¥,; € R*+1xn+1 such that

0 ifr=jands#i
Uii(r,s) =4 0 if s=diandr #j
1 otherwise

Also, let®; € R*t1x1 pe such that

®:i(j) = { 0  otherwise



Min-Sum Algorithm (MWM).

(1) LetM] ;= [m}_ (1),...,mF_;(n+1)]" € R**! denote the messages passed fidoy in the
iterationk > 0, for every(i, j) € E (or (j,i) € E).
i+ _ — 10 0 T
(2) Initially k£ = 0 and set the messages as follows. Jl@i_,j = [m;_;(1),...,m;_;(n+1)]" where
0 o Wi j if r :j
Moy (1) = { 0 otherwise (12)

(3) Fork > 1, messages in iteratioh are obtained from messages of iteration- 1 recursively as
follows: for every(i,j) € E,

k T k—1
MF,, = U« oM+ (13)
LeN(i)\{s}
(4) Define the beliefsr{+ 1 x 1 vectors) at each nodec V, in iterationk as follows.

o= | > M| + P (14)
LeN (1)

(5) The estimated MWM at the end of iteratiéris M*, represented by " = (zb, ..., 2k) where

k k-
. pu— l b .
i argje]\/(i)g?n—i-l}{ ()}

We note thabzf = n + 1 means that nodeis not connected to any other node in that matching.

(6) Repeat (3)-(5) tillMF* converges.

1.5 Main Result
1.5.1 Result for Min-Sum Algorithm for MWIS

We first state a little modification of min-sum algorithm foM¥S before stating the result. This modifica-
tion is related to stopping condition.

Modification. Stop algorithm after large enough Consider the decisiong?) at the end of iteratiork.
The subsetZ* induced by(mf) may not be independent set. We state a simple iterative guoegcan be
made local) to obtain an independent set o’ fIntially, setZ* = Z*. Consider nodes i@i* in any order
and repeat the following till possible: if a nodés insideZ* and one or more of its neighbors are also in
7*, removei and its neighbors frord*. By definition, at the end th&* is an independent set.

Theorem 1.1. Consider graphG(n, ¢/n) or G, (n) with node weights assigned independently according to
exponential distribution of raté. Letc < 2e andr < 4. Then, for any > 0, there exists large enough
N15(e) andT!9(e) such that ifn. > N'9(e), then the following holds:



(@) For any node inG(n,c/n) or G.(n), sayi, the z¥ converges with probabiltyat least1 — ¢ for
k> TS (e).

(b) LetZ* be the independent set obtaingd by rr)odifying th@%etbtained at the end of iteratioh of
min-sum algorithm. Then, the weight®f, W (Z*) is such that fork > T (),

W (ZF) — W(T%)|
P( W(Z) 25(6)) =

whered(e) — 0 ase — 0.

1.5.2 Result for Min-Sum Algorithm for MWM.

Similar to MWIS, we make the following modification to stopgicondition of min-sum algorithm algo-
rithm for MWM.

Modification. Stop algorithm after large enough Consider the decisiong?) at the end of iteratiork.

The subset of edges\t* induced by(z¥) may not be a matching. We state a simple iterative procedure
(can be made local) to obtain a matching outAdf:. Intially, setM* = M*. Consider edges int* in

any order and repeat the following till possible: if an edgg) € MP shares an end-point with any edge
in M*, remove(i, j) and the conflicting edge fronvt*. By definition, at the end tha1* is a matching.

Theorem 1.2. Consider graphG(n, ¢/n) or G,.(n) with edge weights assigned independently according to
exponential distribution of raté. Letc > 0 andr > 1. Then, for any > 0, there exists large enough
NM(e), TM () such that fom > N (¢) the following holds:

(@) For any node inG(n,c/n) or G.(n), sayi, the z¥ converges with probabiltyat least1 — e for
k> TM(e).

(b) Let M* be the matching obtained byAthe modifying” obtained at the end of iteratioh of the
min-sum algorithm. Then, the weight.81*, W (M*) is such that fork > T (¢),

W (MF) — W (M)
P( W (M) 25(@) =

whered(e) — 0 ase — 0.

