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Abstract—The need to rank items based on user input arises
in many practical applications such as elections, group-decision
making and recommendation systems. The primary challenge
in such scenarios is to decide a global ranking based on partial
preferences provides by users. The standard approach to address
this challenge is to ask users to provide explicit numerical
ratings (cardinal information) of a subset of items. The main
appeal of such an approach is the ease of aggregation. However,
the rating scale as well as the individual ratings are often
arbitrary and may not be consistent from one user to another.
A more natural alternative to numerical ratings requires users
to compare pairs of items (ordinal information). In contrast to
cardinal information, such comparisons provide an ‘‘absolute”
indicator of the user’s preference. However, it is often hard to
combine or aggregate comparisons to obtain a consistent global
ranking.

In this work, we provide a tractable framework for utilizing
comparison data as well as first-order marginal information for
the purpose of ranking. We treat the available information as
partial samples from an unknown distribution over permutations.
Using the Principle of Maximum Entropy, we devise a concise
parameterization of distribution consistent with observations
using only O(n?) parameters, where n is the number of items
in question. We propose a distributed, iterative algorithm for
estimating the parameters of the distribution. We establish the
correctness of the algorithm as well as identify the rate of
convergence explicitly. Using the learnt distribution, we provide
efficient approach to (a) learn the mode of the distribution using
‘maximum weight matching’, (b) identification of top % items, and
(c) an aggregate ranking of all n items. Through evaluation of our
approach on real-data, we verify effectiveness of our solutions as
well as the scalability of the algorithm.

I. Introduction

Judging, rating or ranking objects is omnipresent: whether
it be restaurants in a city, movies on Netflix, books on
Amazon, candidates interviewed for faculty positions or papers
submitted to Allerton conference. In all such instances, a
global ranking of objects is achieved based on the inputs about
partial rankings provided by a large number of people.

The current practice is to seek input in terms of scores,
e.g. assign between 1 to 5 stars to a restaurant/movie or
score between 1 to 10 for a paper. The key advantage of
seeking such quantitative input is that it is easy to achieve
global aggregation: in Allerton, for example, each paper may
receive scores from, say 3 UIUC reviewers, between 1 to 10;
the average of these scores will lead to the global ranking
of all the submitted papers to assist in making the final
acceptance/rejection decisions.

On the flip side, the key disadvantage stems from the fact
that scores are relative: the score of 6, for example, may be
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interpreted differently by different individuals and further, the
same individual may score objects differently depending upon
the context, for example the order in which s/he reviewed the
assigned papers. While one may argue that it could be possible
to correct for such “biases” for reviewers about whom we have
known history, such an approach is somewhat ad-hoc and even
not feasible when the ratings are obtained anonymously.

An alternative approach of seeking input', which we ad-
vocate in this paper, is qualitative: for example, ask review-
ers explicitly to compare the papers they reviewed (score
assignments do not necessarily achieve this as there could
be a tie and in the context of anonymous ratings, this is
totally different from quantitative rating). The key advantage of
seeking such information is that it is definitely more absolute:
when two individuals say they like A over B, they do mean
the same; or a reviewer is likely to compare two papers in
the same way despite the order in which they review them.
It is no surprise that many polling sites (e.g. Washington
Post [2], WENX [1]) have started using such interfaces to
collect information. Further in many settings data in naturally
available in such form, for example customers revealing their
preferences among items on display in a shop by purchasing
one of them, cf. [14].

The key challenge with qualitative information arises in the
aggregating phase, due to possible contradictions: for three
items A, B and C, we could receive inputs A preferred over
B, B preferred over C and C preferred over A from different
individuals. Such seeming conflicts have created challenges
for aggregation over centuries starting the celebrated work of
Condorcet [9]; also see work on impossibility of existence of
rankings pioneered by Arrow [5]. Now unlike the standard
setting of the, so called ranked elections considered in the
literature following the works [9] [5], in our context, we have
access to partial ranking information of objects: in general,
we have a fraction of population comparing a given pair of
objects unlike in the standard ranked election literature where
each individual provides complete ranking.

