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Abstract

We consider the problem of “hyper-localizing” product assortments at a fashion

retailer—that is, customizing the offerings to the particular preferences of customers

visiting the store, so that customers can easily find the products that fit their tastes and

purchase more. To make this decision, the firm must accurately predict the demand

for each style at each store—a challenging task because of large variety and the small

number of purchases per customer. To address this challenge, we propose: (a) a

nonparametric choice modeling technique that uses purchase transactions tagged by

customer IDs to build distributions over preference lists of products that are personalized

to each customer and (b) an optimization framework that uses the predictions from our

choice models to optimally allocate merchandise to different stores subject to inventory

and dollar budget constraints. We implemented our methods at a large US fashion

retailer with about $3B in annual revenue and approximately 300 stores. In a controlled

experiment, our methods resulted in additional 7% revenue growth (approx. $200M

profit impact) over the current method. We present the implementation details and the

specific challenges (both technical and managerial) posed for assortment planning by

fashion retail and the ways we addressed them.
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1. Introduction

1.1. Business context

Apparel retailing has truly become a multi-channel experience. The advent of technology has

significantly changed the retailing landscape with consumers increasingly shopping through a

retailer’s online and mobile channels. Despite these growing sales from the newer channels

(both online and mobile), 94% of all retail sales have come from the traditional brick-and-

mortar channel. Recognizing the significance of the physical channel, “online first” ecommerce

start ups such as Birchbox, Warby Parker, Nasty Gal, etc. are establishing physical locations.

These trends certainly point to a multi-channel future in which a single retailer interacts

with the consumer through multiple channels.

The result of the multi-channel shopping behavior is that customer’s expectations have

been altered: they now expect a “Total Retail” experience, with the same level of customization

and personalization in the physical channel as in the online channel. As a result, it has become

increasingly important for a retailer to solve the omni-channel puzzle: offer a consistent

shopping experience to the customer.

1.2. The assortment decision and it’s significance

A key piece of the omni-channel puzzle is building an optimized and hyperlocal product

assortment in each brick-and-mortar store. A hyperlocal product assortment is the product

offering that is customized to the particular preferences of the customers who visit each

physical store, so that customers immediately find products that fit their tastes, just like in

an online store. Determining the “best” hyperlocal product assortment involves solving the

following decision problem.

For each store location, and given a dollar budget, the firm must decide the amount of

inventory dollars to allocate to each product. The “products” may be of any granularity:

categories (such as jackets/blazers, dress shirts, knit tops, handbags, etc.), brands (Calvin
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Klein, DKNY, Vince Camuto, IZOD, etc.), or even individual SKUs (with specific color

and size combinations). To make the decision, the firm has access to store-level inventory

and purchase transactions across all the stores from previous years. The transactions are

tagged with individual customer ids. Beyond that, the firm may not have any individual-level

demographic data (such as age, gender, education, etc.). The data are similar to the panel

data that are commonly used in the marketing literature. However, because the data are

organically collected, they are noisy, sparse (with very few transactions per customer), and

missing key entries (such as customer demographics).

The above decision problem is commonly referred to as “the assortment problem.” It is a

complex problem to solve, requiring accurate demand predictions for the next season. For

instance, making the decision involves answering complex questions, such as: (a) Michael

Kors (MK) handbags were sold out at the Minneapolis store this season. What is the right

allocation (or true demand) for the next season? (b) MK handbags were never sold at the

Lancaster, PA, store. Should we introduce them into the store this season? If so, how well

will they sell? (c) A new brand is under consideration for being introduced into a set of

stores. What will be the impact (on overall sales and the sales of the existing brands) of the

introduction?

The assortment problem is also an important problem with far-reaching implications for

both the (operational) cost and demand of a firm’s profit equation. Misallocation of inventory

dollars results in excess leftover inventory for the unpopular items, increasing the inventory

costs, and stock outs of popular items, resulting in lost demand and unsatisfied customers.

Recent trends in retail have only further increased the significance of the assortment

decision, both from the operational and customer experience perspective. From an operational

perspective, a consequence of the rise of the online and mobile commerce is the changing

nature and role of the offline brick-and-mortar stores. On the one hand, offline stores are

becoming fewer, smaller, and more impactful, effectively reversing the trend over the last

three decades (during which time offline stores doubled in size). Further, newer formats such
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as pop up stores and mobile trucks are becoming increasingly common. The result is that the

assortment decision must be made with an increasing number of (space) constraints, making

a miss more costly: if only 10 items can be carried, then a miss on even one item can result in

significant inventory costs and lost demand. On the other hand, from a customer’s perspective,

offline stores are becoming important for providing a complete shopping experience (Celect,

LLC, 2016) to customers with their roles changing from “sales centric” to “ customer centric.”

The in-store experience provided by the firm is becoming a key competitive weapon for a

firm in addition to its offered selection and prices, and a key piece of the in-store experience

is providing hyper local assortments, personalized/customized to the particular tastes of the

customers at that store. In other words, the assortment carried can have a huge impact on

the experience provided to the customer and, hence, their satisfaction and (long-term) spend.

1.3. Current practice

Apparel retailers broadly follow the following decision-making process. A year is typically

divided into two major seasons: Fall-Winter (FW) and Spring-Summer (SS). Each season,

the firm must decide the products and the corresponding quantities it will carry at each of

its physical stores. The exact decision process used varies from firm to firm, but broadly

consists of the following three steps: (a) first, the firm selects the brands, and the styles

within the brands, it will carry the next season; (b) then, it decides the corresponding order

quantities for each brand-style combination; and (c) finally, it allocates the inventories of the

brand-style combinations to each of its stores. These decisions are made subject to the firm’s

seasonal “Merchandise Financial Plan,” which is the dollar budget the firm has assigned for

each category for that season. Given this budget and the sales trends identified from the

previous season’s transactions, the firm uses judgment and expertise/intuition to identify the

brands and styles that will sell well next season and allocates them to the different stores.