1.6 Organization

The rest of the paper is organized as follows: In Sedflon 2present proof of Theorem.1. Simialrly, in
Sectior B we present proof for Theor€ml1.2. It is very sintitathe proof of Theorerfill.1 and hence only
key ingredients are presented. Finally, we present ourlgsions.

2 Proof of Theorem[I.1

The proof of TheoreniIl1 essentially integrates result€26f pnd [27]. The proof establishes simple
connection between method of local weak convergence ancergemce of max-product for MWIS (and
later for MWM). Structurally, proof is divided into four gie. This four step method is divided into next
four Sub-sections. Combining them provides the proof ofofem[I.1. We note that this four step method
is quite general and should be useful in providing convergeand correctness of min-sum (or max-product)
algorithm for other questions.

Here, the probability distribution is induced by the chait@andom weights.
2Here, the probability distribution is induced by the chai¢eandom edge weights.



2.1 Min-Sum and Computation Tree

We first introduce a very useful concept of computation tréke computation tree provides a graphical
interpretation of the min-sum belief at a node, $agt a particular time, saf, in terms of initial messages
and the graph structure. As we shall see, it is key to our pfothis end, consider a fixed nodelLet T*

be the levelk unrolled tree corresponding to defined as foIIowsﬂk is a weighted tree of height + 1,
having node as a root. All nodes have labels from the §&t. .. ,n} corresponding to the nodes of the
original graph. The tree is constructed according to tHeviohg recursive rule: (a) root has labeglb) root

1 has a distinct child corresponding to each of its neighbadsthese children get label from the original
graph; and (c) a non-leaf node, saywith parent/ has children corresponding to each node\ifi)\{¢}
with corresponding label. The node with labeb assigned weight .

TheT* is often called the level-unwrapped graplat nodei corresponding to the GM under consid-
eration. The unwrapped graph in general is constructed flica¢ing the pairwise compatibility functions
¥;;(r, s) and potentialsp;(r), while preserving the local connectivity of the (possitibppy) graph. They
are constructed so that the messages received byiraftir & iterations in the actual graph are equivalent
to those that would be received by the rean the unwrapped graph, if the messages are passed up along
the tree from the leaves to the root.

Lett¥(0) (respectivelyt; (1)) be the weight of maximum weight independent seEfnsuch that the root
1 is not present (respectively robts present). Now, we state the following important lemma tmanects
the belief of min-sum algorithm with the above defined compiah tree.

Lemma 2.1. At the end of thé&!” iteration of the min-sum algorithm, the belief at nadef G is precisely
bf = [t (0), ¢F (1)]".

Proof. It is known [20] that under the min-sum (or max-product) aitpon, the vectorz‘bj-C corresponds to
the correct marginals for the roobf the MAP assignment on the GM corresponding/fa The pairwise
compatibility functions force the MAP assignment on thestto be an independent set.

By definition, the first (respectively second) marginalb@fcorresponds to the weight or likely-hood
of independent set in whichis absent (respectively present). The non-normalized suin-algorithm
considered in this paper makes the exact value of the bélefg) equal to the weight of independent set.
This completes the proof of LemrhaP.1.

Alternatively, the LemmB2l1 can be easily proved using Matatical Induction otk O

2.2 Computation Tree and Local Topology

Consider a fixed nodgin graphG, as before. Considér* c V defined as
VZ-"" = {j € V : there is a path betweerand; of length no more thah}.

Let EF C E be set of edges incident on these vertices. &let= (V;*, EF) denote the subgraph 6f thus
created. The following Lemma relaté% with the computation tre&?.

Lemma 2.2. If G¥ is a tree for a nodé, then computation tree corresponding to nad#l iteration &, 77
is identical toG?¥.

Proof. By definition, the nodes and edges preseritincorrespond to some nodes and edge§in The
wayﬂ"f is constructed, all nodes that are within path-lengtlt afe present irTf. Given this, it is an easy
to check (and well-known) fact that wheif is a tree, thel}* s also a tree with identical graph structure.
This completes the proof of LemrhaP.2. O

Next, we present some conditions that ensure@ais a tree.
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Lemma 2.3. Consider a fixed nodéeof graphG and a finitek. The following are set of different conditions
that ensure that¥ is a tree.

