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ABSTRACT

Many modern methods for prediction leverage nearest neigh-
bor search to find past training examples most similar to
a test example, an idea that dates back in text to at least
the 11th century and has stood the test of time. This mono-
graph aims to explain the success of these methods, both in
theory, for which we cover foundational nonasymptotic sta-
tistical guarantees on nearest-neighbor-based regression and
classification, and in practice, for which we gather promi-
nent methods for approximate nearest neighbor search that
have been essential to scaling prediction systems reliant on
nearest neighbor analysis to handle massive datasets. Fur-
thermore, we discuss connections to learning distances for
use with nearest neighbor methods, including how random
decision trees and ensemble methods learn nearest neighbor
structure, as well as recent developments in crowdsourcing
and graphons.

In terms of theory, our focus is on nonasymptotic statistical
guarantees, which we state in the form of how many training
data and what algorithm parameters ensure that a nearest
neighbor prediction method achieves a user-specified error
tolerance. We begin with the most general of such results
for nearest neighbor and related kernel regression and clas-
sification in general metric spaces. In such settings in which
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we assume very little structure, what enables successful pre-
diction is smoothness in the function being estimated for
regression, and a low probability of landing near the deci-
sion boundary for classification. In practice, these conditions
could be difficult to verify empirically for a real dataset. We
then cover recent theoretical guarantees on nearest neighbor
prediction in the three case studies of time series forecasting,
recommending products to people over time, and delineat-
ing human organs in medical images by looking at image
patches. In these case studies, clustering structure, which
is easier to verify in data and more readily interpretable by
practitioners, enables successful prediction.
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Introduction

Things that appear similar are likely similar. For example, a baseball
player’s future performance can be predicted by comparing the player
to other similar players (Silver, 2003). When forecasting election results
for a U.S. state, accounting for polling trends at similar states improves
forecast accuracy (Silver, 2008). In image editing, when removing an
object from an image, one of the most successful ways to fill in the deleted
pixels is by completing the missing pixels using image patches similar to
the ones near the missing pixels (Criminisi et al., 2004). These are but a
few examples of how finding similar instances or nearest neighbors help
produce predictions. Of course, this idea is hardly groundbreaking, with
nearest neighbor classification already appearing as an explanation for
visual object recognition in a medieval text Book of Optics by acclaimed
scholar Alhazen in the early 11th century.! Despite their simplicity and
age, nearest neighbor methods remain extremely popular,? often used

LA brief history of nearest neighbor classification and its appearance in Alhazen’s
Book of Optics is given by Pelillo (2014). The exact completion date of Optics is
unknown. Al-Khalili (2015) dates the work to be from years 1011 to 1021, coinciding
with much of Alhazen’s decade of imprisonment in Cairo, while Smith (2001) claims
a completion time between 1028 and 1038, closer to Alhazen’s death circa 1040.

2Not only was the k-nearest neighbor method named as one of the top 10
algorithms in data mining (Wu et al., 2008), three of the other top 10 methods

3



4 Introduction

as a critical cog in a larger prediction machine. In fact, the machine can
be biological, as there is now evidence that fruit flies’ neural circuits
execute approximate nearest neighbor in sensing odors as to come up
with an appropriate behavioral response (Dasgupta et al., 2017).
Despite nearest neighbor classification dating back a millennium,
analysis for when and why it works did not begin until far more recently,
starting with a pair of unpublished technical reports by Fix and Hodges
(1951) and Fix and Hodges (1952) on asymptotic convergence properties
as well as a small dataset study, followed by the landmark result of Cover
and Hart (1967) that showed that k-nearest neighbors classification
achieves an error rate that is at most twice the best error rate achievable.
Decades later, Cover recollected how his paper with Hart came about:

