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Optimality of Belief

Propagation for Random

Assignment Problem

J. Salez∗ and D. Shah†

Abstract

The assignment problem concerns find-
ing the minimum-cost perfect match-
ing in a complete weighted n × n bi-
partite graph. Any algorithm for this
classical question clearly requires Ω(n2)
time, and the best known one (Edmonds
and Karp, 1972) finds solution in O(n3).
For decades, it has remained unknown
whether optimal computation time is
closer to n3 or n2. We provide answer
to this question for random instance of
assignment problem. Specifically, we es-
tablish that Belief Propagation finds so-
lution in O(n2) time when edge-weights
are i.i.d. with light tailed distribution.

1 Introduction

Given a matrix of n2 costs (Xi,j)1≤i,j≤n,
the assignment problem consists of de-
termining a permutation π of {1, . . . , n}
whose total cost

∑n

i=1 Xi,π(i) is mini-
mal. This is equivalent to finding a
minimum-weight complete matching in

the bipartite graph G = (V1 ∪ V2, E),
with |V1| = |V2| = n and E = {(i, j) :
i ∈ V1, j ∈ V2}, edge (i, j) ∈ E be-
ing assigned weight Xi,j . Recall that
a complete matching on a graph is a
subset of pairwise disjoint edges cover-
ing all vertices. In what follows, we con-
sider the random model where the (Xi,j)
are i.i.d. with c.d.f. denoted by H (i.e.
H(t) = P(Xi,j ≤ t)). The resulting ran-
domly weighted n × n bipartite graph
will be denoted by Knn and its optimal
matching by π∗

Knn
. We are interested in

the convergence speed of the Belief Prop-
agation heuristic for finding π∗

Knn
.

1.1 Related Work

Although it seems cunningly simple, the
assignment problem has led to rich de-
velopment in combinatorial probability
and algorithm design since the early
1960s. Partly motivated to obtain in-
sights for better algorithm design, the
question of finding asymptotics of the av-
erage cost of π∗

Knn
became of great in-
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terest (see [16, 8, 10, 11, 7]). In 1987,
through replica method based calcula-
tions, Mézard and Parisi [13] conjectured
that

E

[
n∑

i=1

Xi,π∗

Knn
(i)

]
−−−−→
n→∞

ζ(2).

This was rigorously established by Al-
dous [2] more than a decade later (2001),
leading to the formalism of “the objec-
tive method” (see survey by Aldous and
Steele [4]). The finite exact version of
the above conjecture,

E

[
n∑

i=1

Xi,π∗

Knn
(i)

]
=

n∑

i=1

1

i2
,

was independently established by Nair,
Prabhakar and Sharma [14] and Linus-
son and Wȧstlund [12] in 2003.

On the algorithmic aspect, the as-
signment problem has been extremely
well studied and its consideration laid
foundations for the rich theory of net-
work flow algorithms. The best known
algorithm is by Edmonds and Karp [9]
and takes O(n3) operations for arbitrary
instance. Concurrently, the statistical
physics-based approach mentioned above
suggested a non-rigorous decentralized
iterative strategy which turned out to be
an instance of the more general Belief
Propagation (BP) heuristic, popular in
artificial intelligence (see, book by Pearl
[15] and work by Yedidia, Freeman and
Weiss [17]). In a recent work, one of the
authors of the present paper, Shah along
with Bayati and Sharma [6], established
correctness of this iterative scheme for
any instance of the assignment problem,
as long as the optimal solution is unique.
More precisely, they showed exact con-
vergence within at most ⌈

2n maxi,j Xi,j

ε
⌉

iterations, where ε denotes the difference
of weights between optimum and second

optimum. This bound is always greater
than n, and typically scales like O(n2) as
n goes to infinity – at least in the ran-
dom model mentioned above. Since each
iteration needs time Θ(n2), the resulting
computation cost does not seem compet-
itive.