(a) If the size of the smallest cycle of gra@hs at least2k + 2, ther is tree.

(b) If G = G,(n) withr > 0, then giverk and for anye > 0, there exists large enougi(e¢) such that for
n > n(e) the G¥ is tree with probability at least — e.

(¢) If G = G(n,c/n) with ¢ > 0, then giverk and for anye > 0, there exists large enough(e) such
that forn > n(e) the G¥ is tree with probability at least — .

Proof. We first prove (a) and then provide references for (b) and (c).

Proof of (a). SupposeG? is not a tree. First note thaG¥, by definition is a connected graph. Since, we
have assumed that it is not a tree, here exists a cycﬂe";irsayc. Next, we show existence of cycle of
length at mosek + 1 and thus contradicting our assumption. To this endyJetc V;* be some two nodes
adjacent irC. By definition, there exists pathg, and P, of length at mosk starting fromi to nodesu and

v respectively. Using edges of patRs, P, and(u,v), it is straightforward to show existence of a cycle of
length no more tha@ik + 1. But this contradicts with the property th@t(and hencch) does not have any
cycle of length less tha®k + 2. Hence, our assumption d;ff not being tree is false.

Reference for (b) and (c).The (b) follows from result of[[29] and (c) follows from reswif [30].

2.3 Min-Sum Beliefs and Bonuses

In this section, we relate the min-sum beliefs with quartdjledbonus- quantitative measure of advantage
of including a node in Independent set on tree-graphs —wilgiintroduced by Aldous [3] and subsequently
utilized by Gamarnik et. al[27] and others.

To this end, consider an node finite rooted treef!, with node0 as its root. Letn nodes ofH be
numbered), ...,n — 1. Let the set of children of nodebe denoted by’(i). Let H(i) denote the subtree
rooted ati (hence,H (0) = H). Letw! () denote maximum weight of an independent seHi(i). Define
bonus of a node (or sub-treef (7)) as

Br) =l — Z wh
JEC(7)

If C(i) is empty, that is is a leaf node themB;;) = w") = w;. The above definition implies thdt;,
is the difference between weight of maximum weight Indeeendet inH (i) and the weight of maximum
weight independent set iff (i) not containing the roat Intuitively, By ;) captures théonusof including
i in the candidate maximum weighted independent séf @f. Now, we state the following Lemma,

Lemma 2.4 (Lemma 7, |2¥]). The bonus at nod& By ;) can be recursively evaluate as

Bp (i) = max (O,wi Z B j) ) .

JeC(3)

If C(i) is empty therB ;) = w;. Further, ifw; > Zjec(i) Brj (respectivelwi < Zjec(i) BH(]-)) then

all maximum weighted independent set in sub-fil§¢) must contain (respectively must not contaii

Proof. The above Lemma follows from definition. For completeness refer reader ta [27] for the proof.
O
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Next, we state a result that relates bonus and min-sum belief

Lemma 2.5. Consider a node with 7* as its computation tree arfd(0), t*(1)]7 as its min-sum beliefs at
the end of iteratiork. Then,

By = max (0,t5(1) - ¢4(0)) ,
where B be the bonus fof* as defined above.

Proof. Note thatﬂk is a tree, by construction. HencBy. is well-defined. The key to the proof of this
Lemma is: (1) definition o3, that it is the difference between weight of maximum indegendet and
weight of maximum independent set not containingnd (2) Lemm&aZ2]1.

Now, if t5(1) < ¥(0) then by Lemmd2]1, the difference between weight of maximodependent
set and weight of maximum independent set not containirggnon-positive. HenceB ;. should be0.

1

Similarly, if t¥(1) > t¥(0) then by Lemm&Z2]1 and from definition &, the (¢¥(1) — ¢¥(0)) is the same
as By Putting this together, we obtain thBt.. = max (0,tF(1) — t5(0)). O

The LemmdZ5 establishes the following crucial relatiotwieen bonus and min-sum belief: conver-
gence of min-sum beliefs (in terms of its conclusion for filgdmaximum independent set) is equivalent to
convergence of bonuses on computation trees (of growirg).si%'e wish to note that similar convergence
on computation tree for general loopy belief propagatigoalthm was studied iri.[28] (see Proposition 3.1,
for example).