Early in 1966 when I first began teaching at Stanford, a
student, Peter Hart, walked into my office with an interesting
problem. He said that Charles Cole and he were using a
pattern classification scheme which, for lack of a better
word, they described as the nearest neighbor procedure.
This scheme assigned to an as yet unclassified observation
the classification of the nearest neighbor. Were there any
good theoretical properties of this procedure? (Cover, 1982)

It would take some time for the term “nearest neighbor” to enter com-
mon parlance. However, the nearest neighbor procedure spread quickly
across areas in computer science. Not long after Cover and Hart’s 1967
paper, Donald Knuth’s third volume of The Art of Computer Program-
ming introduced nearest neighbor search as the post office problem
(Knuth, 1973), paving the beginnings of computational geometry. In
various coding theory contexts, maximum likelihood decoding turns out
to mean nearest neighbor classification (Hill, 1986). Fast forwarding to
present time, with the explosion in the availability of data in virtually
all disciplines, architecting database systems that scale to this volume
of data and that can efficiently find nearest neighbors has become a
fundamental problem (Papadopoulos and Manolopoulos, 2005). Under-
standing when, why, and how well nearest neighbor prediction works
now demands accounting for computational costs.

(AdaBoost, C4.5, and CART) have nearest neighbor interpretations.
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1.1 Explaining the Popularity of Nearest Neighbor Methods

That nearest neighbor methods remain popular in practice largely has
to do with their empirical success over the years. However, this expla-
nation is perhaps overly simplistic. We highlight four aspects of nearest
neighbor methods that we believe have been crucial to their contin-
ued popularity. First, the flexibility in choosing what “near” means
in nearest neighbor prediction allows us to readily handle ad-hoc dis-
tances, or to take advantage of existing representation and distance
learning machinery such as deep neural networks or decision-tree-based
ensemble learning approaches. Second, the computational efficiency of
numerous approximate nearest neighbor search procedures enables near-
est neighbor prediction to scale to massive high-dimensional datasets
common in modern applications. Third, nearest neighbor methods are
nonparametric, making few modeling assumptions on data and instead
letting the data more directly drive predictions. Lastly, nearest neighbor
methods are interpretable: they provide evidence for their predictions
by exhibiting the nearest neighbors found.

Flexibility in defining similarity. Specifying what “near” means for a
nearest neighbor method amounts to choosing a “feature space” in which
data are represented (as “feature vectors”), and a distance function to use
within the feature space. For example, a common choice for the feature
space and distance function are Euclidean space and Euclidean distance,
respectively. Of course, far more elaborate choices are possible and, in
practice, often these are chosen in an ad-hoc manner depending on the
application. For example, when working with time series, the distance
function could involve a highly nonlinear time warp (to try to align two
time series as well as possible before computing a simpler distance like
Euclidean distance). In choosing a “good” feature space (i.e., a good
way to represent data), features could be manually “hand-engineered”
depending on the data modality (e.g., text, images, video, audio) or
learned, for example, using deep neural networks (e.g., Goodfellow et
al. 2016, Chapter 15). Meanwhile, sensor fusion is readily possible as
features extracted from multiple sensors (e.g., different data modalities)
can be concatenated to form a large feature vector. Separately, the
distance function itself can be learned, for example using Mahalanobis
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distance learning methods (Kulis, 2013) or Siamese networks (Bromley
et al., 1994; Chopra et al., 2005). In fact, decision trees and their use
in ensemble methods such as random forests, AdaBoost, and gradient
boosting can be shown to be weighted nearest neighbor methods that
learn a distance function (we discuss this relationship toward the end of
the monograph in Section 7.1, building on a previous observation made
by Lin and Jeon 2002). Thus, nearest neighbor methods actually mesh
well with a number of existing representation and distance learning
results.