1.2 Our contribution

Simulation studies show much better
performances on average than what is
suggested by the worst case upper bound
in [6]. Motivated by this, we consider
here the question of determining the typ-
ical convergence rate of BP when run-
ning on large randomly generated cost
matrices. Specifically, we establish that
the number of iterations required in or-
der to find an almost-optimal assignment
remains bounded as n → ∞. Thus, the
total computation cost scales as O(n2)
only. This is in sharp contrast to the best
known bound of O(n3). Clearly, no al-
gorithm can perform better than Ω(n2).
That is, BP is optimal for the random
assignment problem.

2 Result and organization

2.1 BP algorithm

As we shall see later, the analysis of BP
on Knn as n → ∞ will lead us to the
study of the same dynamics on a limit-
ing infinite tree. Therefore, we define the
BP algorithm once and for all for an ar-
bitrary weighted graph G = (V, E). We
use notation that the weight of {u, v} ∈
E is ‖u, v‖G. By w ∼ v, we denote that
w is a neighbor of v in G. Also note that
a complete matching on G can be equiv-
alently seen as an involutive mapping πG

connecting each vertex v to one of its
neighbors πG(v). We shall now onwards
use this mapping representation rather
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than the edge set description.
The BP algorithm is distributed

and iterative: in each iteration, it in-
volves sending a real-valued message in
both directions along each edge of the
graph. Specifically, in iteration k ≥ 0
every vertex v ∈ V sends a message
〈v → w〉kG to each of its neighbor w ∼ v.
Initialization and update are as follows:

〈v→w〉0G = 0 ; (1)

〈v→w〉k+1
G = min

u ∼ v

u 6= w

{∥∥u, v
∥∥

G
−〈u→v〉kG

}
.(2)

Using these messages, every vertex v ∈ V

estimates the neighbor πk
G(v) to which it

should be connected as follows:

πk
G(v) = argmin

w∼v

{∥∥v, w
∥∥

G
−〈w→v〉kG

}
.

(3)
When G = Knn, [6] ensures conver-

gence of πk
Knn

to the optimum π∗
Knn

as
long as the latter is unique, which holds
a.s. provided the cost c.d.f. H is contin-
uous. The present paper asks about the
typical speed of such a convergence, and
more precisely its behavior as n → ∞.

2.2 Result

We introduce the natural fraction-
difference distance between two given as-
signments π, π′ on a graph G = (V, E) :

d(π, π′)=
1

|V |
card

{
v ∈ V, π(v) 6= π′(v)

}
.

Theorem 1. Assume the cumulative
distribution function H satisfies:

A1. Regularity : H is continuous and
H ′(0+) exists and is non-zero;

A2. Light-tail property : as t → ∞,
H(t) = 1 −

(
e−βt

)
for some β > 0.

Then, lim
k→∞

lim
n→∞

E

[
d
(
πk
Knn

, π∗
Knn

)]
= 0.

In other words, given any ε > 0,
there exists k(ε), n(ε) such that the ex-
pected fraction of non-optimal row-to-
column assignments after k(ε) iterations
of the BP algorithm on a random n × n

cost array is less than ε, no matter how
large n ≥ n(ε) is. Consequently, the
probability to get more than any given
fraction of errors can be made as small
as desired within finite number of iter-
ations, independently of n. Since each
iteration requires O(n2) operations, the
overall computation cost of the BP algo-
rithm for the random assignment prob-
lem scales as O(n2) only. This applies for
large class of cost distributions, including
uniform over [0, 1] or exponential.

2.3 Organization

The remaining of the paper is dedicated
to proving Theorem 1. Although it is far
from being an implication of the result
by Aldous [2], it utilizes the machinery
of local weak convergence, and in partic-
ular the Poisson Weighted Infinite Tree
(PWIT) T appearing as the limit of the
sequence (Knn)n≥1. These notions are
recalled in Section 3. Figure 2.3 illus-
trates the three steps of our proof.

1. First (Section 4), we prove that
BP’s behavior on Knn “converges”
as n → ∞ to its behavior on T
– corresponding to the left verti-
cal arrow in the Figure 2.3 and for-
mally stated as Theorem 3.

2. Second (Section 5), we establish
convergence of the recursive tree
process describing BP’s execution
on T – corresponding to the bot-
tom horizontal arrow in Figure 2.3
and summarized as Theorem 5.
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We note that Theorem 5 resolves
an open problem stated by Aldous
and Bandyopadhay [3].