We illustrate this process with a simple hypothetical example for women’s handbags. In the

first step, the firm decides to carry Michael Kors (MK) and Chaps brands within women’s
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Figure 1: A typical spreadsheet decision support tool used by a retailer to make the assortment
decision. Image credit: Celect, Inc (http://celect.com)

handbags for the next season. Then, based on its dollar budgets and sales trends, the firm

decides to purchase $60M worth of MK handbags and $40M worth of Chaps handbags for

the season. The firm has three store locations: Downtown Chicago, IL (CH); Lancaster, PA

(LN); and Minneapolis, MN (MP). So, based on the characteristics of the customers at each

of its stores, the firm decides to allocate $40M and $20M of its MK handbags to CH and MP

stores, respectively, and $20M of its Chaps handbags to CH and $10 each to LN and MP

stores, respectively.

The current practice for making this decision mainly relies on managerial expertise and

intuition, coupled with trends identified from the sales transactions data. Figure 1 shows a

typical spreadsheet decision support tool used by a retailer to make the assortment decision.

Using the data collected in the spreadsheet, the firm analyses the past sales trends to forecast

demand for the next season. For instance, the firm may forecast a weekly demand of 300

platform sandals this year because the demand was 200 last year and 100 the year before.

These sales trends are then combined with macro fashion trends and expert judgment to make

allocation decisions. For example, the firm may decide to increases its spend on “Athleisure

wear”1 because fashion trends fashion suggest that it will become big this year.
1Athleisure is a fashion trend in which clothes designed athletic activities is worn in other (casual) settings.
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1.4. Limitations of current practice and challenges to improve

The biggest limitation of the existing manual process is the high risk of missing expensive

bets. Particularly, in deciding the allocation of inventory dollars for the next season, the

firm is making expensive bets on what will and will not sell well in each of its stores. A

“miss” may either be an overstock or an under-stock of a product. Overstock occurs when the

firm overestimates the demand for a product, resulting in high inventory and operational

costs. It also ties up inventory dollars, leaving fewer dollars to invest in products that will

indeed sell well. Under-stock occurs when the firm underestimates the demand for a product,

resulting in lost sales and poor customer experience. Importantly, both misses carry immense

opportunity costs, in the short-term as well as in the long-term. The opportunity cost comes

from the lost sales because of not carrying products that would have been popular, which

will result in lost revenue not only in the current season, but also in the future because the

customer may defect to a competitor.

The risk of missing a bet is highest when a particular brand was not carried at the store

last season. For instance, consider a retailer who carries Michael Kors (MK) handbags at its

downtown Chicago stores but does not carry them at the Lancaster, PA store. Is it profitable

for the firm to introduce MK handbags at the Lancaster store this season? MK is considered

an “city” brand, so managerial expertise suggests that it will not be profitable to introduce

MK handbags into the Lancaster store, which is close to Amish country. Because MK was

never offered at Lancaster, there is no readily available data to suggest otherwise. Because

the manager’s compensation depends on meeting sales targets, they typically never introduce

MK at the Lancaster store. However, analysis by our industry partner and subsequent

implementation, revealed that this was a missed bet. As far as purchasing MK handbags

goes, there are certain customers at the Lancaster store that are similar to those at the

downtown Chicago store. Therefore, not introducing MK at Scranton is a missed opportunity.

Of course, this is one brand and one store. The magnitude of potential opportunities across

hundreds of stores and brands is immense.
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To mitigate the loss of potential profit due to the existing decision process, managers

must take advantage of an automated decision support system. However, there are two

main challenges: (a) process-related and (b) fundamental technical/methodological. Because

managers are used to the current process, they must be convinced that the recommendations

produced by an automated tool should be followed, even though some of the recommendations

ran counter to their intuitions. To accomplish this, our industry partner built a simple

graphical interface (as described in detail below) to allow the managers to visually drill down

into the recommendations. Theses recommendations fell into three classes: (a) similar to

the manager’s own recommendations, (b) different from the manager’s recommendations but

in line with the manger’s intuition, and (c) different from the manager’s recommendations

and counter to the manager’s intuition. As expected, the third type of recommendations are

the hardest to provide. Mangers’ confidence in the decision support tool was gained through

the first two types of recommendations, which allowed them to implement the third type of

recommendations.

But beyond the process-related challenge, there is a more fundamental methodological

challenge, addressing which goes beyond managerial expertise. Specifically, using the example

above, how does one figure out that MK handbags will sell well in the Lancaster, PA, store,

when given the information that they have sold well in the downtown Chicago store? What

do the data tell us? Because MK handbags were never carried at the Lancaster, PA, store,

for predicting whether they will sell well, we must necessarily correlate data from across

all the stores. The common approach for dealing with this challenge in the industry is to

cluster stores by customer demographics and the size of the market, with the understanding

that stores in the same cluster receive similar assortments. While this approach is certainly

data-driven, the resulting clustering may be too coarse because it ignores subtle variations

in customer purchase patterns: some of the customers at the Lancaster, PA, store may be

similar to the customers at the downtown Chicago store while the others may be similar to

those at the Orlando Park, IL, store. As a result, clustering is making inefficient use of the
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existing information and leaving money on the table. A more systematic and fine-grained

way for making these correlations is to model the data generation process at each store using

a choice model and leverage existing methodologies to make predictions. However, as detailed

below, the predictive accuracies of existing techniques are insufficient for these purposes,

necessitating a new development of choice models with a focus on predictive accuracy. We

describe these techniques next.

