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Abstract— In previous work (2004), we characterized the
optimal throughput-delay trade-off in static wireless networks as
D(n) = Θ(nT (n)), where D(n) and T (n) are the average packet
delay and throughput in a network of n nodes, respectively. While
this trade-off captured the essential network dynamics, packets
needed to scale down with the network size. In this “fluid model”,
no buffers were required. Due to this packet scaling, D(n) did not
correspond to the average delay per bit. That led to the question
whether the trade-off remains the same when the packet size is
kept constant, which necessitates buffers and packet scheduling
in the network.

In this paper, we answer this question in the affirmative
by showing that the optimal throughput-delay trade-off is still
D(n) = Θ(nT (n)), where now D(n) is the average delay per
bit. Packets of constant size necessitate the use of buffers in the
network, which in turn requires scheduling packet transmissions
in a discrete-time queueing network and analyzing the corre-
sponding delay. Our method consists of deriving packet schedules
in the discrete-time network by looking at a corresponding
continuous-time network and then analyzing the delay induced
in the actual discrete network using results from queueing theory
for continuous-time networks.

I. INTRODUCTION

Gupta and Kumar, in their seminal work [3], introduced
a random network model for studying throughput scaling in
a static wireless network, i.e., when the nodes do not move.
They showed that the throughput per source-destination pair
scales as Θ

(
1/

√
n log n

)
. They implicitly used a fluid model

and later work by Kulkarni and Viswanath [5] consolidated
the result with an explicit constant packet size model.

In previous work [1], we studied the throughput-delay trade-
off in wireless networks. The optimal throughput-delay trade-
off was established to be D(n) = Θ(nT (n)), which is
graphically presented in Figure 1. In this work, packet size
needed to scale down with the number of nodes n in the
network. This led to a fluid model for transmitting packets
and allowed us to obtain the essential trade-off by skirting
the issue of buffering and the resultant queueing delay at the
nodes. The delay that was considered in [1] was the average
packet delay and since the packet size was allowed to scale
down with n, it did not correspond to the average delay per bit.
This paper investigates the throughput-delay trade-off when
the packet size remains constant, i.e., does not scale down
with n. This is an important question, since in real networks,
packet size does not change when more nodes are added to
the network. Note that with the additional constraint that the

packet size remains constant, the throughput-delay trade-off
can be no better than that in the fluid model. However, a
priori, it is not clear whether the same throughput-delay trade-
off as in the fluid case can be achieved, since now, routing
packets through the network also involves the additional task
of scheduling in the network. In [7], it was shown that in
a mobile network model with i.i.d. mobility (each node is
distributed uniformly at random in each time-slot independent
of others and the past), a two-hop scheme like the one in
[2] achieves the optimal trade-off using packets of constant
size. However, this method does not extend to static networks
or mobile networks with non-i.i.d. mobility. In this paper, we
extend our previous work to the case of wireless networks with
buffers and constant-size packets and show that the optimal
trade-off is still D(n) = Θ(nT (n)) (as shown in Figure 1)
where now D(n) is the average delay per bit.

D(n)

√
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1
1/n 1/

√
n log n
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Fig. 1. Throughput-delay scaling trade-off in the static random network model. The
scales of the axes are in terms of orders in n.

The main contribution of this paper is to determine the exact
order of delay by coupling the evolution of a discrete-time
queueing network with that of a continuous-time queueing
network. This provides both a packet scheduling policy (see
item 6 of Policy Σn in Section II) and a method for analyzing
the delay. Packets in a wireless network have fixed routes
depending on the source-destination pair to which they belong.
The entire wireless network then corresponds to a discrete-
time, open queueing network with general customer routes,
in the terminology of queueing theory (e.g. see [4], [8]).
In the case of continuous-time queueing networks, these are
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also known as Kelly or BCMP networks and the equilibrium
distribution is known to have a product form. Based on packet
arrival times in a continuous-time queueing network with
a Preemptive LIFO queue management at each server, we
derive a scheduling policy for the wireless network. Finally,
using product form equilibrium results for continuous-time
networks, we determine the exact order of queueing delay in
the discrete-time wireless network.

A. Model and Definitions

We first present the static random network model, the model
for successful wireless transmission and then the definitions of
the performance metrics – throughput and delay.

Definition 1 (Static random network model): The static
random network consists of a unit torus in which n nodes
are distributed uniformly at random. These n nodes are split
into n/2 distinct source-destination (S-D) pairs at random.
Time is slotted for packetized transmission. For simplicity,
we assume that the time-slots are of unit length.