3. Third (Section 6), the connection
between the fix-point on T and the
optimal matching on Knn is pro-
vided by the work by Aldous [2] –
corresponding to the vertical right
arrow and stated as Theorem 6.
We use it to conclude our proof.

πk
Knn

n→∞

��

?

k→∞
// π∗

Knn

n→∞

��

πk
T k→∞

// π∗
T

Figure 1. Theorem 1 corre-
sponds to establishing top-horizontal ar-
row; which is done by establishing the
other three arrows in the above diagram.

3 Preliminaries

We recall here the necessary framework
introduced by Aldous in [2]. Consider
a rooted, edge-weighted and connected
graph G, with distance between two ver-
tices being defined as the infimum over
all paths connecting them of the sum of
edge-weights along that path. For any
̺ > 0, define the ̺−restriction of G as
the sub-graph ⌈G⌉̺ induced by the ver-
tices that are within distance at most ̺

from the root. Call G a geometric graph
if ⌈G⌉̺ is finite for every ̺ > 0.

Definition 1 (local convergence).
Let G, G1, G2, . . . be geometric graphs.

We say that (Gn)n≥1 converges to G if
for every ̺ > 0 such that no vertex in G

is at distance exactly ̺ from the root:

1. ∃n̺ ∈ N s.t. the ⌈Gn⌉̺, n ≥ n̺ are
all isomorphic1 to ⌈G⌉̺ ;

2. One can chose the isomorphisms
γ̺

n : ⌈G⌉̺ ⇋ ⌈Gn⌉̺, n ≥ n̺ so that
for every edge {u, v} in ⌈G⌉̺:
∥∥γ̺

n(u), γ̺
n(v)

∥∥
Gn

−−−−→
n→∞

∥∥u, v
∥∥

G
.

The intuition behind this definition
is that for large n, Gn should look very
much like G in any arbitrarily large but
fixed neighborhood of the root, in terms
of both the structure (item 1) and the
edge-weights (item 2). When each ori-
ented edge (u, v) is also assigned a la-
bel λ(u, v) taking values in some Polish
space (Λ, dΛ), we moreover require the
isomorphisms γ̺

n to satisfy, for every ori-
ented edge (u, v) in ⌈G⌉̺,

λGn
(γ̺

n(u), γ̺
n(v))

dΛ−−−−→
n→∞

λG (u, v) .

With little work, one can define a
distance that metrizes this notion of con-
vergence and makes the space of geomet-
ric graphs complete and separable. As a
consequence, one can import the usual
machinery related to weak convergence
of probability measures.

Next, we recall result by Aldous
that showed Knn local weak convergence
to the so-called Poisson Weighted Infi-
nite Tree. Before we state the result,
we will need some notation that will
be useful throughout the paper. Let V
denote the set of all finite words over
the alphabet N∗, ∅ the empty word, “·”
the concatenation operation and for any

1An isomorphism from G = (V, ∅, E) to G′ = (V ′, ∅
′, E′), denoted γ : G ⇋ G′, is simply a bi-

jection from V to V ′ preserving the root γ
`

∅
´

= ∅
′) and the structure (∀(x, y) ∈ V, {γ(x), γ(y)} ∈

E′ ⇔ {x, y} ∈ E).
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v ∈ V∗ := V \ {∅}, v̇ the word obtained
from v by simply deleting the last let-
ter. Set also E := {{v, v.i}, v ∈ V , i ≥ 1}.
The graph T = (V , E) denotes an infinite
tree with ∅ as root, all words of length 1
as the nodes at depth 1, words of length
2 as the nodes at depth 2, etc.

Theorem 2 (Aldous, [1, 2]). To
each edge {v, v.i} of T , assign weight ξv

i ,
where (ξv = ξv

1 , ξv
2 . . .)v∈V is a family of

independent, ordered Poisson point pro-
cesses with intensity 1 on R+. Then, un-
der assumption A1 on H:

nH ′(0+)Knn
D

−−−−→
n→∞

T , (4)

in the sense of local convergence. The
random geometric graph T is called the
Poisson Weighted Infinite Tree (PWIT).