The main contribution of this paper lies in a proposal of
novel method for aggregation of such partial (qualitative)
ranking information to come up with a global ranking. The key
insight is to view the collected data as the partial information
about an underlying distribution over complete orderings of
all objects. Therefore, the problem of aggregation reduces to

'We believe that in an ideal system, inputs of both forms should be obtained
for better decision making. In this paper, we focus on qualitative inputs
primarily to understand what sorts of information, on its own, does it contain.
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(a) learning the distribution over rankings or permutation of
objects that is (near) consistent with the observed data, and (b)
using this distribution to obtain the final ranking of objects.
Our approach to resolve (a) consists of finding the distribution
with maximal entropy (near) consistent with the observed
data; and (b) by means of a novel aggregation mechanism
using the distributional information. Before we describe our
contributions in further detail, we quickly recall related work.

Related work. The question of learning distribution over
permutations from partial or limited information has been well
studied in the recent literature. Notably, in the work of Huang,
Guestrin and Guibas [16], the task of interest is to infer the
most likely permutation of identities of objects that are being
tracked through noisy sensing by maintaining distribution over
permutations. To deal with the ‘factorial blowup’, authors
propose to maintain only the first-order marginal information
of the distribution (essentially corresponding to certain Fourier
co-efficients), then use the Fourier inversion formula to recover
the distribution and subsequently predict its mode as the likely
assignment. In the work by Jagabathula and Shah [17], authors
took a different approach to the same problem where they
proposed to learn the distributed over permutations by finding
the sparsest distribution consistent with the observed partial
information. Finally, this approach was further extended and
integrated with the decision making in the context of revenue
management in work by Farias, Jagabathula and Shah [14].
None of these works, however deals with the question of
aggregation or achieving ranking. While the finding mode
is a candidate for such a ranking, it is ‘fragile’ as we shall
discuss soon. It should also be noted that, through maximum
entropy distribution learning, we are trying to be maximally
unconstrained subject to observed data, unlike the above cited
approaches which implicitly or explicitly impose additional
constraints (e.g. sparsity).

The task of ranking objects or assigning scores has been
of great interest over the past decade or so with similar
concerns. There is a long list of works, primarily in the
context of bipartite ranking, including the RankBoost by
Freund et al. [15], label ranking by Dekel et al. [11], Crammer
and Singer [10], Shalev-Shwartz and Singer [22] as well as
analytic, learning results on bipartite ranking including those
of Agarwal et al. [3], Usunier et al. [23] and Rudin and
Schapire [21]. The algorithm that will be closest to one of the
proposal is the p-norm push algorithm by Rudin [20] which
uses £, norm of information to achieve ranking. As we shall
establish, the ranking used by [2], [1] to aggregate comparison
data is equivalent to the /1 norm of the underlying distribution.
The empirical results suggest that our proposed use of ‘expo-
nentially’ weight ranking provides better aggregation. Indeed,
to obtain such rank aggregation, it is necessary to learn the
underlying distribution.

The maximum entropy approach for learning distribution
is a classical now (including the work of Boltzman). The
maximum entropy (max-ent) distribution, a member of an
appropriate exponential distribution family, is maximum like-

lihood estimation of the parameters in that family (cf. see
[24]). Indeed, the use of exponential family distribution over
rankings has been around for more than few decades now
(cf. see [12, Chapter 9]). We provide a careful analysis of a
stochastic sub-gradient algorithm for learning the parameters
of this max-entropy distribution. This algorithm is distributed
and iterative. It is directly build upon such an algorithm used
in [19] for distributed wireless scheduling. It is worth taking
note of use of maximum entropy distribution over permutation
based on given marginal information to learn the “missing”
marginals by Agrawal et al [4] in the context of parimutuel
betting.

Our contributions. The primary contribution of this paper is
use of distribution over permutations as means to reach rank
aggregation from collection of partial preferences.