Definition 2 (Model for successful transmission): Under
our Relaxed Protocol model, a transmission from node i to
node j in a time-slot is successful if for any other node k
that is transmitting simultaneously,

d(k, j) ≥ (1 + ∆)d(i, j) for ∆ > 0

where d(i, j) is the distance between nodes i and j. During a
successful transmission, nodes send data at a constant rate of
W bits per second.
With time-slots of unit length, this means that the size of
packets transmitted in each slot is W bits.

Definition 3 (Scheme): A scheme Π, for a random network,
is a sequence of communication policies, (Πn), where policy
Πn determines how communication occurs in a network of n
nodes.

Definition 4 (Throughput of a scheme): Let BΠn(i, t) be
the number of bits of S-D pair i, 1 ≤ i ≤ n/2, transferred in t
time-slots under policy Πn. Note that this could be a random
quantity for a given realization of the network. Scheme Π is
said to have throughput TΠ(n) if there exists a sequence of
sets AΠ(n) such that

AΠ(n) =
{

ω : min
1≤i≤n/2

lim inf
t→∞

1
t
BΠn(i, t) ≥ TΠ(n)

}

and P (AΠ(n))→1 as n→∞.
We use the term whp (with high probability) to denote this.

Definition 5 (Delay of a scheme): The delay of a bit is the
time it takes for the bit to reach its destination after it leaves
the source. Let Di

Πn
(j) denote the delay of bit j of S-D pair i

under policy Πn, then the sample mean of delay for S-D pair
i is

D̄i
Πn

= lim sup
k→∞

1
k

k∑

j=1

Di
Πn

(j).

The average delay over all S-D pairs for a particular
realization of the random network is then

D̄Πn =
2
n

n/2∑

i=1

D̄i
Πn

.

The delay for a scheme Π is the expectation of the average
delay over all S-D pairs, i.e.,

DΠ(n) = E[D̄Πn ] =
2
n

n/2∑

i=1

E[D̄i
Πn

].

Definition 6 (Throughput-delay optimality): A pair
(T (n), D(n)) is said to be Throughput-Delay (T-D) optimal
if there exists a scheme Π with TΠ(n) = Θ(T (n))
and DΠ(n) = Θ(D(n)) and ∀ scheme Π′ with
TΠ′(n) = Ω(T (n)), D(Π′)(n) = Ω(D(n)).

Regarding delay, we would like to note that in the definition
we used bit delay whereas in the schemes we present later we
refer to packet delay since communication is packetized. But
since the packet size is constant, these quantities are of the
same order.

Our main result is as follows.
Theorem 1: The optimal throughput-delay trade-off in the

static random network model is given by

T (n) = Θ (D(n)/n) ,

for T (n) = O
(
1/

√
n logn

)
.

The above result says that under a delay scaling constraint
of D(n) the optimal throughput scaling is Θ(D(n)/n). And
this holds for T (n) = O

(
1/

√
n logn

)
, that is, the entire range

of achievable throughputs in the static random network model.
The rest of this paper is organized as follows. In Sec-

tion II, we introduce Scheme Π and show that it achieves
the throughput-delay trade-off stated in Theorem 1. Finally
we present a converse that shows that no scheme can pro-
vide a better throughput-delay trade-off than Scheme Π, thus
establishing Theorem 1.

II. THROUGHPUT-DELAY TRADE-OFF IN STATIC

NETWORKS

Our trade-off scheme is a multi-hop, time-division-
multiplexed (TDM), cellular scheme with square cells of area
a(n) so that the unit torus consists of 1/a(n) cells as shown in
Figure 2. In the following analysis, we ignore the edge effects
due to 1/a(n) not being a perfect square. Before presenting the
trade-off scheme, we present three lemmas about the geometry
of the n nodes on the torus divided into square cells of area
a(n). See [1] for the proofs.

Lemma 1: If a(n) ≥ 2 logn/n, then each cell has at least
one node whp.
We say that cell B interferes with another cell A if a trans-
mission by a node in cell B can affect the success of a
simultaneous transmission by a node in cell A.

Lemma 2: Under the Relaxed Protocol model, the number
of cells that interfere with any given cell is bounded above by
a constant c1, independent of n.
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Fig. 2. The unit torus is divided into cells of size a(n) for Scheme Π. The S-D lines
passing through the shaded cell in the center are shown.

We say that a cell is active in a time-slot if any of it nodes
transmits in that time-slot. A consequence of Lemma 2 is
that, there exists an interference-free schedule where each cell
becomes active regularly, once in 1+c1 time-slots and no cell
interferes with any other simultaneously transmitting cell.