2.4 Spatial Independence and Convergence

In this section, we establish the asymptotic independemtedzn the bonus of computation tree at the
root and the initial messages in computation tree as lontp@sninimum length of cycle in underlying
graphG is large enough (growing teo asymptotically). In particular, we are interested in gr&pkwhere

G = G(n,c/n) forc < 2eor G = G,(n) for r < 4 and node weight distribution is exponential of mdan

Consider a node, say Let its computation tree bE! for a largek. Now, consider the top subtree of
TF of odd depthd < k (usuallyd < k), denoted byT}(d). ThusT?’(d) can be obtained by removing all
nodes and edges @ that are beyond depthfrom its root. Note that7}(d) is identical toT?. Hence, in
what follows we usé*(d) andT¢ interchangeably.

Now, consider a particular instance of node weights for adles in thel’*\ 7% (d). Let they be denoted
by vectorV. Now, consider nodes that are leavedJ(d), denoted by5(7}*(d)). Consider one such leaf,
say/l € §(TF(d)). This leaf,¢, has a computation tree of depth— d underneath itself. Givefil’, the
messages coming to(under min-sum algorithm) from its children are a functidrid. From Lemmd_215,
we can conclude that the nodean determine its bonus of nodgy, with respect to the sub-tree rooted/at
using the messages coming from its children and its own wel§jh An application of LemmBZ14 implies
that B, € [0, W,]. Let the vector of bonus values on the leaf nodeg/ui?) be denoted by (d) and let3(d)
represent the (compact and bounded) set dé@l) such that each component of vector is bounded between
0 and the corresponding node weight. Note that since nodehtgegge random variableB,d) is a random
set. From above discussion, it is clear that irrespectivgraph structure and node weight for sub-graph
TF\TF(d), the vector of boundary bonus values is3(d). Also, LemmdZ} implies that the bonus at root
of T}, By is independent of everything i\ T (d), givenb(d). Thus, to prove convergence Bf, it
is sufficient to show thaBTZ_k converges for any(d) € B(d), . In what follows, our eventual goal will be
to show thatZ¥ = 1yp_, >0} converges for any(d) € B(d) to prove TheorernIl1.

Before we proceeél further, we present some more usesfuiomtd_et the boundary condition of all
bonus at leaf nodes @f* (d) being0 be represented by(d) and the boundary condition of all bonus being
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equal to the node weight be denoted W(d). For any boundary conditiob(d) € B(d), let Qyq (1)
denote the event the bonus at roofftf, B is at most given the boundary bonus &gd) € B(d). From
context, it should be clear thé () refers to a fixedl. The following result is a direct adaptation of a result
of [27]. For completeness, we will give an idea for the proof.

Lemma 2.6. Consider a fixed € R, any oddd and for any bonus boundary conditiésid) € B(d),
Qo(a) (1) € Qpay(t) S Qg (t)- (15)

Further, for anye > 0 there exists large enough{¢) such that for any odd > d(e) whenG¢ —the subgraph
of G = G(n,c/n) forc < 2eor G = G,(n) forr < 4 —is atree, under the probability distribution induced
by randomness of node weights,

Pr (Qo(d)(t)) < Pr (QW(d) (t)) < Pr (QO(d) (t)) + €. (16)

Proof. We first prove[Ib). Leb(d) € B(d) be some boundary bonus condition for tfEé Letb(d), €
B(d) andb(d), € B(d) be two other boundary conditions such that each componebt{dyf is smaller
thanb(d); each component d(d) is smaller tharb(d),. Let[Bra|b] denote value of bonus at the root of

T¢ given boundary bonus conditidn € B(d).
Now, as given in the statement of Lemma, det> 0 be odd. By definition,Ti’“ is a tree and hence
the bonus for each node @ is defined recursively as stated in Lemind 2.4. In particligy,|b] can be

recursively evaluated given the boundary bonus condition,3(d), and weights of nodes iﬁid. Given this
recursive relation, it is straightforward to verify thaetiialue of55.. is anti-monotone function of boundary
condition for oddd, that is, Z

[BTid|b(d)1] z [BTid|b(d)] 2 [BTid|b(d)2]- 17)

To conclude the proof of{15), in addition tb={17), we need fibllowing: (1) Any boundary condition,
b(d) € B(d) is component-wise large tha(d) and component-wise smaller thdN (d); and (2) B«
given boundary conditiotb(d) € B(d) is the same aBpx (for k > d), given b(d) as the boundéry
condition forTf(d). Putting these together, we obtain that for any ddd

Qoay(t) € Qa)(t) € Qwa)(t).