The stochastic gradient algorithm for learning the max-ent
distribution is derived from [19], however the proof is different
(and simpler). It provides explicit rate of convergence in the
context of both (a) pair-wise comparisons, and (b) first-order
marginals. Using the standard MCMC and their known mixing
time bounds, our analysis suggests that the computation time
scales exponentially in n and polynomially in n respectively
for the pair-wise comparisons and first-order marginals respec-
tively. Two remarks are in order. First, the result for first-order
marginals also suggest a distributed scheduling algorithm for
input-queued switch with polynomial time learning complexity
(unlike exponential for wireless network model). Second, the
standard stochastic approximation based approaches cf. [8]
does not apply as is (due to compactness of domain related
issue).

The distribution, thus learnt, is used in multiple ways.
First, for application like the object-tracking [16], the goal
is to learn the maximum likelihood assignment (or mode) of
the distribution. Given the form of the max-ent distribution
(exponential family), it reduces to solving maximum weight
matching problem in a bipartite graph with weights induced
by thus learnt parameters. Now for the first-order represen-
tation of the permutations, this is an easy instance of the
network-flow problem (can be solve, for example, using belief
propagation [6]). For pair-wise comparisons representation, the
problem is not known to be solvable in polynomial time (we
believe its hard). We propose a simple randomized scheme
that is a 2-approximation of it.

We propose a heuristic for mode computation as well that
bypasses the step of learning the max-ent parameters but uses
directly the available partial preference data. Such a heuristic,
for example, can speed up computation of [16] drastically.
Somewhat curiously, we show that this heuristic is first-order
approximation of the mode finding of the max-ent distribution.

The mode is a likely candidate for rank aggregation. How-
ever it is not “robust”: there could be many permutations
with similar probability that are drastically different from each
other. In contrast, if we are interested in, say identifying top k
items out of n items, the approach we propose is as follows:
for each item, identify the marginal probability (which is
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readily available as input with marginal data, but need to be
evaluated for comparison information using maximum entropy
distribution) that it is ranked to positions between 1 to k. Use
this as a score for each item and take the top k as per this
score.

More generally, we introduce a natural exponential function
based relaxation of such a top k ranking to obtain ranking over
all elements that uses a single parameter, say ©. The p-norm
based ranking (similar to the p-norm push [20]) is a closely
related approach. However, as we establish using empirical
results that the exponential function based ©-ranking provide
better answer than p-norm based ranking with p = 1.

We perform experimental study to understand (a) the good-
ness of the ranking produced by our algorithm, and (b) the
scalability of the algorithm. While goodness of ranking is a
subjective notion, we use available online polls (by Washing-
ton Post) to show that compared to the standard algorithm used
in practice, our algorithm provides more detailed answers.
We conducted a real-time experiment during an the 150 year
celebration event of MIT, where for an entire day various
people continually entered their inputs through multiple web-
interfaces and our algorithm maintained the rankings (which
are very good) in an online manner. This is testimonial
to the scalability of our algorithm especially given that it
was operating on an in-expensive machine. The iterative and
distributed nature of our algorithm is especially useful in its
ability to cope with scale.

II. Model and Problem Statement

Model: We consider a universe of n available items, N' =
{1,2,...,n}. Each user has preference order, represented as
permutation, over these n items. Specifically, if o is the
permutation, the user prefers item ¢ over j if o(i) < o(j).
We assume that there is a distribution, say u, over the space
of permutations of n items, S,, that defines the collective
preferences of the entire user population.

Data: We consider scenarios where we have access to partial
or limited information about y. Specifically, we shall restrict
our attention to two popular types of data: first-order ranking
and comparisons. Each of these two types correspond to some
sort of marginal distribution of y as follows:

First-order marginals: For any 1 < i,k < n, the fraction of
population that ranks item ¢ as their kth choice is the first-order
marginal information for distribution p. Specifically,

mix EP[{o(i) =k} = 3 w(o)o(=n) M

o€eSy

where I;g; denotes the indicator variable for event E. Col-
lectively, we have the n x n matrix [m;;] of the first-order
marginals, that we shall denote by M. This is precisely the
type of information that was maintained for tracking agents
in the framework introduced by Huang, Guestrin and Guibas
[16].