Computational efficiency. Perhaps the aspect of nearest neighbor
methods that has contributed the most to their popularity is their
computational efficiency, which has enabled these methods to scale to
massive datasets (“big data”). Depending on the feature space and
distance function chosen or learned by the practitioner, different fast
approximate nearest neighbor search algorithms are available. These
search algorithms, both for general high-dimensional feature spaces
(e.g., Gionis et al. 1999; Datar et al. 2004; Bawa et al. 2005; Andoni and
Indyk 2008; Ailon and Chazelle 2009; Muja and Lowe 2009; Boytsov
and Naidan 2013; Dasgupta and Sinha 2015; Mathy et al. 2015; Andoni
et al. 2016) and specialized to image patches (e.g., Barnes et al. 2009; Ta
et al. 2014), can rapidly determine which data points are close to each
other while parallelizing across search queries. These methods often
use locality-sensitive hashing (Indyk and Motwani, 1998), which comes
with a theoretical guarantee on approximation accuracy, or randomized
trees (e.g., Bawa et al. 2005; Muja and Lowe 2009; Dasgupta and Sinha
2015; Mathy et al. 2015), which quickly prune search spaces when the
trees are sufficiently balanced. These randomized trees can even be
efficiently constructed for streaming data using an arbitrary distance
function (Mathy et al., 2015).

Nonparametric. Roughly speaking, nearest neighbor methods be-
ing nonparametric means that they make very few assumptions on
the underlying model for the data. This is a particularly attractive
property since in a growing number of modern applications such as
social networks, recommendation systems, healthcare decision support,
and online education, we wish to analyze big data that we do not
a priori know the structure of. A nonparametric approach sidesteps
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the question of explicitly positing or learning the structure underlying
the data. When we posit intricate structure for data, the structure
may stray from reality or otherwise not account for the full palette of
possibilities in what the data look like. When we learn structure, the
computational overhead and amount of data needed may dwarf what is
sufficient for tackling the prediction task at hand. Instead of positing or
learning structure, nonparametric methods let the data more directly
drive predictions. However, being nonparametric doesn’t mean that
nearest neighbor methods have no parameters. We still have to choose
a feature space and distance, and a poor choice of these could make
prediction impossible.

Interpretability. Nearest neighbor methods naturally provide evi-
dence for their decisions by exhibiting the nearest neighbors found in
the data. A practitioner can use the nearest neighbors found to diagnose
whether the feature space and distance function chosen are adequate for
the application of interest. For example, if on validation data, a nearest
neighbor method is making incorrect predictions, we can look at the
nearest neighbors of each validation data point to see why they tend
to have incorrect labels. This often gives clues to the practitioner as to
how to choose a better feature space or distance function. Alternatively,
if the nearest neighbor method is producing accurate predictions, the
nearest neighbors found tell us which training data points are driving
the prediction for any particular validation or test point. This inter-
pretability is vital in applications such as healthcare that demand a
high burden of proof before letting software influence potentially costly
decisions that affect people’s well-being.

1.2 Nearest Neighbor Methods in Theory

Although nearest neighbor methods for prediction have remained popu-
lar, only recently has a thorough theory been developed to characterize
the error rate of these methods in fairly general settings. Roughly a
millennium after the appearance of nearest neighbor classification in
Alhazen’s Book of Optics, Chaudhuri and Dasgupta (2014) established
arguably the most general performance guarantee to date, stating how
many training data and how to choose the number of nearest neighbors
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to achieve a user-specified error tolerance, when the data reside in a
metric space.® This flavor of result is “nonasymptotic” in that it can be
phrased in a way that gives the probability of misclassification for any
training data set size; we do not need an asymptotic assumption that
the amount of training data goes to infinity. Chaudhuri and Dasgupta’s
result subsumes or matches classical results by Fix and Hodges (1951),
Devroye et al. (1994), Cérou and Guyader (2006), and Audibert and
Tsybakov (2007), while providing a perhaps more intuitive explanation
for when nearest neighbor classification works, accounting for the metric
used and the distribution from which the data are sampled. Moreover,
we show that their analysis can be translated to the regression setting,
yielding theoretical guarantees that nearly match the best of existing
regression results.