Next we prove[(T6). For this suppose that giver 0, there is large enougfi(¢) (determined later) such
that for some oddl > d(¢), G¢ is a tree. Though, under the statement of Lemma, we are gowie
condition ongl being tree, it is useful to keep in mind that the conditiorﬁtjfbeing tree is satisfied with
probability at leasti — ¢ for large enough when graphG = G,.(n),r > 2 or G(n,c/n),c > 0, as stated
in Lemm&Z.3B.

Given thatG¢ is tree, Lemm&212 implies thét¢ = T = T}(d). Further, boundary conditiob(d) €
B(d) can be seen as a boundary condition for nodeS%fBy definition of bonus, the bonus oin G¢ is
the same as the bonus @if given the identical boundary conditids(d) € B(d) and the identical graph
structure (and weights).

Let .(-) denote the event for bonus oin G¢, similar to the evenf.(-) defined earlier for bonus af
in 7. Now, results of[[2I7] (Theorems 3 and 9) immediately implgttfor large enough odd > d(e),

Pr (Qoua) () < Pr (Swey®) < Pr(Qow (1)) +e (18)

Repeating what we stated above, thatié,= T¢, Q.(-) = Q.(-). Hence, we obtain that for large enough
oddd > d(e)

Pr (Qo(d)(t)) < Pr (QW(d) (t)) < Pr (QO(d) (t)) + €. (29)
This completes the proof of LemrhaP.6. O
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2.5 Putting Things Together
In this section, we complete the proof of Theoden] 1.1. Define

Q- = Qo(g)(0), and 1y = Q54 (0).
We state the following two Lemmas.

Lemma 2.7. Given oddd, for any boundary bonus conditids(d) € B(d), the B;» > 0 for anyw € Qy
and By« = 0 foranyw € Q_.

Proof. It follows directly from definitions of2,, 2_ and Lemm&2J6. 0

Lemma 2.8. Consider a fixed node Under the setup of LemriaP.6 (equivalently that of Thebrdn for
anye > 0, there exists large enough(c) and k(¢) such that for (random) graph with > n(e), thez! of
min-sum algorithm converges to the correct valuekfas k(¢) with probability? at leastl — e.

Proof. ConsiderZ* = 1,5 .. Under the setup of Lemnia2.8, we first show equivalence tmtwe
2 { Tk>}

convergence oZi’f and xf Since weights are distributed according to exponentiatioan variable, the
probability of W; being equal to the sum of bonuses of nodes that are childn'a-indr’i’C is 0. Hence, from
LemmalZH, with probabilityl eitheri belongs to all maximum weight Independent seth’ﬁ or it does
not belong all maximum weight Independent seﬂ)’h Consequently, another use of Lemimd 2.4 implies
that Zi’“ is an indicator of event thatbelongs to all maximum weight Independent set. Ndvelongs to
or does not belong to all maximum weight independent set pritihability 1. Hence Lemm&2l1 implies
thatt¥(0) # t¥(1) with probability 1. Hence, Lemm&211 and definition of implies thatz? = ZF with
probability 1. Hence, in order to prove convergence, it is sufficient tovprthat there eX|stis( ) such that
for k > k(e), ZF converges with probability at least- e. Next, we use Lemmds2.6 ahdl2.7 to do so.