Comparison Data: For any 1 < 4,5 < n, the fraction of
population that prefers item ¢ over item j is the comparison

marginal information. Specifically,

e 2Po) <o = 3 o)<ty @)

gESy

Collectively, we have access to the m x m matrix [c;;] of
comparison marginals, denoted by C'. Such data is available
through customer transactions in any business, cf. [14].

Two remarks. First, while we assume m;;, (resp. c;;) avail-

able for all i, k (resp. i, j), if only a subset of it is available, the
algorithm with that information works equally well. Second,
we shall assume that m,;, € (0,1) for all ¢, k (resp. ¢;; € (0,1)
for all ¢, 7).
Goal: Roughly speaking, the goal is to aggregate data of
type M or C to obtain a ranking of objects of interest.
Specifically, we are interested in (a) finding ‘most likely’ (or
mode) ranking, (b) the top k£ objects, and (c) the aggregate
ranking over all n objects.

To address these questions, our approach is to first learn a
distribution that is consistent with the observation (M or (),
and then use this learnt distribution to answer the questions (a),
(b) and (c). In principle, there could be multiple distributions
that are consistent with the observed data (M or C, assuming it
is generated by a consistent underlying unknown distribution).
As mentioned earlier, we shall choose the max-ent distribution
that is consistent with the observed data.

111. The Maximum Entropy Model

Formally, the observations M or C' impose constraint that
the distribution of choice should belong to class M:

Z (o) o@iy=ky = M, Vi,keN 3)
oES,

or class C:
> w0 otyconmy = cijr Vi jEN “)
gESy

with the the normalization and non-negativity constraints in

both cases.
> we) = 1.
oESy

u(o) > 0, VYo e€S,. 5)

M (resp. C) is non-empty only if M (resp. C) is generated
by a distribution over S,, to begin with. We shall assume that
such is the case. In practice, clearly this is not a reasonable
assumption. The algorithm that we shall present is based on
the solving the Lagrangian dual of an appropriate optimization
problem in which the constraints imposed by M (resp. C)
are “dualized”. Therefore, by construction such algorithm is
robust.

Now |S,| = n! and the data of type M (resp. C) im-
poses O(n?) constraints. Therefore, there could be multiple
solutions. The max-ent distribution suggest that we choose
the one that has maximal entropy in the class M (resp.
C). Philosophically, we follow this approach since we wish
to utilize the information provided by the data and nothing
else, i.e. we do not wish to impose any additional structure
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beyond what data suggests. It is also well known that such
a distribution provides maximum likelihood estimation over
certain class of exponential family distributions (cf. [24]).
In effect, the goal is to find the distribution that solves the
following optimization:

max  Hgr(v) 2 Z v(o)logv(o)
ocESN
veM or C. 6)

It can be checked that the Lagrangian dual of this problem is
as follows (since all entries of M, C in (0,1)): let \;x be the
dual variables associated with marginal consistency constraint
for M in (3). Then, the dual takes the following form:

mf.X Z Aikmir — log (Z exp (Z )\ik]l{g(i):k})) (7N
ik o ik

It can be shown that this is a strictly concave optimization
and has a unique optimal solution. Let it be A\* = [A%.]. Then
the corresponding primal optimal solution of (6) (with M) is
given by

(o) xexp (D7 N Liogi=iy ) ®)

i,keN

Similarly, for the comparison data, the dual optimization takes
the form

max y Aicci; — log (Z exp (Z Az'<j]1{a<i><cr<j>}) ) ©
J o %]

and the optimal primal of (6) given optimal dual \* = [\}_,]
is

(o) o exp ( > A 'H{a(i)<a(j)})- (10)

i#jEN

As can be seen, in either case the maximum entropy distribu-
tion is parameterized by at most n? parameters, which is the
same as the degrees of freedom of the received data. We shall,
with abuse of notation, use F'(\) to represent the objective of
both Lagrangian dual optimization problems (7) and (9).