2. Related work

The assortment optimization problem has received much attention in the operations manage-

ment and the revenue management literature. The canonical problem involves finding the

revenue/profit maximizing subset of products from a large universe. The optimal assortment

must trade off losing revenues from not including low-revenue products with gaining rev-

enues from inducing the switch to high-revenue products. The assortment problem becomes

interesting because of the product substitution behavior, where customers substitute to an

available product (say, a dark blue shirt) when her most preferred product (say, a black

one) is not offered. Traditional models in operations and revenue management ignored

substitution and assumed product demand to be independent of the offer set. Under this

assumption, the assortment decision was driven by considerations such as inventory costs,

space, seasonality, joint replenishment, etc. Since then, the significance of substitution effects

has been recognized and the academic literature on assortment planning has been driven by

considerations of product substitution. Initial work focused on the multinomial logit model

and various parametric substitution models in which the pairwise substitution rates between

products was parametrized. See Kök et al. (2008) for an excellent review of the existing

substitution-based models. More recently, the focus has shifted from substitution models

to using Random Utility Maximization (RUM)-based choice models to capture product

substitution. Because choice models are rooted in utility theory, they provide a systematic

way to capture product substitution. This work has considered popular parametric choice
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models (such as the multinomial logit (MNL), nested logit (NL), latent-class multinomial

logit (LC-MNL) models) and exploited the resulting structure of the revenue function to

obtain tractable (approximation) algorithms. See Jagabathula (2014) for an overview of the

existing technical results.

Most of this initial work has been motivated by applications to the airline/hotel revenue

management and retailers with reasonably long product cycles and stable demand. Examples

include grocery (supermarket) retailers, electronics retailers (such as Best Buy), apparel

retailer carrying fashion basics, etc. Because the demand and assortment offerings are stable

over time, parametric models fit to transactions data can provide reasonably accurate demand

predictions. Therefore, the focus of the research has been on solving the decision problem

while accounting for the impact of inventory decisions and supply chain structures.

However, the above characteristics do not apply to a fashion apparel retailer in which

products have very short life cycles and the demand for the next season is highly uncertain.

For these settings, making accurate demand predictions (and not necessarily the optimization

problem) becomes the critical and challenging step. In addition, there are few reported

instances of academic approaches on assortment planning being successfully implemented

in practice. In fact, Kök et al. (2008) observe that there is a gap between the approaches

studied in the academic literature and those that are implemented in industry (such as

electronics retailer Best Buy, book and music retailer Borders, Indian jeweler Tanishq, and

Dutch supermarket chain Albert Heinjn). Exceptions include Caro and Gallien (2010), who

describe a successful implementation of academic work for inventory management at Zara,

and Ferreira et al. (2015), who describe a successful collaboration between academia and Rue

La La (a flash sales site) for carrying out price optimization. None of these, however, focus

on the assortment problem or incorporate choice models.

While more recent work in operations has focused on incorporating choice models into

assortment planning, as mentioned, the focus has been primarily on solving the decision

problem as opposed to estimating the model parameters. On the other hand, much work
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has been done in the marketing literature on estimating the choice model parameters from

panel data. This work extends all the way back to the seminal work of Guadagni and Little

(1983), in which they fit a MNL model to household panel data on the purchases of regular

ground coffee, and which has paved the way for choice modeling in marketing using scanner

panel data; see Chandukala et al. (2008), Wierenga (2008) for a detailed overview of choice

modeling using panel data in the area of marketing. The existing estimation techniques are

either Bayesian or likelihood-based, and much of the work has focused on how various panel

covariates (such as customer demographics) influence individual choice making.

Because of the rigor provided by choice models, our demand model is also based on

choice models. Our modeling framework and estimation approach, however, deviate from

much of the existing work in marketing in two ways. First, the popular way to account

for heterogeneity in customer tastes is to use assume a hierarchical model in which it is

assumed that the parameters of each individual are sampled from a distribution that is a

function of the customer demographic variables. This allows for capturing heterogeneity

while allowing for efficient parameter estimation by pooling together data of all the customers.

However, in our application, although purchase transactions are tagged by the customer id,

customer demographic data are not available. Second, most of the existing approaches in

marketing are parametric, i.e., the model size does not grow with the amount of data. These

methods are designed to assess the impact of various features (both individual and product)

on consumer choice. Instead, our focus is on designing methods that optimize predictive

power. Therefore, we design a nonparametric method in which the mode size grows with the

number of customers and products in the data set. Such nonparametric methods have been

found to have better predictive power than the traditional parametric methods (see Farias

et al. (2013)).

10



3. Problem formulation and technical details of the proposed solution

We now describe the precise decision problem. We focus on a firm that will be selling J

products, indexed 1, 2, . . . , J , through S stores in the next season. The firm will sell product

j at price rj and has Qj units of the product in inventory at the beginning of the season.

The firm must allocate its merchandise to the S stores with the objective of maximizing its

revenues, subject to store-level budget constraints (described below). In particular, for each

j and s, the firm must decide the quantity qjs of product j that will be allocated to store s.

To make this decision, the firm must predict the demand for the next season for each

product j, at each of the stores it is offered. Naturally, if the firm expects to sell more of

product j at store s when compared to store t, then it must allocate a larger quantity of

product j to store s when compared to store t. However, the demand next season is not

known. To predict the demand, we have access to the individual-level sales transactions data

from the previous season.

Therefore, to solve the decision problem, we design two modules: (a) demand predictor and

(b) optimizer. The demand predictor uses historical transactions data to provide accurate

demand predictions for each product, at each of the stores it is offered. The optimizer

operates on the predictions from the demand predictor and determines the optimal allocation

of order quantities across the stores, while respecting the firm’s business constraints (budget

constraints, brand constraints, capacity constraints, etc.).

The critical challenge is in obtaining reliable demand predictions from the given data.