From Lemmd 217, fok > d the ZF converges on se@ = Q, U Q_ as defined above. Now, it is
sufficient to show that probability ¢? is at leastl — e. To this end, consider the following. Consid&E /2)
as in Lemm&Zl6. Consider smallest atld: d(e/2). From Lemm&Z]3, there exists large enough) such
that forn > n(e), for a given node the G¢ (either G.(n) or G(n,c/n)) is tree with probability at least
1 —€/2. Thatis,

Pr (G? is not tre(% < €2 (20)
For any odd?, Q¢(4)(0) € Qwq)(0) and hence by Lemnia2.6, given that d(e/2),
Pr <Qw(d) (0)\Qo(a(0)| G is tree) < €2 (1)
From [20) and[(21) it immediately follows that
Pr (Qw(@)(0)\ Qo) (0) < e (22)

Now, consider the following.
Pr(Q) = Pr(Q UQ_) = Pr(Qy) +Pr(Q_NQ°)
= Pr()+Pr() (23)

- 1- {Pr (Qw(d (0 )) Pr (Qo(d)(o))} '
— 1 —Pr (2w (0)\Q0()(0)) .
> 1 —k¢, @

3Recall that the probability is induced by random graph amdean node weights.
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where [2#) follows from[(22) and th&{3) follows frofty4)(0) € Qw(q)(0) due to Lemmd&2]6. This
shows that:¥ converges with probability at least— « for large enoughi and graph size.. To prove the
correctness of¥ note the following: to obtain{22) and subsequerillyl (24),haee used the fact that the
neighborhood of nodetill depth d, G¢ is tree and hence identical ¢f (d) or . Now, under everf, the
bonus value at nodein T or G¢ is determined by the graph structure (including weigtiiépr G¢. Since
G¢ = T¢ and event) holds, the positivity of bonus values @¢ is the same as iff (for all boundary
conditions). This establishes the correctnessfo&s it is indicator of bonus being positive or zero. This
completes the proof of Lemnia®.8.

We note that the value df(e) can be set at the smallest odd> d(e/2), while n(e) is determined by
the need of[(20). O

Finally, we wrap up the proof of TheordmL.1 as follows.

Proof of Theoreri Tl 1We first present the proof of (a) and then proof of (b).

Proof of (a). Consider any node, sayof graphG. The LemmdZI8 shows that for aay> 0, there exists
large enough(¢), k(e) such that for graph with nodes > n(e), the decision variable of min-sum at node
i, azf converges fok > k(e) with probability at least — e. This completes the proof of convergence as
claimed in Theorerfi Il11(a).

Proof of (b). Consider the decisions of min-sum algorithm in termg bfat the end of iteratiort. Using
LemmalZB and Markov's inequality, we obtain that fo>> k(e?/4), the size of the symmetric difference
of TF andZ*, Z¥AZ*, is at mosten with probability at leastt — /4. Define a node as a "bad” node if it
belongs taZ* but does not belong t6*. A node that is not "bad” is "good”. By definition, number ofba
nodes is no more than size of the 88AZ*. Hence, number of bad nodes is no more tharunder the
above setup.

By definition two "good” nodes can not be neighbors as well@sent inZ*. Hence, under the modi-
fication procedure described before the statement of Thel@®, removal of each node frofif to obtain
eventualZ*, can be associated with the presence of a "bad” neighbongltkis property, the difference
betweerZ* andZ* can be bounded by the size of neighbortfbotiany en nodes inG. ForG,(n), itis no
more thanren. For G(n, ¢/n), using the property that for large the number of neighbors of each node is
like Poisson¢), we can show that the neighborhood of amynodes is no more than n with probability
at leastl — ¢/4, wheree; — 0 ase — 0. Thus, till now we have obtained that for some> 0 such that
€o — 0ase — 0,

Pr <|kaI*| > 62n> < €/2. (25)

Now, using property of exponential variables, the weighay e;n nodes can be upper bounded day:

with probability at least — €/4, where agaires — 0 ases — 0. Also, it is easy to see that both @#,.(n)

with » < 4 or G(n,c/n) with ¢ < 2e, the weight ofZ* is at leastan, for some constantr > 0, with
probability at leastt — ¢/4 for large enough. From [Z5) and above discussion, it is easy to see that for
somej(e) > 0 whered(e) — 0 ase — 0,

[W(Z*) = W(T%)|
> < e
P ( ) >0(e)| < € (26)
This completes the proof of TheordmI1.1. O

“Here, the neighborhood of a nodec G is the set of its immediate neighborsGhi.e. {u € G : (u,v) € E}.
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3  Proof of Theorem[I.2

The proof of Theoreni 112 is very similar to that of Theorenl 1Similar to Theoreni_Tl1, we will use
results of [20] and[27] for establishing the proof of Theui&.2. In what follows, the proof is described in
different sub-sections with details omitted when they arelar to that presented in proof of Theoréml1.1.