A. A Subgradient Algorithm

Here we describe an iterative, distributed sub-gradient
algorithm that solves the dual optimization problems (7),
(9). First, we describe an idealized procedure that calls
certain oracle that estimates marginals of distribution from
exponential family. We can, in general, only hope to estimate
these marginals approximately. Therefore, the main result
that we state is for a sub-gradient algorithm based on such an
approximate oracle. In a later section, we shall describe how
to design such an approximate oracle in a distributed manner
along with its associated computational cost.

Algorithm 1 MaxEnt Estimation: Using Ideal Oracle
Vi, k.

Require: Ranking data myy

1: Initialize: \Y, = 0 Vi, k.
2. fort=1—1T do

3: /\fli“1 — )‘fk + W(mlk Ey: [H{J(i)zk}D
(Ext[I{o(i)=k}] is provided by an oracle)
4: end for
5: Choose 7 € {1,...,T} at random so that P(7 = t) o
/vt

6: return \7

Here, E)\t [H{a(i)zk}] = Zaes’n ]P)\t (U)H{a(i)zk} where
exXp ( Z /\gkﬂ{ﬂ(i)zk}) s
i,k

with normalizing constant (partition function) Z(\!) =

Pa(o) = (1”)

> oes, EXP (sz )\ﬁkﬂ{g(i)zk}). We shall use an (random-

ized) estimation, E)\t (i, k) = E)\t [H{o(i):k}]’ of Eyt [H{a(i):k}]
so that the error vector e(t) = [ej(t)] with ej(t) =
Ext[I{o(iy=k}] — Ext(4, k) is appropriately small enough. We
state the following result about the convergence of this algo-
rithm.

Theorem 1. Suppose the sub-gradient algorithm uses
approximate estimation FE.(-,-) such that |e(®)|1 <
1 Tt .
W’ vyhe;l’e A(t) = ZS:I 1/\/§ and \* is a
solution of the optimization problem. Then, for any v > 0, for

choice of T = © (6’2’5 (n2 A oo + | A \\%)2+6), we have
E{F()\T)} > FOV) — e,

where F(-) is the objective of dual optimization (7). The
identical result holds for the comparison information (9).

B. An Approximate Oracle

Theorem 1 relies on existence of an oracle that can produce
an estimation of marginals approximately with appropriate
accuracy for each time step ¢. Here we describe such an oracle.
We shall restrict our description to the Markov Chain Monte
Carlo (MCMC) based oracle. In principle, one may use heuris-
tic like Belief Propagation to estimate these marginals instead
of MCMC (of course, this may lead to loss of performance
guarantee).

Now the computation of marginals requires computing
Pyt (o) for any o € S,,. From its form, the basic challenge is in
computing the partition function Z (). The partition function
Z(A\!) is the same as computation of permanent of a non-
negative valued matrix A = [A;;] where A;;, = e**. In an
amazing work, Jerrum, Sinclair and Vigoda [18] have design
Fully Polynomial Time Randomized Approximation Scheme
(FPRAS) for computing permanent of any non-negative valued
matrix. That is, Z(\!) (hence Py:(c)) can be computated
within multiplicative accuracy (1 £ ¢) in time polynomial in
1/e,n,log(1/) with probability at least 1 — 4. Therefore,
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it follows that the desired guarantee in Theorem 1 can be
provided for all timesteps (using union bound) with probability
at least 1 — 1/n within polynomial in n building upon the
algorithm of [18].

For the case of comparison information, however no such
FPRAS algorithm for computing partition function is known.
Therefore, we suggest a simple MCMC based algorithm and
provide the obvious (exponential) bound for it. To that end,
define Wi (o) = >, ycpn Aik - Lio(i)<o(s)}» and construct a
Markov chain, 9()\), whose state space is the set of all
permutations, .S,,, and whose transitions from a given state
o to a new state o’ are given as follows:

1: With probability % let ¢/ = 0.
2: Otherwise, construct o’ as follows:
o Choose two elements ¢ and j uniformly at random;
set 6(¢) = o(j), 6(j) = o(i) and &(k) = o(k) for
all k # 4, 5.
o Set ¢/ = & with probability min{1,exp (Wx(5) —
Wx(0))}; else set o/ = o.