Therefore, we first describe the optimizer assuming access to demand predictions and then

describe how we obtain the demand predictions.

Let Djs(qs) denote the predicted demand for product j at store s as a function of the

vector of allocated product quantities qs = (q1s, q2s, . . . , qns). Due to substitution behavior of

customers, we expect the demand for product j to be dependent on which other products are

offered; therefore, Djs(·) is a function of the quantities of all the products at store s. Let cjs

denote the cost for carrying a unit of inventory at store s. Given this, the decision problem
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of the firm can be formulated as the following optimization problem:

max
q≥0

S∑
s=1

J∑
j=1

rj · qjs

subject to
S∑
s=1

qjs ≤ Qj, for j = 1, 2, . . . , J [inventory]

qjs ≤ Djs(qs), for j = 1, 2, . . . , J and s = 1, 2, . . . , S [demand]
J∑
j=1

cjs · qjs ≤ Bs, for s = 1, 2, . . . , S [budget].

The objective function is the total revenue from all the stores for the next season. The

inventory constraint ensures that the total allocation of j to all the stores is no more than

the available inventory Qj, the demand constraint restricts the allocation of j to store s to

be less than the expected demand Djs(qs), and the budget constraint captures the ‘business’

constraint imposed by the firm to ensure that the allocation to each store is within the

allocated dollar budget. Additional business constraints such as dollar budgets for brands

and other size and capacity constraints can be similarly introduced.

The ‘demand’ constraint is key in the above optimization problem. It is restricting the

quantity of the product that is allocated to each store to be less than the expected demand for

the product at that store. However, demand next season and, hence, the realized profit are

uncertain. As a result, a more accurate formulation of the decision problem will maximize

the expected profit, resulting in the stochastic program:

max
q≥0

S∑
s=1

J∑
j=1

E
[
rj min {qjs, djs(qs)} − c̃js(qjs − djs)+

]

subject to
S∑
s=1

qjs ≤ Qj, for j = 1, 2, . . . , J [inventory]

J∑
j=1

cjs · qjs ≤ Bs, for s = 1, 2, . . . , S [budget],

where the expectation in the objective function is with respect to the demand distribution,

x+ denotes max {x, 0} for any number x, and c̃js the cost of the leftover inventory at the end
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of the season. The objective function is the expected total revenue net the cost of leftover

inventory. Because stochastic programs are much harder to solve, we are instead solving the

deterministic approximation in which the demand constraint is imposed only in expectation.

Such deterministic approximations are commonly used in revenue management (RM) (Ciocan

and Farias, 2012, Liu and Van Ryzin, 2008) to tractably solve complex stochastic programs.

Further, note that we are approximating the aggregate demand over thousands/millions of

customers over the next season (3–6 months) by its expectation. As a result, we expect the

observed demand to tightly concentrate around its expectation, making our approximation

very accurate, as long as we can predict the expected demand accurately.

While the objective function and the remaining constraints are linear functions of the

decision variables and, hence, are tractable, the demand Djs(·) is a non-linear function of the

decision variables because substitution causes the demand to be a function of the entire offer

set. Several existing techniques can be used to approximately solve the optimization problem.

Our industry partner employs a proprietary formulation of the optimization problem we have

outlined, and uses proprietary algorithms to solve these problems. However, other techniques

in the literature may also be used. One such technique is based on the approach described

in Jagabathula (2011). Broadly, the difficulty in solving the optimization problem arises

because Djs(qs) is a set function, depending on the offer set M(qs) : {j : qjs > 0} at the store.

In fact, as shown below Djs(qs) is only a function of the offer set M(qs). Now, suppose the

offer sets M(qs) at each of the stores are known. Then, Djs(qs) is determined and the above

optimization problem becomes a linear program and can be solved efficiently to obtain the

optimal revenue. However, the offer sets at the stores are not known. So, we use the local

search heuristic described in Jagabathula (2011) to search over the space of offer sets to

obtain an approximate solution.
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3.1. Personalized demand predictions

We now discuss how we use historical sales transactions data to predict the next season’s

expected demand Djs(qs), when given the order quantities qs. We will first describe the data

we have access to, the model and the estimation technique, and then detail how our methods

differ from the existing techniques in marketing, illustrating the novelty in and the necessity

for our methods.

Data. The firm provides point-of-sales (POS) transactions and the weekly inventory data.

The POS data log information on all the sales transactions that occurred at all the stores.

Each transaction contains information on the product that was purchased, a hashed identifier

for the customer who made the purchase, the time of purchase, the store id where the purchase

occurred. The weekly inventory data contain information on the set of products that were

stocked at each store, every week.

To feed the data into our demand predictor, we process them as follows. We first extract

the individual customers indexed i = 1, 2, . . . , I who made purchases in the data set. For

each individual i, we combine the corresponding sales transactions with the inventory data

to obtain observations encoded as the multiset Oi = {(ji,1,Mi,1), . . . , (ji,Ti
,Mi,Ti

)}, where the

observation (ji,t,Mi,t) denotes that customer i purchased product ji,t in the purchase instance

t, when the offer set in the store was Mi,t. For purchase transaction t, the purchased item is

obtained from the POS data and the offer set is obtained from the inventory data as the set

of products that were stocked at the store where and in the week when the purchase was

made. Because Oi is a multiset, multiple purchases of the same item from the same offer set

appear multiple times, so there is no loss of information.

We make the following remarks. First, note that the data we have provides us information

on not only what the customer purchased, but also what the customer did not purchase.