To get rid of scaling factors, we
will multiply all edge-weights in Knn by
nH ′(0+). Observe that both the opti-
mal matching π∗

Knn
and the BP decisions

πk
Knn

, k ≥ 0 remain unaffected.

4 First step: convergence
of dynamics of BP

In this section we deduce from Theorem
2 that the behavior of BP when running
on Knn converges as n → ∞ to its be-
havior when running on T .

Theorem 3 (Continuity of BP).
Consider BP’s execution on Knn, with
Knn converging to T a.s. Then,

∀k ≥ 0,
(
Knn, 〈·→·〉kKnn

, πk
Knn

)

proba
−−−−→
n→∞

(
T , 〈·→·〉kT , πk

T

)
, (5)

in the sense of local convergence, πk
Knn

being here viewed as the labeling function
(v, w) 7→ 1{w=πk

Knn
(v)}.

Proof. In view of the recursive nature
of the messages, a natural idea for prov-
ing (5) is to proceed by induction over
k. The base case of k = 0 is trivial.
However, when trying to go from step k

to step k + 1 one soon gets confronted
to a major hinder. Indeed, one can
not simply invoke convergence of each k-
step incoming messages at a given ver-
tex to deduce convergence of the result-
ing k + 1-step out-coming message, be-
cause the update rule (1) is not contin-
uous with respect to local convergence :
it involves messages from unboundedly
many neighbors as n → ∞. Remarkably
enough, it turns out that under assump-
tion A2, only a uniformly bounded num-
ber of those neighbors do in fact really
matter, as stated in the following techni-
cal lemma whose proof is omitted.

Lemma 1. Call ∅ the (uniformly cho-
sen) root of Knn. Then for any k ≥ 0:

sup
n≥1

P
(
π̂k
Knn

(∅) ≥ i
)
−−−→
i→∞

0, (6)

where π̂k
Knn

(∅) denotes the rank of vertex

πk
Knn

(∅) in the set of neighbors v ∼ ∅

ordered by increasing length of {∅, v}

5 Second step: analysis
of BP on PWIT

In light of Theorem 3, the analysis of BP
on Knn for large n naturally brings us to
the study of BP’s dynamics on the lim-
iting PWIT. Formally, we are interested
in asymptotics of the random process on
T defined for all v ∈ V∗ by the recursion:

〈v→ v̇〉k+1
T =min

i≥1

{∥∥v, v.i
∥∥
T
−〈v.i→v〉kT

}
,

(7)
where the initial values

(
〈v → v̇〉0T

)
v∈V∗

are i.i.d. random variables independent
of T (0 in the case of our algorithm).
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First observe that at any given time
k all 〈v → v̇〉kT , v ∈ V∗ share the same
distribution, owing to the natural spatial
invariance of the PWIT. Moreover, if F

denotes the corresponding common anti-
c.d.f.2 at a given time, a straightforward
computation (see for instance [2]) shows
that the new anti-c.d.f. obtained after a
single application of update rule (7) is :

TF : x 7→ exp

(
−

∫ +∞

−x

F (t) dt

)
.

This defines an operator T on the space
D of anti-c.d.f.’s, (i.e. left-continuous
non-increasing functions F : R → [0, 1]).
T is known to have a unique fix-point
(see [2]), the so-called logistic distribu-
tion:

F ∗ : x 7→
1

1 + ex
.

Our first step will naturally consist in
studying the dynamics of T on D.

5.1 Weak attractiveness.

Finding the domain of attraction of F ∗

under operator T is not known and has
been listed as open problem by Aldous
and Bandyopadhyay ([3, Open Problem
# 62]). In what follows, we answer this
question and more. We fully character-
ize the asymptotical behavior of the suc-
cessive iterates (T kF )k≥0 for any initial
distribution F ∈ D. First observe that T

is non-increasing in the following sense:

F ≤ F ′ on R ⇒ TF ′ ≥ TF on R.