Using this Markov chain, we can estimate the desired
Ex[l{o(iy<o(s)}) as follows: starting from any initial state, run
the Markov chain for 73, steps and then record the state
of the Markov chain, say olm. If o7m (i) < oTm(j), then
record 1 else record 0. Repeat this for S times and obtain the
empirical average of the recorded 0/1 values. Declare this as
the estimation of Ej[[{,(;)<,(j)}]. Indeed, one simultaneously
obtains such estimation for all ¢,j. We have the following
bound on T,.:

Theorem 2. The above stated Markov chain has stationary
distribution p* so that

w (o) x exp (WA)
Let 11(t) be the distribution of the Markov chain after t steps
starting from any initial condition. Then for any given 6 > 0,
there exists

T, = @(exp (@(n2||/\||oo +nlogn)) log %)7

such that for t > T,

<9,

t
52—
w* 2,1*

where || - ||2,,, is the x* distance.

Now the total variation distance between p(t) and p* is
smaller than the y? distance between them. Therefore, by
Theorem 2, it follows that the error in estimation of the Py (o)
using p(t) will be at most §. From Chernoff’s bound, by
selecting S (mentioned above) to be O(6~2logn) (with large
enough constant), it will follow that the estimated empirical
marginals for all 4, 7 components must be within error O(9)
with probability 1 — 1/poly(n). Given that increment in each
component of A\ as part of the sub-gradient algorithm is

O(\/T) by time 7, from Theorem 1, it follows that the
Moo = O((n + [|X*]loe + IA*[|3)**7) (for any choice of
v > 0 in Theorem 1). Finally, the smallest § required in
Theorem 1 is inverse polynomial in n, €, from above discussion
it follows that the overall cost of the approximate oracle
required for the comparisons effectively scales exponential in
n3t7 (ignoring other smaller order terms).

1V. Ranking

Thus far, we have described algorithm for estimating distribu-
tion consistent with the observed data by finding appropriate
max-ent distribution. Now we describe how this learnt distri-
bution can be used for (a) find mode of the distribution, (b)
top-k ranked elements, and (c) overall aggregate ranking of
all n objects using what we call the ©-ranking.

A. Mode = Max Weight Matching

The mode or the most likely element of distribution is
the o € S, with the maximal probability. Since log of the
probability of o with ‘dual’ variables (or parameters of the
exponential family) is proportional to Zi,k Aiklfo(iy=ky for
first-order marginal and ZZ j Ai<ilio(i)<o(j)} for comparison
marginals, it boils down to finding

aes)i ( Zk /\ikH{U(i):k})

c* € arg ma first-order marginal,

an
o* € arg g_rézgi (Z )\i<j]1{o(i)<a(j)}) comparison.
i,
(12)

The problem in (11) is equivalent to the following maximum
weight matching problem: consider an n xn complete bipartite
graph with edge between node 7 on left and node k£ on right
having weight A;x. A matching is a subset (of size n) edges
so that no two edges are incident on same vertext. Let weight
of the matching is the summation of the weights of the edge
chosen by it. Then the maximum weight matching in this graph
is precisely solving (11). This is a well known instance of the
classical network flow problem and has strongly polynomial
time algorithms [13]. It also allows for distributed iterative
algorithm for finding it including the auction algorithm of
Bertsekas [7] and the recently popular (max-product) belief
propagation [6]. Thus, overall finding the mode of the distri-
bution for the case of first-order marginal is easy and admits
distributed algorithmic solution.