Broadly, in each purchase instance, the customer is making a choice of which product to

purchase from the set of products that are on offer at the store. Therefore, the purchase of

product ji,t when the offer set is Mi,t implies not only that the customer likes product ji,t but
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also that the customer prefers ji,t over all the other products that were offered in Mi,t. Our

processing captures this by encoding the transaction as the tuple (ji,t,Mi,t), which implies

that product ji,t was chosen from Mi,t. Note that, strictly speaking, we want Mi,t to be the set

of the products the customer considered, as opposed to the set that was offered. However, the

inventory data provide information only on what was stocked (or offered). Consequently, we

approximate the consideration set by the offer set, which is a good approximation, especially

because most of the purchases are considered purchases from a familiar category (such as

handbags).

Second, note that our processing does not directly encode the store id for each purchase

instance. However, most customers (modulo a few exceptions) purchase from only a single

store. Therefore, instead of keeping track of the store id for each purchase instance, we

encode the store information by keeping track of the set of customers who shop at each store.

Finally, for most customers in the data set, we don’t have access to customer demographic

information (such as age, gender, household income, etc.) because the data were never

collected (because the customer either refused to provide the information or, more likely, the

existing systems are inadequate to capture this information).

Model. We now describe how we make demand predictions. For each store s, our objective

is to predict demand when given the quantity vector qs. To explain our approach, let’s fix a

store s. Let M denote the set of products that are being carried at the store this season i.e.,

M = {j : qjs > 0}. Our objective is to predict the number of customers who will purchase

each product j ∈M during the next season. A natural starting point to make the prediction

is the sales data from the previous season at the store. Suppose M ′ was the offer set at

the store previous season and njs was the sales count for product j ∈ M ′. If M = M ′,

then applying a seasonal growth factor to the previous season’s sales can provide reasonably

accurate predictions. Such an approach is reasonable if the firm is selling fashion basics

and when the assortments at the stores do not change substantially from season to season.

However, for a fashion apparel retailer, very often M ′ and M are significantly different.
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When the offer sets are different, the demand prediction problem becomes non-trivial. If

a new product is introduced into the store, then it will cannibalize the demand of existing

products because of which predicting the demand of the existing products is also not

straightforward. To deal with this challenge, we build a nonparametric choice model to make

individual-level predictions of the likelihood of the purchase of each product, given the offer

set M .

Our model operates at the individual customer-level. Specifically, consider a customer i

who makes purchases from store s. Because very few customers make purchases from multiple

stores, we assume that each customer can be associated with a single store. Let gi(j,M)

denote the probability that customer i will purchase product j next season, when the offer

set is M . Assuming we have access to gi(·, ·), we make the prediction:

Djs(qs) = αs ·

 ∑
i : i purchases at store s

gi(j,M)
 ,

where αs is a seasonal growth factor applied to scale the total number of customers from the

previous season to the current season.

In order to make personalized demand predictions, we use a nonparametric choice mod-

eling approach. Broadly, our approach consists of two steps: (a) fitting a population-level

nonparametric choice model to pooled purchase transactions from all the customers; and (b)

using the observations from each customer to determine a ‘personalized’ choice model. Next,

we elaborate the two steps.

Fitting a population level choice model. Instead of making any parametric assumptions,

we model the preferences of the population of customers through a distribution λ defined

over the space of n! preference/rank lists of n items, so that λ(σ) is the probability assigned

to ranked list σ. Each ranked list σ specifies a preference ordering over the products with

σ(j) denoting the preference rank of product j and lower ranked being products preferred

over higher ranked products. When given an offer set M of products, the customers make
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choices by sampling a preference list σ according to distribution λ and then choosing from the

offered items, the most preferred item according to σ i.e., product j such that σ(j) < σ(j′)

for all j′ ∈ M and j′ 6= j. We implicitly assume that the no purchase option is present in

every ranked list, so the customer may leave without making a purchase.

The above nonparametric model is also referred to as the rank-based choice model. It

subsumes the rich class of Random Utility Maximization (RUM) models, of which popular

choice models such as multinomail logit (MNL), nested logit (NL), latent-class MNL (LC-

MNL), and mixed logit models are special cases. This is because an RUM model specifies a

distribution over product utility vectors and supposes that each customer samples a utility

vector and chooses the offered product that has the highest utility. Because each utility vector

induces a preference ordering and only the preference order matters in so far the choice is

concerned, the rank-based choice model subsumes the RUM family of models.

In order to learn the distribution λ, we use the pooled purchase transactions from all

the customers. Let M1,M2, . . . ,MT denote the collection of the unique offer sets present in

the data, i.e., ⋃Ii=1
⋃Ti
t=1 {Mi,t}. Let yj,t denote the fraction of times product j was purchased

when the offer set was Mt i.e.,

yj,t =
∑I
i=1

∑Ti
τ=1 1l[j = ji,τ ,Mi,τ = Mt]∑I

i=1
∑Ti
τ=1 1l[Mi,τ = Mt]

,

where the numerator counts the number of times product j was purchased when Mt was

offered and the denominator counts the number of times Mt was offered.

The observed choices may be interpreted as lower order marginals under the distribution

λ. Specifically, it follows from our model description that the choice probability that product

j will be purchased from offer set Mt is equal to ∑
σ λ(σ) · 1l[σ, j,Mt], where we abuse

notation to let 1l[σ, j,Mt] denote the indicator variable that takes the value 1 when j is the

most preferred product under σ among the products in Mt, i.e, 1l[σ, j,Mt] is defined to be

1l[σ(j) < σ(j′) ∀ j′ ∈Mt, j
′ = j]. Given this (and assuming that there are no model misfit or

finite sample errors), we can relate the population level model λ to the observations through
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the system of linear equations:

yj,t =
∑
σ

λ(σ) · 1l[σ, j,Mt] ∀ j ∈Mt, t = 1, 2, . . . , T ⇐⇒ y = A · λ,

where y = (yj,t)j∈Mt,t=1,...,T denotes the vector of observed choice fractions and λ denotes the

n!× 1 vector of preference distribution. We index each entry of y by j, t and each entry of λ

by the corresponding ranking σ. A is the L × n! matrix consisting of 0 − 1 entries, where

L = ∑T
t=1 |Mt|, with the entry corresponding to the row j, t and column σ equal to 1l[σ, j,Mt].