3.1 Min-Sum and Computation Tree

The computation tree for min-sum algorithm for MWM is ideati to that described in SectionR.1 with
the following difference: the edges of computation treeassigned weightv,,,, if the end points of edge
correspond to nodesandv of G. For MWM, the node weights are irrelevant.

As before, IetTi’f denote the computation tree of min-sum algorithm for nodd iteration k. Let
th(5),5 € N(i) U {n + 1} denote the weight of maximum weight matching Bf among all matchings
under which root nodéis connected tg under the matching (recall thatonnected ta + 1 means that it
is not connected to any node). Lgt= [b¥(1),...,b¥(n + 1)]T denote the belief vector at nodat the end
of iteration & under min-sum algorithm for MWM. Then, we state the follogiresult similar to Lemma

2.
Lemma 3.1. Foranyj € N(i) U {n + 1},

bi(5) = t7 (j)-

Like LemmdZ1L, the proof follows from[20].

3.2 Computation Tree and Local Topology

As in Sectior ZR, with respect to a nodandk > 0, the subgraph ofy, Gf can be defined. The Lemmas
22 andZB hold verbatim.

3.3 Min-Sum Beliefs and Bonuses

Similar to independent set, bonus for each node, can be defirtiee case of matching as well. In particular,
bonusof a nodei is the difference between weight of maximum weight matctimgz and weight of
maximum weight matching that does not maicto any node inG. Given this definition, lets consider
bonus on trees.

To this end, consider an node finite rooted treel!, with node0 as its root and its nodes numbered
0,...,n — 1. Let the set of children of nodebe denoted by’ (i). Let H(i) denote the subtree rooted
ati (hence,H (0) = H). Let edges offf be assigned non-negative weights. két() denote maximum
weight of matching inH (i). Define bonus of, denoted byBy; (), to be the difference between” ) and
the maximum weight of any matching i (i) that does not allow to be matched with any node. The
following was stated and proved in_|27] (earlier, consideng [3]).

Lemma 3.2 (Lemma 8, |27]). The bonus at nod& By ;) can be recursively evaluate as

BH(z) = max (O,jr;lg(}li)(wm - BH(]))> .

If C(i) is empty themBy ;) = 0. Further, ifw; ; — Br(j) > wij — Br, Vi’ € C(i)\{j} andw; ; —
Bprj) > 0 then every maximum weight matchingfif{i) contains edgéi, j). If w; ; — By <0, Vj €
C'(i), then all maximum weight matchings #i(i) do not contain any edge incident on
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Next, we state a result that relates bonus and min-sum belief

Lemma 3.3. Consider a nodé with T* as its computation tree and?(1), ..., t¥(n + 1)] be its min-sum
beliefs at the end of iteratioh. Then,

By = 0, th(j) —tk 1)),
e = max (0, o (1£) — (o + 1))

where B be the bonus fof* as defined above.

Proof. Note thatZ* is a tree, by construction. HencBy is well-defined as above. The key to the proof of
this Lemma is: (1) definition oB, that it is the difference between weight of maximum weightehing
and weight of maximum indepenldent set not containirand (2) Lemm&3l1.

Now, if for all j € N (i), t5(j) < t*(n + 1) then by Lemm4-3]1 and definition of bonuByy. =
0. Else, under the maximum weight matchingjl}’i, root nodei must be connected tg*, wherej* =
argmax;e ;) 1+ (j). Hence, the bonug;, should be equal tef (%) — t¥(n + 1). This completes the
proof of Lemmd_3B. O

3.4 Spatial Independence and Convergence

In this section, we use results 0f [27] to establish asynptotependence between the bonus of computa-
tion tree at the root and the initial messages in computatem In particular, we are interested in gragh
whereG = G(n,c/n) forc > 0 or G = G,(n) for r > 2 and node weight distribution is exponential of
meanl.