The problem in (12) is also equivalent to a combinato-
rial problem with the space of objects being the matchings.
However, it does not admit the nice representation as above.
One way to represent the matchings in comparison form is
n X n matrices, say B = [B;;] with (a) each entry B;; being
4+1lor —1forall 1 < 4,5 <mn, () forall < ij <n,
B;; + Bj; = 0 (anti-symmetric), and (c) if B;; = Bj = 1,
then B;, =1 for all 1 <14,j,k <n. The goal is to find B so
that . j B;j\i<; is maximized. It is not clear if this is an easy
problem. We describe a simple 2-approximation algorithm:
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choose L permutatations uniformly at random, compute their
weights (defined as per (12)) and select the one with maximal
weight among these L permutations. For L large enough, this
is essentially with 1/2 weight of the maximum weight. This
requires A to have all non-negative components. This is not an
issue since given the structure of the permutations (each having
equal number comparisons, o (i) < o(j), correct) and hence
an affine transformation of A by vector with all components
being same constant does change the distribution. Therefore,
in principle, we could require the subgradient algorithm to be
restricted to the non-negative domain (projected verison). The
formal statement about this algorithm is stated below.

Theorem 3. Letr A = [\i<;] be non-negative vector. Let
OPT be the maximum of Zij Ai<ilfo(i)<a()y among all
permutation o € Sy,. Then in the above described randomized
algorithm, if we choose L > 2—15 In %, then

P[W(&) < %(1 - J)OPT} <e

1) Heuristic for Mode: Here we describe a heuristic for
finding mode without requiring the intermediate step of find-
ing the max-ent parameter A. We describe it for first-order
marginal. Declare the solution of the following optimization
as the mode:

max Z mikﬂ{(r(i)zk}'
ik
That is, in place of \;;, use m;x. The intuition is that \; is
higher if m; is and vice versa. While there is no direct relation
between this heuristic and mode of the max-ent approximation;
we state the following which establishes the heuristic to be a
“first-order’ approximation.

Theorem 4. For A = [\i] in small enough neighborhood of
0 = [0], .

— k-
n—1 ik

M = — +
n
B. Top-k Ranking

Here interest is in finding top k ranked objects (the fa-
vorites). One approach to declare the top k£ ranked objects
in the mode. But quality of such a ranking is “peaky” or
“non-robust”. This is because it is possible for many other
permutations to have probability close to that of the mode.
This is especially true for “flat” distributions.

To avoid this, we propose a natural way to select favorites.
Intuitively, if an object is ranked among top k positions by
a large fraction (probability-wise) of the permutations in the
distribution, then it ought to be among favorites. This suggests
that for each object i, we should associate score Sy (4), defined
as

Sk(i) = PAlo (i) < K],

where P, is the max-ent distribution we learnt. Indeed, the
above score is nothing but ), , m; for the first-order
marginals (and hence we do not need to learn max-ent); of
course, it is inferred from max-ent distribution learnt for the
case of comparison. Now declare the top k objects with highest
scores as per Si(+) as the result of top k.

C. O-Ranking

To obtain an entire ranking of all objects, again, mode
is not robust. Building on intuition behind top-k ranking,
the basic premise is that the objects that are ranked higher
more frequently should be getting higher ranking. With this
in mind, let us define scores for objects as follows. For
any monotonically strictly increasing non-negative function
f N — [0, 00|, define score Sy(i) for object i as

Sp(i) = f(n —k)Pr(o(i) = k). (13)
k=1
The choice of f(z) = aP assigns the pth norm of the
distribution of o () as score to object i. Again, by definition,
the score can be computed directly from given data using the
first-order marginals (no need to find the max-ent). However
for comparisons, again, it is necessary to know the max-ent
distribution to compute ranking with the exceptional case of
p = 1. Specifically for p = 1, the score of object 7 equals
n—>. i Cij- This equivalence is explained in Section V.
The exponential function, fp(z) = exp(fz) for § > 0
effectively caputres the combined effect of all p-norms. There-
fore, we propose, what we call the ©-ranking, based on the
following scores: for 6 > 0,

n
So(i) =Y _ exp(—0k)PA(o(i) = k). (14)
k=1
Indeed, by selection 6 ~ In k, the scores are effectively captur-
ing the occurence of objects in top k positions only; and for 6
near O they are capturing the effect of lower p moments more
prominently. As we shall see, intermediate choice of 6 give
effective ranking for various empricial scenarios considered in
the next section.