Thus, the relation between the observed choices and the underlying model can be represented

in a compact form as y = A · λ.

With the above formulation, the task of model learning reduces to inferring a joint

distribution, λ, from the corresponding lower-order marginals y. This formulation presents

two key issues: (a) the system of linear equations y = A · λ is an under-determined system

with multiple solutions, and (b) the vector λ entering into the equations has a dimension of

n!, raising concerns of computational tractability.

The first issue is arising because our model specification is very general, resulting in ‘set

identification’ of the models that are consistent with the data. Because the observed data

are not sufficient to pin point a model, we need to introduce parsimony into our formulation.

The popular way to introduce parsimony is to parametrize the distribution λ by imposing a

structure that allows us to express the choice probabilities as a compact function of a small

set of parameters. For example, the MNL model is described by n parameters and a LC-MNL

model with K latent classes is described by Kn parameters. The issue with this approach

is that the ‘right’ model structure depends on the amount of data; for example, the MNL

model may be found to be a good fit to the data, but as more choice observations are added,

it may be deemed to be under-fitting. In other words, because the number of parameters is

fixed, the model ‘complexity’ does not scale with the data, resulting in either under-fit and

over-fit issues. Because of this, these models tend to under-perform nonparametric models in

terms of predictive accuracy (Farias et al., 2013).
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To deal with the above issue, we use the sparsity, or the support size, of distribution λ as

a measure of parsimony, and pick the sparsest distribution λ from among the set of models

consistent with the data. Sparsity is a natural candidate to measure the complexity of a

distribution and has found recent success in the area of compressed sensing, which spans

the areas of signal processing, coding theory, and streaming algorithms (Candès et al., 2006,

Donoho, 2006). It also naturally arises from our formulation y = A · λ because it follows

from Carathéodory’s theorem that a distribution of sparsity no more than L+ 1 is needed to

describe the data vector y. Using sparsity as a criterion also makes our model nonparametric.

This is because, under appropriate technical conditions, Farias et al. (2013, Theorem 1) shows

that for “almost all” data vectors y, the sparsest distribution λ that is consistent with y has

a sparsity of L or L+ 1. In other words, with sparsity as the criterion, the ‘complexity’ of

the resulting model will scale with the dimension L of the data. We note that an alternate

criterion of ‘worst-case’ revenues was suggested in Farias et al. (2013) to pick a distribution.

For a given offer set M , the criterion picks the distribution that yields the worst-case revenue

from among all the distributions consistent with the data. However as shown by Farias et al.

(2013, Theorem 1), both criteria are similar in the sense that they both pick distributions

that are sparse.

The second issue with our formulation is the computational challenge arising from the

large dimension of λ. We deal with this issue by developing optimization-based techniques. In

particular, because the set of distributions are described by a system of linear equations, they

can be equivalently represented as a bounded polyhedron with each permutation corresponding

to an extreme point. To see this, let Aσ denote the column of the A matrix corresponding

to permutation σ and define the polytope P = conv {Aσ : for all permutations σ}, where

conv(S) is the convex hull of the collection of points in S. Now, because y = A·λ, the vector y

must belong to the polytope P , which implies that the set of models consist with y correspond

to the set of all convex decompositions of y in terms of the extreme points of P . Based on this

correspondence, Farias et al. (2010) reduces the problem of finding a sparse distribution to
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solving optimization problems on the polytope P . Therefore, the computational complexity

of our problem depends on our ability to obtain efficient descriptions of the polytope P . For

that, we exploit the structure of the data vector y. The papers Farias et al. (2010, 2013)

present various approaches to obtain either exact or approximate descriptions of the polytope

P to solve our problem in a tractable fashion.

Note that we assumed that there was no model mis-specification or finite sample errors in

equation the empirical fractions yj,t to their corresponding expected values. In the presence

of these errors, the system of linear equations y = A · λ may be infeasible. In these cases, we

use the following method-of-moments estimator:

min
λ≥0,‖λ‖1=1

‖y − A · λ‖+ c · ‖λ‖0,

where ‖·‖ may be either the `1 or `2 norm, ‖·‖0 is the `0 pseudo-norm that counts the number

of non-zero elements in the vector, and c > 0 is the scalar penalty term that balances the

trade-off between fit to the data and the complexity of the model. We solve this optimization

problem by fixing a value of ε > 0 and solving the following constrained optimization problem:

min
λ≥0,‖λ‖1=1

‖λ‖0 subject to ‖y − A · λ‖ ≤ ε.

If we choose the `1 norm for ‖y − A · λ‖, then the constraint space becomes a polyhedron.

The techniques described above immediately extend to this modified polyhedron, which we

use to obtain a sparse distribution. Because the value the best value of ε is not known,

we perform a binary search over the values of ε. Finally, we tune the value of c through

cross-validation.

The output of this step is a distribution λ that describes the preferences of the population

of the customers. Farias et al. (2013) details a case study in which they apply this technique

to data from a major US automaker and show that it outperforms standard parametric

models by about 20% (on standard relative error metrics) in accurately predicting conversion
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rates at various dealerships across the country.

Personalizing the choice model. Given the the population-level model λ, we obtain per-

sonalized demand predictions by computing a choice model that is personalized to each

individual i. Specifically, suppose the λ has support size K with σ1, σ2, . . . , σK comprising

the support. To derive the personalized choice model for each individual i, we suppose that

the population consists of K types of customers with type k described by preference list σk

and comprising a proportion λ(σk) of the population. Now given the observation set Oi for

individual i, proceed as follows. For each preference list k, we compute a similarity weight

wik > 0 that measures how similar the individual’s observations are to preference list k. Then,

we compute the choice model λi personalized to individual i as

λi(σk) = wik · λ(σk)∑K
k′=1 wi,k′ · λ(σk′)

for k = 1, 2, . . . , K.