This suggests considering the non-
decreasing second iterate T 2. However,
unlike T the second iterate T 2 admits an
infinite number of fix-points. To see this,
let θt (t ∈ R) be the shift operator de-
fined on D by θtF : x 7→ F (x− t). Then,

T ◦ θt = θ−t ◦ T, (8)

Therefore, it follows that T 2(θtF
∗) =

θt(T
2F ∗) = θtF

∗ for all t ∈ R. Thus,
θtF

∗ is fixed point of T 2 for all t ∈ R.
This observation leads us to introduce
the key tool of our analysis:

Definition 2. For F ∈ D, define the
transform F̂ as follows :

F̂ (x) = x + ln

(
F (x)

1 − F (x)

)
.

The reason behind defining this
transform is the following straightfor-
ward fact.

Lemma 2. For any given F ∈ D and
x ∈ R, F (x) = θ bF (x)F

∗(x). Further,

F ≡ θxF ∗ if and only if F̂ is constant
on R with value x.

The above Lemma suggests that
the maximal amplitude of the variations
of F̂ on R tells something about the dis-
tance between F and the family of fix-
points {θtF

∗, t ∈ R}. Therefore, we will

now focus on the variations of F̂ , and es-
pecially the behavior of those variations
under the action of T . We state three
technical lemmas whose proofs can be
found in the full version of this paper.

Lemma 3. Let F ∈ D\{0} be integrable

at +∞. Then, T̂ 4F is bounded on R.

Lemma 4. If F ∈ D is such that F̂

is bounded, then T̂ 2F is bounded too and
moreover :

sup
R

T̂ 2F ≤ sup
R

F̂ ; inf
R

T̂ 2F ≥ inf
R

F̂ .

Further, the above inequalities are strict
if and only if F̂ is not constant on R.

2The anti-c.d.f. of a real r.v. X is the function F : x → P (X > x).
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Lemma 5. Let F ∈ D be such that F̂

is bounded. Then, T̂ kF is continuously
differentiable for k ≥ 2, and the family

(T̂ kF )′, k ≥ 3 is uniformly integrable.

We are now ready to state the main
result of this section, which fully charac-
terizes the asymptotics of (T k)k≥0.

Theorem 4 (Dynamics of T on D).
Consider any F ∈ D \ {0} that is inte-
grable at +∞. Then

sup
R

∣∣∣T̂ kF − (−1)kγ
∣∣∣ ց

k→∞
0,

for some constant γ ∈ R (dependent on
F ). In particular, the following conver-
gence occurs uniformly on R :

{
T 2kF −−−−→

k→∞
θγF ∗;

T 2k+1F −−−−→
k→∞

θ−γF ∗.

Remark 1. Our assumption on F is
minimal: if F ≡ 0 or

∫ ∞

0 F = +∞,

then the sequence (T kF )k≥1 trivially al-
ternates between the 0 and 1 functions.

Proof. Lemma 3 ensures existence of
M ≥ 0 such that for all k ≥ 4,

θ−MF ∗ ≤ T kF ≤ θMF ∗. (9)

By Lemma 4, the bounded real sequences

(infR T̂ 2kF )k≥2 and (sup
R

T̂ 2kF )k≥2 are
monotone, hence converging, say to γ−

and γ+ respectively. All we have to
show is that γ− = γ+; convergence of

( ̂T 2k+1F )k≥2 to the opposite constant
will then follow from Property (8) .

By Arzela-Ascoli theorem, the
family of (clearly bounded and 1-
lipschitzian) functions (T 2kF )k≥4 is rel-
atively compact with respect to uniform
convergence on compact subsets. Thus,

there exists a convergent sub-sequence:

T 2ϕ(k)F −−−−→
k→∞

F∞.

This implies convergence of ̂T 2ϕ(k)F to
F̂∞ since on every fixed compact set of
R the uniform bound (9) keeps all the
values of the T 2ϕ(k)F, k ≥ 0 within a
compact subset of ]0, 1[ over which the
mapping y 7→ ln y

1−y
is uniformly con-

tinuous. Even better, the uniform inte-
grability of variations stated in Lemma
5 allows us to turn this uniform conver-
gence on compact subsets into a uniform
convergence on all R. In particular,

inf
R

F̂∞ = γ− and sup
R

F̂∞ = γ+.