V. Empirical Evaluation

In this section, we provide an empirical evaluation of our
maximum-entropy approach we have proposed. In particular,
we address the issues of ranking quality, and scalability
through two experiments. Our evaluation is two fold: first,
we compare our approach with a simple comparison-based
ranking method, which does not require learning a distribution
over permutations. We show that this method is equivalent to a
specific, subset of our #—ranking approach. The juxtaposition
suggests that there is more to be gained from using the
“higher-order” instances using ©—ranking. We also provide
an empirical comparison between the two methods, and
highlight the gains in the quality of the ranking. Secondly, we
discuss a large scale implementation of the ranking algorithm.

A. Why Learn the Maximum Entropy

One of the main concerns in designing a voting or ranking
system is that of simplicity. Put another way, if one is going
to abandon a simple practice (e.g. score-based ranking), then
the alternatives should be comparably simple, or at least
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justify any additional complexity.

Recall that one form of data that is available for our algo-
rithm is that of pairwise comparisons (i.e. ]P’[o(i) < U’(]’)} ). If
we think of these comparisons as the average number of wins
in repeated pairwise matches, then ranking can be seen as an
attempt to decide who won more matches on average. A score
that reflects this intuition is given by:

S() = 1 3" Prfo(i) < o(j)]
J#i
This score is the probability of winning a match given a
uniform prior on the opponents. Interestingly, this quantity is
equivalent, within a multiplicative factor, to the score dicussed
in the ©-ranking section, given by:
n
Spli) = > (n — k)P - Prlo(i) = K]
k=1

with p = 1. More concretely, we have the following lemma,
which we prove in section ??.

Lemma 1. Given the definition of S(i) and Si1(i) above, we
have

1
n—1

Si(i) =

ZP[J(Z’) < U(j)]

This suggests that higher values of p, and their natural
extension in the form of €—ranking should enable us to
incorporate more information in our ranking, thus justifying
the additional complexity incurred by learning the maximum-
entropy distribution.

To confirm this intuition, we apply the two methods to a
survey conducted by the Washington Post in late 2010, under
the title "Who had the Worst Year in Washington?”. As a
part of the survey, participants were asked to compare people,
institutions, or ideologies two at a time. Chosen results from
the two methods are provided below.

Pairwise Wins
Liberalism
Progressives

Blue Dog Democrats
Nancy Pelosi
President Obama
Taxpayers

Michael Steele
Michele Bachman
Mitch McConnell

f-Ranking (0 = 4)
Progressives
Liberalism

President Obama
Blue Dog Democrats
Nancy Pelosi
Michael Steele
Taxpayers

Mitch McConnell
Michele Bachmann

While the results in both cases are close, we point out
that our algorithm is consistent in maintaining the winners
and losers (e.g. progressives and Michele Bachmann).
Furthermore, our algorithm seems to do a better job at
capturing subtle differences. For instance, if we look at the
last two items, we note that Michele Bachmann, given her

successful political career so far, is a more likely candidate
for the top winner. Another interesting example is that of
Michael Steele, who made some controversial comments
prior to the survey, and taxpayers. These observations, are of
course speculative, and further investigation is underway.

B. System Implementation and Scalability

In this “experiment”, we implemented a voting/survey
tool that enables a large number of participants to vote on
any number of items in real time. By doing so, we had
the following two questions in mind: in addition o being
theoritically interesting, can our algorithm be applied in
real time? is comparison based voting practical and simple
enough for adoption? through this exeperiment, we believe
the answer to both questions to be affirmative.

Our tool was implemented as a web application with a
backend ranking engine. To avoid a “cognitive overload”, or
boring the participants, our interface provides each participant
with a set of 9 items selected from a larger universe. The
user then can express his preference over that set by drag-
and-dropping items in the right order. This ordering is then
converted into pairwise comparisons and sent to the ranking
engine, and the resulting ranking is sent back for instant
display.

Our tool was installed in voting booths that were made
available to the visitors of the MIT 150 open house. Vot-
ing categories included movies, actors, musicians, atheletes,
among others, and the results at any time were continuously
displayed on a large screen. The participation was impressive,
and the feedback was mostly positive, which makes us believe
that adopting comparison as form of voting is worth a serious
consideration.
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