Let the straight line connecting a source S to its destination
D be called an S-D line.

Lemma 3: The number of S-D lines passing through each
cell is O

(
n
√

a(n)
)

, whp.
The above lemma shows that the number of S-D lines passing
through each cell is ≤ c2n

√
a(n) whp, for an appropriate

choice of the constant c2.
Now we are ready to describe Scheme Π, which is param-

eterized by the cell area a(n) where a(n) = Ω(log n/n) and
a(n) ≤ 1. Recall that by definition, Scheme Π is a sequence
of communication policies (Πn). For any particular realization
of the random network with n nodes, policy Πn differs based
on the following two conditions.
Condition 1: No cell is empty.
Condition 2: The number of S-D lines through each cell is at
most c2n

√
a(n).

If both the above conditions above are satisfied then Πn is the
policy Σn, described below. Otherwise, Πn is a time-division
policy where each of the n/2 sources transmits directly to its
destination in a round-robin fashion.
Policy Σn:

1) Divide the unit torus using a square grid into square
cells, each of area a(n) (see Figure 2).

2) Each node generates packets according to a Poisson

process of rate T (n) = Θ
(
1/n

√
a(n)

)
. The random

network is a discrete-time system whereas the packet
generation is a continuous-time process. So if a packet
is generated at time t, it is available for transmission
from time-slot 't( onwards.

3) Each cell becomes active at a regular interval of 1 +
c1 time-slots (see Lemma 2). Several cells which are
sufficiently far apart become active simultaneously. Thus
the scheme uses TDM between nearby cells.

4) A source S sends packets to its destination D by relaying
or hopping along the adjacent cells lying on its S-
D line as shown in Figure 2. Thus, in this scheme,
direct transmission of packets is only between nodes in
adjacent cells.

5) One of the nodes in a cell acts as a relay by maintaining
a buffer for the packets of all the S-D lines passing
through that cell. In each time-slot only one packet can
be transmitted. However, a relay node may receive up
to four packets from its adjacent cells before it gets a
chance to relay them. Moreover multiple packets may
be generated within the cell which will be available
for transmission in the next time-slot. Hence a virtual
queue is formed in each cell which consists of packets
generated within the cell as well as the packets to be
relayed through the cell.

6) When the cell becomes active, one packet from this
queue (if not empty) is transmitted to an adjacent cell
according to a Last-In-First-Out (LIFO) type of queue
service policy. However, the arrival times considered
by this policy are not the actual arrival times of the
packets, but the arrival times that would occur in a
continuous-time network with the same arrivals and a PL
(Preemptive LIFO) queue management at each server.
This is elaborated later in this section during the analysis
of delay.

The trade-off achieved by Scheme Π is given by the following
theorem.

Theorem 2: Scheme Π with a(n) = Ω(log n/n) has

T (n) = Θ
(
1/n

√
a(n)

)
and D(n) = Θ

(
1/

√
a(n)

)
,

i.e., it achieves the trade-off T (n) = Θ (D(n)/n) .
Throughput analysis: If the time-division policy with direct
transmission is used, then the throughput is 2W/n and delay
of 1. But since it happens with a vanishingly low probability,
as shown by Lemmas 1 and 3, the throughput and delay for
Scheme Π are determined by that of policy Σn.

When policy Σn is used, since Condition 1 is satisfied, each
cell has at least one node. This guarantees that each source
can send data to its destination by hops along adjacent cells on
its S-D line. From Lemma 2, it follows that each cell gets to
transmit a packet every 1 + c1 time-slots, or equivalently, the
cell throughput is Θ(1). The total traffic through each cell is
that due to all the S-D lines passing through the cell, which is
O

(
n
√

a(n)
)

since Condition 2 is also satisfied. This suggests
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that T (n) = Θ
(
n
√

a(n)
)

is achievable, if the average delay
is finite.

Fig. 3. The torus on the left with has 16 cells and each cell contains at least one node.
The circled node in each cell acts as a relay. The corresponding queueing network of 16
servers, with each server corresponding to a cell in the wireless network, is shown on
the right.