As in LemmdZP and proof of Theordm11.1, we will consi@efG (n, ¢/n) or G,.(n)) with large enough
n so that thel depth neighborhood of node G¢ is a tree. This happens with probability at least /2
for appropriate choice of givend. Henceforth, we assume that for our choicel@nde, n is chosen to be
large enough.

Given this, consider computation trééC for a largek. Now, consider the top subtree ﬂsf of odd
depthd < k, denoted byl'*(d), which is the same d&?. The Lemmd43]2 suggests that if bonus values at
the boundary nodes @} (d) is fixed and edge weights @ (d) are known ther3; can be determined

without knowledge of everything itfi’“\Tf(d). Further, by Lemm&=32 bonus at a ngdis non-negative
and no larger than the maximum of the edge weights inciderit. dret wx denote this quantity for node
j. Let B(d) denote the set of vectors representing boundary bonustmmétr 77 (d) with the component

of boundary condition, corresponding to a boundary npds betweeri0, W;]. As before, le0(d) denote
boundary condition when all nodes have bofied letW™*(d) denote boundary condition when all nodes
have maximal bonus. Let rootn T haveN; = N (i) children. Let the subtrees with each of these children
at root be numbered, .. . , V;. Let the boundary bonus condition for subtrelee denoted by)(d)j. Recall
that for G,.(n) N; = r while for G(n, ¢/n) it is distributed like Poissor]. Thus, any boundary condition
in B(d) can also be represented as tuplgd),)1<;<n,. For simplicity, we present it agb(d),). Let
b(d)j, 1 < j < N; denote the boundary condition when each leaf nodejffoisubtree is conditioned

to have maximal bonus while all leaf nodes in other subtreecanditioned to b@. Similarly, letb(d)
denote boundary condition when all boundary nodes are $&vi® maximal bonus value, but leaf nodes of
subtreej. Now, define the following events.

(@) Foranyt > 0 andb(d) € B(d), let Qy,4)(t) denote the event that bonus« is at mostt given
boundary conditiorb(d).
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(b) LetQ;pa) C Qg( d) (0) denote the event that the boni.. is positive and edgéi, j) presents
maximum benefit (i.e(é, j) should be part of MWM) given boundary conditionla&l).

Next, we state a result similar to Leminal2.6. We omit proof s similar to that of LemmBA216 and uses
result (Theorems 3 and 9) &f [27] for matching.

Lemma 3.4. Consider a fixed € R, any oddd and for any bonus boundary conditiér{d) € 5(d),

Qo(a)(t) € Qp(ay(t) € Qw(a)(?), (27)

and
Qj b(d)f C Qjp@) S Qj,b(d)*- (28)

? J
Further, for anye > 0 there exists large enougt{e) such that for any odd > d(¢) Whent —the subgraph
of G = G(n,c/n) forc > 0 or G = G,(n) for r > 2 —is a tree, under the probability distribution induced
by randomness of edge weights,

Pr (Qoa)(t)) < Pr(Qwa)(t)) < Pr(Qow(t) +e (29)

and
Pr (2w ) < Pr (L ) < Pr(Qpr) +6 (30)

3.5 Putting Things Together

Similar to proof of Theorerfi Il 1 presented in Secfion 2.5 pitoef of Theorenfi_L]2 follows from Lemmas
B-[3:3. We omit details as they are identical to the prodftedoren{L1.

4 Conclusion

In this paper, we established convergence and correcthtssrecently well studied Max Product algorithm
for Maximum Weight Independent Set and Maximum Weight Matghfor sparse random graphs. Our
results crucially utilized results of [27].

As a conclusion of our work, we find that the following thre@perties are sufficient to establish the
correctness (approximation with amy and convergence of max-product algorithm: (1) Locallyetlige
graph, (2) Monotone property of "bonus” style function, a8yl Spatial independence twrcal optimality
property.

For many questions where the method of local weak conveegeaem to work, the above properties
seem to hold. This suggests that for such questions, MaxuBr@@n be used as algorithm to find good
solutions.
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