Now, the restriction of T to the subset
{F ∈ D,−M ≤ F̂ ≤ M} is clearly con-
tinuous with respect to uniform conver-
gence on compact subsets. Therefore,

T 2(ϕ(k)+1)F −−−−→
k→∞

T 2F∞.

But using exactly the same arguments as
above, we obtain a similar conclusion:

inf
R

T̂ 2F∞ = γ− and sup
R

T̂ 2F∞ = γ+.

By the second part of Lemma 4, it must
be that γ− = γ+.

5.2 Strong attractiveness.

So far, we have established the distribu-
tional convergence of the messages pro-
cess. To complete the algorithm analy-
sis, we now need to prove sample-path
wise convergence. We note that Al-
dous and Bandyhopadhyay [3, 5] have
studied the special case where the ini-
tial messages (〈v → v̇〉0T )v∈V∗ are i.i.d.
with distribution being the fix-point F ∗.
They established L2-convergence of the
message process to some unique station-
ary configuration, independent of the
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F ∗-distributed initial messages (〈v →
v̇〉0T )v∈V∗ . They call this property en-
dogenity. The main result of the present
sub-section consists in extending such an
endogenity to the case of F -distributed
initial messages, where F is an (almost)
arbitrary distribution. To this end, we
construct an appropriate coupling on T .

Theorem 5 (Convergence of BP on
T ). Assume that the i.i.d. initial mes-
sages

(
〈v → v̇〉0T

)
v∈V∗

satisfy

E

[(
〈v → v̇〉0T

)+
]

< ∞. (10)

Then, up to some additive constant γ ∈
R, the recursive tree process defined by
(7) converges to the unique stationary
configuration 〈· → ·〉∗T in the following
sense: for every v ∈ V∗,

〈v → v̇〉kT − (−1)kγ
L2

−−−−→
k→∞

〈v → v̇〉∗T .

Further, defining π∗
T as the assignment

induced by 〈·→·〉∗T according to rule (3),
we have convergence of decisions at the
root:

πk
T (∅)

proba
−−−−→
k→∞

π∗
T (∅).

Remark 2. Assumption (10) is mini-
mal as otherwise the process becomes a.s.
infinite after the very first iteration.

Proof. Denote by F the anti-cdf of the
initial messages and by γ the constant
appearing in Theorem 4. First, observe
that if we add a constant to all the initial
messages then under the dynamics (7),
the same constant is added to every even
message 〈v → v̇〉2k

T and subtracted from
every odd message 〈v → v̇〉2k+1

T . There-
fore, without loss of generality we may
assume γ = 0. That is, for any ε > 0
there exists kε ∈ N so that

θ−εF
∗ ≤ T kεF ≤ θεF

∗.

By the Skorohod’s representation
theorem, there exists a probability space
E′ = (Ω′,F ′, P ′), possibly differing from
the original space E = (Ω,F , P ), on
which is defined a random variable Xε

with distribution T kεF along with two
other random variables X− and X+ with
distribution F ∗, in such a way that:

a.s., X− − ε ≤ Xε ≤ X+ + ε. (11)

Now consider the product space
(
⊗

v∈V E′) ⊗ E over which are jointly
defined the PWIT T and independent
copies (X−

v , Xε
v , X+

v )v∈V of the triple
(X−, X, X+) for each vertex v ∈ V .
On T , let us compare the configura-
tions

(
〈· → ·〉k,−

T

)
k≥0

,
(
〈· → ·〉k,ε

T

)
k≥0

and
(
〈·→ ·〉k,+

T

)
k≥0

resulting from three

different initial conditions, namely:

∀v ∈ V∗,





〈v→ v̇〉−T := X−
v ;

〈v→ v̇〉εT := Xε
v ;

〈v→ v̇〉+T := X+
v .

Due to anti-monotony and homogeneity
of the update rule (7), inequality (11)
‘propagates’ in the sense that for any
k ≥ 0 and v ∈ V∗, when k is even,

〈v→ v̇〉k,−
T −ε≤〈v→ v̇〉k,ε

T ≤〈v→ v̇〉k,+
T +ε ;

and when k is odd,

〈v→ v̇〉k,+
T −ε≤〈v→ v̇〉k,ε

T ≤〈v→ v̇〉k,−
T +ε.