Delay Analysis: Next we analyze the packet delay in the
wireless network when policy Σn is used. Dividing the unit
torus into square cells of area a(n) results in 1/a(n) cells.
One of the nodes in each cell maintains a buffer and acts as
a relay for all the S-D lines passing through that cell. These
relay nodes are the circled nodes in Figure 3. The buffer in
each cell corresponds to a queue and the cell itself corresponds
to a server that can transmit one packet from this queue once
in 1 + c1 time-slots. This is because each cell becomes active
once in 1+ c1 time-slots as described earlier. Since policy Σn

restricts direct transmissions to be between adjacent cells, each
cell can receive from or transmit to any four of its adjacent
cells. This determines the connectivity between the servers
so that the entire wireless network corresponds to a discrete-
time queueing network of 1/a(n) servers, where each server
is connected to four others as shown in Figure 3.

Note that the TDM between cells is such that in the c1 slots
before each cell becomes active again each of its neighbors
becomes active exactly once. Hence we can ignore the effect of
cells becoming active at regular intervals and instead consider
a discrete-time network of queues ND where D signifies the
discrete time nature of this network. The actual delay in the
wireless network would then be 1+c1 times the delay in ND.
Queueing network ND: The discrete-time queueing network
ND consists of 1/a(n) servers, each of which can service
one packet from its queue in a time-slot if it is not empty.
Moreover, each server is connected to four others as explained
above. In the wireless network, packets travel from their
sources to their destinations by hops along adjacent cells
on their S-D lines. Thus the route of a packet depends on
the S-D pair to which it belongs. This means that in ND

there are n/2 customer routes corresponding to the n/2 S-
D pairs. Recall that packets arrive in the wireless network at
the sources according to independent Poisson processes of rate
T (n). These correspond to exogenous arrivals at the queues
in ND. The remaining arrivals at the queues are due to the
departures from other queues. In the terminology of queueing
theory, ND is a discrete-time, open network of queues with

general customer routes (see Chapter 6.6 of [8]).
Delay analysis for such discrete-time networks with general

customer routes is not known, which prevents us from using
a simple First-In-First-Out (FIFO) order of service in ND.
We leverage results known about continuous-time networks to
obtain the queue management policy for ND in such a way
that the average delay can be computed.
Queueing network NC : Consider a continuous-time open net-
work of 1/a(n) servers having the same connectivity structure
as ND and the same n/2 customer routes (see Figure 3).
Let this network be called NC . Further, let the exogenous
arrivals in both the networks NC and ND are the same. And
let the service requirement of each packet at each server be
deterministically equal to unit time. From the description until
now, it is clear that NC is the continuous-time analog of the
discrete-time network ND . A Preemptive LIFO (PL) queue
management is used at each server in NC (see Chapter 6.8 of
[8] for more details).

The queue size distribution for the continuous time network
NC with PL queue management at each server has a product
form in equilibrium as shown in [4] (see Theorems 3.7 and
3.8 of Chapter 3) provided that the following two conditions
are satisfied. First, the service time distribution should be
either phase-type or the limit of a sequence of phase-type
distributions. In our case the service time is constant and equal
to 1. The second condition is that, the total traffic at each server
is less than its capacity, which is one in our case.

Consider the sum of n exponential random variables each
with mean 1/n. This sum has a phase-type distribution and
in the limit as n tends to infinity, its distribution converges to
that of a constant random variable. Thus the first condition is
satisfied.

In the wireless network the number of S-D lines passing
through each cell is O

(
n
√

a(n)
)

and the arrival process for
each S-D pair is an independent Poisson process with rate
T (n) = Θ

(
1/n

√
a(n)

)
. Therefore an appropriate choice of

constants guarantees that the total traffic at each server is less
than 1, its service capacity, due to Condition 2 being satisfied.

Using the product form for the queue size distribution in
equilibrium, it follows that the average queue size at a queue
with total traffic λ < 1 and unit mean service is of the form
c3λ/(1 − λ) where c3 is some constant. By Little’s law this
implies that the average delay at each server is bounded above
by a constant independent of n. We summarize the above
discussion in the lemma below.

Lemma 4: For the continuous-time open network NC with
n/2 customer routes as described above the average delay at
each server is bounded above by a constant independent of n.

Packet Scheduling in ND using NC: However we cannot
use this PL policy in the discrete time network ND because
of the following reasons:

1) Due to the discrete time nature of the network ND, a
packet that is generated at time t becomes eligible for
service (i.e. next hop transmission) only at time 't(.
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2) A complete packet has to be transmitted in a time-slot,
i.e. fractions of the packets cannot be transmitted. This
means that a preemptive type of service like PL is not
allowed.

To address these problems for ND , we present a centralized
scheduling policy derived from emulating in parallel, the
continuous-time network NC with PL queue management at
each server. The exogenous arrivals in both NC and ND are
the same. Let a packet arrive in NC at some server at time aC

and in ND at the same server at time aD. Then it is served in
ND using a LIFO policy with the arrival time considered to
be 'aC( instead of aD .