A consequence of the above definition is that λ and λi have the same support. Now, given

the personalized choice model λi, we make the choice probability prediction:

gi(j,M) =
K∑
k=1

λi(σk) · 1l[σk, j,M ].

Several similarity metrics in the context of preference lists have been studied in the

literature. The most popular similarity metric is the one that is based on the Kendall-Tau

distance function. This distance function measures the distance between two ranked lists σ

and π as the total number of pairwise disagreements: d(σ, π) = ∑
j<j′ 1l[(σ(j)− σ(j′) · (π(j)−

π(j′)) < 0]. Correspondingly, the similarity between the two ranked lists can be computed as

e−θ·d(σ,π) for some ‘concentration’ parameter θ > 0. This similarity metric can be extended to

choice observation (j,M) by extending the distance function. Specifically, define the distance
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between the observation (j,M) and the ranked list σ as

d((j,M), σ) =
∑

j′∈M,j′ 6=j
1l[σ(j′) < σ(j)]−

∑
j′∈M,j′ 6=j

1l[σ(j) < σ(j′)],

i.e., the distance measures the number of disagreements and subtracts the number of agree-

ments. This definition is a generalization of the standard Kendall-Tau distance function,

which can be noted by verifying that the it yields the transformed Kendall-Tau distance

2 · d(σ, π)−
(
n
2

)
when applied to total orderings. The similarity wik can now be computed as

wik = exp
−θ · Ti∑

t=1
d((jit ,Mi,t), σ)

 .
Although, not discussed here, the above method for computing personalized choice

probabilities can be seen as approximate Bayesian inference. For that λ is viewed as the

prior distribution and wik defined above becomes an approximate posterior probability that

customer i is of type k when type k is described by a Mallows (Mallows, 1957, Marden, 1995)

model with mode σk and concentration parameter θ.

Now, given the personalized predictions, we compute the demand:

Djs(qs) = αs ·

 ∑
i : i purchases at store s

gi(j,M)
 , where M = {j : qs,j > 0} ,

where αs is the seasonal growth factor at store s. We tuned the regularization parameters

λc by way of cross-validation. The seasonal growth parameters were estimated by applying

standard time-series techniques on the aggregated sales data.

3.2. Transferability

Our method by is design nonparametric and data-driven, so it can be applied with little

expert input. The method by itself does not use any context that is specific to a particular

retailer. In addition, the optimization framework is designed to accommodate various business
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constraints, so that it is portable across a variety of retailers. Further, this technology has

been patented (Shah et al., 2015, 2016). In addition, our technology received the following

press coverage: Matyszczyk (2011), Taylor (2011).

4. Implementation challenges

A variant of our methodology was implemented by Celect, Inc. (details below) and applied as

part of its assortment product offering at one of its clients. In implementing our solution,

there were two key challenges: (a) scaling the methods to large data sets and (b) getting the

managers to adopt our solution.

Data challenge. The implementation of our method faced the “big data” challenge. A

typical large-size apparel retailer has a few million Stock Keeping Units (SKUs), few tens of

millions of customers, and hundreds of stores. Data are available in the form of purchase

transactions (both online and offline), customer browsing patterns, website clicks, ratings,

etc. This results in a large volume of data that is high-dimensional. The raw data from a

single retailer is of the order of tens to a few hundreds of gigabytes.

Further, the above choice observations result in a high-dimensional decision problem over

a large volume of data. To put the dimensions of the problem in perspective, the famous

Netflix Prize challenge (Netflix.com, 2009) dealt with making personalized predictions from

100M ratings provided by about 480K users for about 17K movies. In contrast, our demand

prediction engine deals with making personalized demand predictions for millions of users

over a few million of products. In addition, instead of the cardinal observations in form of

ratings, our observations are ordinal in the form of choices. Consequently, existing fast matrix

factorization techniques don’t directly apply to our setting.

Our industry partner uses proprietary solutions to deal with the “big data” challenge.

However, one may use existing techniques to make the estimation and optimization scalable.

These technique rely on converting the computational problem into a graph-based problem.

For instance, recent work by Negahban et al. (2012a,b) has shown that estimating the
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parameters of an MNL model can be converted into the problem of computing the stationary

distribution of an appropriate Markov chain. For data sets observed in practice, the resulting

graphs tend to be sparse. By exploiting this structure, one can use standard graph-partitioning

techniques to make the computation ‘map-reducable’ and implementable on a cloud.

Adoption challenge. Because the automated decision support system implemented by our

industry partner was different from the current practice, there was a challenge of getting the

existing decision-makers to adopt the new system. Taking a cue from existing work (Leeflang

et al., 2013, Little, 2004), the challenge was addressed by creating a user-friendly graphical

interface that is simple to use and adapts in real-time based on user input. Figure 2 shows a

screen shot of the interface, whose simplicity is in contrast with the current spreadsheet-based

tool in Figure 1. Each box in the screen shot corresponds to a brand in a specific store. The

color of the boxes represents the percent change in what our method recommends the retailer

should spend in each of the brands. Dark blue represents a higher recommended investment,

whereas dark red represents a sharp reduction in the investment. Yellow represents are new

brands that the particular store was not carrying before, but our method recommends should

carry now. The filters at the top allow the decision-maker to drill down to various levels

of granularity (department, sub-department, brand, size, etc.) and the controls on the left

hand side allow the decision-maker to add various constraints such as brand-level budget

constraints, store-level budget constraints, etc. The tool offers several other features. A

detailed demo is available at: https://youtu.be/GUREmi4QUoYTo.