Now fix v ∈ V∗. By construction :
(
〈v→ v̇〉k+kε

T

)
k≥0

D
=

(
〈v→ v̇〉k,ε

T

)
k≥0

.

In particular, for every k ≥ kε we have

sup
s,t≥k

∥∥〈v→ v̇〉sT − 〈v→ v̇〉tT
∥∥

L2

= sup
s,t≥k−kε

∥∥〈v→ v̇〉s,ε
T −〈v→ v̇〉t,εT

∥∥
L2

≤ 2 sup
t≥k−kε

∥∥〈v→ v̇〉t,±T −〈v→ v̇〉∗T
∥∥

L2
+2ε.

194 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



i i

i

i

i

i

Here the endogeneity property estab-
lished by Aldous and Bandyhopadhyay
[3, 5] for logistic distributions implies:

sup
t≥k−kε

∥∥〈v→ v̇〉t,±T −〈v→ v̇〉∗T
∥∥

L2
−−−−→
k→∞

0.

Thus, the sequence
(
〈v→ v̇〉kT

)
k≥0

is

Cauchy in L2, hence convergent. It is
not hard to check that the limiting con-
figuration has to be stationary, i.e. is a
fixed point for the recursion (7), and that
the estimates πk

T , k ≥ 0 do in turn con-
verge to the estimate π∗

T associated with
the limiting configuration. Note that en-
dogeneity implies uniqueness of the sta-
tionary configuration, and therefore π∗

T

is the infinite assignment studied in [2].

6 Third step: putting
things together

Our last step utilizes the following re-
markable result of Aldous.

Theorem 6 (Aldous, [2]). Let π∗
T

be the assignment associated with the
unique stationary configuration 〈·→·〉∗T .
Then π∗

T is a perfect matching on T , and

(
Knn, π∗

Knn

) D
→ (T , π∗

T ) , (12)

in the sense of local weak convergence.

Proof. (of Theorem 1) By Theorem
3 and Skorokhod’s embedding Theorem,
convergence (12) can be extended to in-
clude BP’s answer at any fixed step k:

(
Knn, πk

Knn
, π∗

Knn

) D
−−−−→
n→∞

(
T , πk

T , π∗
T

)
.

Therefore, the probability of an error at
the root of Knn (which by symmetry of

Knn is nothing but the expected fraction
of errors), converges to the probability of
an error at the root of T : for all k ≥ 0,

E
[
d(πk

Knn
,π∗

Knn
)
]
= P

(
πk
Knn

(∅) 6=π∗
Knn

(∅)
)

−−−−→
n→∞

P
(
πk
T (∅) 6=π∗

T (∅)
)
.

Finally, Theorem 5 guarantees that the
right-hand side vanishes as k → ∞.

7 Conclusion

In this paper we established3 that the
BP algorithm finds almost optimal so-
lution to a random assignment prob-
lem in O(n2) time for a problem of size
n with high probability. The natural
lower bound of Ω(n2) makes BP an (or-
der) optimal algorithm for finding mini-
mum cost matching in a bipartite graph.
This result significantly improves over
the bound proved by Bayati, Shah and
Sharma [6] for the BP algorithm ; or for
that matter the best known worst case
bound on performance of algorithm by
Edmonds and Karp [9].

Beyond the obvious practical inter-
est of such an extremely efficient dis-
tributed algorithm for locally solving
huge instances of the optimal assignment
problem, we hope that the method used
here – essentially replacing the asymp-
totical analysis of the iteration as the size
of the underlying graph tends to infinity
by its exact study on the infinite limiting
structure revealed via local weak conver-
gence – will become a powerful tool in
the fascinating quest for a general math-
ematical understanding of loopy belief
propagation. To the best of our knowl-
edge, this is the first non-trivial use of lo-
cal weak convergence framework for an-
alyzing performance of algorithms.

3Due to space constraints, we have omitted certain technical proofs throughout the paper. The
reader will find them in the full version of the present paper.
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