Clearly such a policy can be implemented if and only if
aD ≤ 'aC( for every packet at each server, i.e., each packet
arrives before its scheduled departure time. Let dC and dD

be the departure times of a packet from some server in NC

and ND respectively. Then this is the same as saying that
dD ≤ 'dC( for each packet in every busy cycle of each server
in NC . In what follows, we show that for all packets in any
busy cycle of any server, the departures in ND occur at or
before the departures in NC .

Lemma 5: Let a packet depart in NC from some server at
time dC and in ND at time dD , then dD ≤ 'dC(.

Proof: Fix a server and a particular busy cycle of NC .
Let it consist of packets numbered 1, . . . , k with arrivals at
times a1 ≤ . . . ≤ ak and departures at times d1, . . . , dk. Let
the arrival times of these packets in ND be A1, . . . , Ak and
departures be at times D1, . . . , Dk. By assuming that Ai ≤
'ai( for i = 1, . . . , k, we need to show that Di ≤ 'di( for
i = 1, . . . , k.

Clearly this holds for k = 1 since D1 = 'A1( + 1 ≤
'ai( + 1 = 'd1(. Now suppose it holds for all busy cycles of
length k and consider any busy cycle of k + 1 packets.

If 'a1( < 'a2(, then because of the LIFO policy in ND

based on times ai, we have D1 = 'a1(+ 1 ≤ 'a1(+ k + 1 =
'd1(. The last equality holds since in NC , the PL service
policy dictates that the first packet of the busy cycle is the last
to depart. And the remaining packets would have departures
times as for a busy cycle of length k.

Otherwise if 'a1( = 'a2( then the LIFO policy in ND

based on arrival times ai results in D1 = 'a1(+k+1 = 'd1(
and the packets numbered 2, . . . , k depart exactly as if they
belong to a busy cycle of length k. This completes the proof
by induction.

Thus we have shown that it is possible to use LIFO in ND

based on the arrival times in NC instead of the actual arrival
times in ND. We are now ready to prove Theorem 2.

Proof: (of Theorem 2) Packets reach their destination
with finite average delay, which shows that the throughput is
just the rate at which each source sends its data. This proves
that the throughput T (n) = Θ

(
1/n

√
a(n)

)
.

Next we compute the average packet delay D(n). Lemma 5
also holds for the final departure of each packet from the
network. Therefore if Di

D is the delay of a packet of route i
in ND (i.e. S-D pair i in the wireless network) and Di

C is the

delay of the corresponding packet in NC then Di
D ≤ Di

C +1.
Hence taking expectations it follows that

E[Di
D] ≤ E[Di

C ] + 1, 1 ≤ i ≤ n/2.

Therefore delay averaged over all n/2 routes is given by

D(n) =
2
n

n/2∑

i=1

E[Di
D] ≤ 2

n

n/2∑

i=1

E[Di
C ] + 1. (1)

Since each hop in the wireless network covers a distance of
Θ

(√
a(n)

)
, the number of hops per packet for S-D pair i

is Θ
(
di/

√
a(n)

)
where di is the length of S-D line i. Now

Di
C is the delay for a packet of route i, which is equal to

the sum of the delays along all queues on its route. But from
Lemma 4, the average delay at each server is bounded above
by some constant independent of n. Therefore from (1), we
obtain that

D(n) ≤ 2
n

n/2∑

i=1

c2
E[di]√
a(n)

+ 1 = Θ
(
1/

√
a(n)

)

since 2
∑n/2

i=1 E[di]/n = Θ(1).
The following theorem shows that the trade-off provided

by Scheme Π is optimal. The proof follows easily from the
converse for the fluid model (Theorem 2 in [1]).

Theorem 3: Let the average delay be bounded above by
D(n). Then the achievable throughput T (n) for any scheme
scales as O (D(n)/n).

III. CONCLUSION

The optimal throughput-delay trade-off for static random
wireless networks was determined in [1] using a fluid model
where the packet size needed to scale down with the number
of nodes n in the network. In this paper, we imposed the
constraint that the packet size remains constant and established
that the throughput-delay trade-off remains unchanged. This
also provides a justification for the simplifying fluid assump-
tion made in [1] since it does not affect the essential network
dynamics. The next natural issue to address would be the
mobile random network model, introduced in [2], for which
the trade-off was studied using a fluid model in [1].
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