The tool has eased the adoption of the recommendations generated by the system because

it made it clear to the managers that the automated tools supplement – as opposed to replace

– their decision process.
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Figure 2: The graphical user interface that was designed by our industry partner to make the
decision support system adaptive and simple to use and adapt; see main text for details. Image
credit: Celect, Inc. (http://celect.com)

5. Impact of the methodology

5.1. Industry partner: Celect

Our industry partner is a Boston-based start up company called Celect. Celect is a predictive

analytics platform focused on the retail sector. In fall 2014, Celect won the 2014 Demo God

Award in the “Smart Data” category. Further, MIT CSAIL noted that Celect’s underly-

ing technology in their top 50 greatest innovations, along side notables like Akamai and

technologies like encryption and robotics. Despite being a young company, Celect already

boasts of several large clients such as Urban Outfitters, Zipcar, Bon-Ton, Anthropologie, and

Free People.

5.2. Implementation and impact

Celect used our methodology at one of its large US retail clients. This large department

store retailer needed a better way to personalize the customer experience and provide
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hyperlocal offerings at each of their physical stores. For starters, they needed to gain a better

understanding of their customers buying patterns and preferences. This means generating

choice models (and preferences) for every customer and transaction. The result of this is a

precise understanding of similarities in customer buying patterns and deep insights into how

products relate to each other in both positive and negative ways. Ultimately, this is to better

understand what the optimized assortment is for a customer shopping at a particular location.

The retail client looked to Celect to optimize assortments across departments, classes,

categories, and vendors. This is to ensure that stores are assorted based on accurate and

predictable customer preferences and demand. The retailer recognized that the opportunity

to optimize the assortment at the local store level had the potential to provide a much more

meaningful impact on the customer experience and the bottom line.

Celect was able to very accurately identify brands and departments with high potential

at specific stores. The financial impact of the Celect technology was assessed through a

standard control experiment. The retailer chose the control stores and the test stores were

selected based on similarities in purchase patterns. Celect technology was used to make

assortment decisions at the test stores, whereas the retailer’s existing techniques were used

at the control stores. The experiment was done over a period of a quarter and the revenue

figures were compared. To assess the incremental revenue impact, the standard ‘double

difference’ methodology was used to account for differences both within and across the stores;

essentially, the same store differences due to the same store trend were accounted for by

subtracting lagging trends and then across store differences were accounted for by subtracting

the control store lifts from the test store lifts, where the controls were picked by the retailer.

Departments modified by Celect yielded an incremental 6.65% increase in revenue. This was

against our predicted increase of 6.43%, which shows a high degree of accuracy.

With Celect in place, this retailer had a much more precise understanding of similarities

in customer buying patterns. Insights were discovered about how products relate to each

other along with the positive and negative impacts products may have on each other. For
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example, a certain category of high-end dresses was found to have a positive “halo” effect on

a moderate counterpart. In this case, a 4% lift in high-end dresses accompanied a 35% lift

on their moderate counterpart at one store. In another store, a 7% lift in high-end dresses

accompanied a 46% lift on their moderate counterpart. Celect recommended increases spend

in both of these categories at both stores – uncovering latent potential and resulting in

immediate increase in sales and conversions across the board.

Overall, this retailer saw an approximate 7% in-store revenue increase as a result of

optimized merchandise assortments and allocation.

In addition, Celect received press coverage for the successful implementation of its

technology at its clients: Levine (2015), Nanos (2015).

6. Key learnings and future work

There were several key learnings from the project. First, making accurate demand predictions

is the biggest challenge to designing a practical assortment optimization solutions. It is

especially true for fashion apparel retailers who sell short life-cycle products in an uncertain

demand environment. It is also becoming increasingly true for more traditional retailers

because of the increase in product variety and the corresponding decrease in product life

times.

Second, while the volume of data generated and collected is large, the dimension of the

corresponding decision space is also large, making the information available for predictions

very sparse. For instance, even though we have a large volume of transactions data in our

applications, there are tens of millions of customers and millions of products, resulting in

only a few observations per customer. This makes the assortment problem a fertile ground

for “big data” technologies that can take in large amounts of unstructured/semi-structured

data and provides meaningful decisions from data. This requires sophisticated techniques

that can efficiently extract meaningful signals from the sparse data and scale to handle large

volumes of data.
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Finally, the retail landscape is rapidly changing and it is predicted that retail will change

more in the next five years than the last fifty (Fitch, 2015). There is an increasing convergence

of the online and traditional brick-and-mortar channels, resulting in new challenges to

assortment planning and providing easy access to new types of data. In addition, there have

been cultural shifts with the retailers showing increasing willingness to adopt automated

decision support systems.

All of the above provide a fertile ground for further academic inquiry from marketers,

statisticians, and the machine learning community into the area of assortment planning to

obtain solutions that can find successful practical application. Particularly, with practitioner

willingness to adopt proposed solutions and availability of rich data, this is an opportune

time for further academic study into (choice models based) demand models and estimation

techniques that are geared towards predictive accuracy, but are also amenable to tractable

optimization.

Future work: Our work opens the doors for future work on two fronts. From the

technological standpoint, we can extend our assortment optimization framework to incorporate

other practical aspects such as supplier effects (such as joint replenishment, lead time

uncertainty, and dual sourcing), promotions (the impact of display and price promotions,

personalized coupons, and non-monetary rewards such as loyalty points), and personalized

assortments (either online or as a sales associate tool in brick-and-mortar stores). From

the practical implementation standpoint, our methodology also applies to other aspects

of assortment planning such as product design, deciding the styles to carry for the next

season, and deciding the overall order quantities. With the experience and credibility gained

from optimizing the allocation of inventory dollars, applying our methodology to these other

aspects is a natural next step.
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