However, while the general theory for both nearest neighbor classifi-
cation and regression has largely been fleshed out, a major criticism is
that they do not give “user-friendly” error bounds that can readily be
computed from available training data (Kontorovich and Weiss, 2015).
For example, Chaudhuri and Dasgupta’s result for nearest neighbor
classification depends on the probability of landing near the true deci-
sion boundary. Meanwhile, nearest neighbor regression results depend
on smoothness of the function being estimated, usually in terms of
Lipschitz or more generally Hélder continuity parameters. In practice,
these quantities are typically difficult to estimate for a real dataset.
Unfortunately, this also makes the theory hard to use by practitioners,
who often are interested in understanding how many training data they
should acquire to achieve a certain level of accuracy, preferably in terms
of interpretable application-specific structure rather than, for instance,
Holder continuity parameters (e.g., in healthcare, each training data
point could correspond to a patient, and the cost of conducting a study
may scale with the number of patients; being able to relate how many
patients should be in the study in terms of specific disease or treatment

3Within the same year a few months after Chaudhuri and Dasgupta’s paper
appeared on arXiv, Gadat et al. posted on arXiv the most general theory to date for
nearest neighbor classification in the more restricted setting of finite dimensional
spaces, which was finally published two years later in Annals of Statistics (Gadat
et al., 2016).
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quantities that clinicians can estimate would be beneficial).

Rather than providing results in as general a setting as possible,
a recent trilogy of papers instead shows how clustering structure that
is present in data enables enables nearest neighbor prediction to suc-
ceed at time series forecasting, recommending products to people, and
finding human organs in medical images (Chen et al., 2013; Bresler
et al., 2014; Chen et al., 2015). These papers establish nonasymptotic
theoretical guarantees that trade off between the training data size and
the prediction accuracy as a function of the number of clusters and
the amount of noise present. The theory here depends on the clusters
being separated enough so that noise is unlikely to cause too many
points to appear to come from a wrong cluster. Prediction succeeds
when, for a test point, its nearest neighbors found in the training data
are predominantly from the same cluster as the test point. That these
theoretical guarantees are about clustering is appealing because clusters
can often be estimated from data and interpreted by practitioners.

1.3 The Scope of This Monograph

This monograph aims to explain the success of nearest neighbor meth-
ods in prediction, covering both theory and practice. Our exposition
intentionally strives to be as accessible as possible to theoreticians
and practitioners alike. As the number of prediction methods that rely
on nearest neighbor analysis and the amount of literature studying
these methods are both enormous, our coverage is carefully curated and
inexhaustive.

On the theoretical side, our goal is to provide some of the most
general nonasymptotic results and give a flavor of the proof techniques
involved. All key theoretical guarantees we cover are stated in the form
of how many training data and what algorithm parameters ensure that
a nearest neighbor prediction method achieves a user-specified error
tolerance.

On the more practical side, we cover some examples of how nearest
neighbor methods are used as part of a larger prediction system (rec-
ommending products to people in the problem of online collaborative
filtering, and delineating where a human organ is in medical images in
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the problem of patch-based image segmentation). We also discuss a vari-
ety of approximate nearest neighbor search and related methods which
have been pivotal to scaling nearest neighbor prediction to massive,
even ever-growing datasets.

Our coverage is as follows, transitioning from theory to practice as
we progress through the monograph:

e Background (Chapter 2). We anchor notation and terminology
used throughout the monograph. Specifically we define the basic
prediction tasks of classification and regression, and then present
the three basic algorithms of k-nearest neighbor, fixed-radius near
neighbor, and kernel regression. These regression methods can in
turn be translated into classification methods.

e Regression (Chapter 3). We present theoretical guarantees
for k-nearest neighbor, fixed-radius near neighbor, and kernel
regression where the data reside in a metric space. The proofs
borrow heavily from the work by Chaudhuri and Dasgupta (2014)
with some influence from the work by Gadat et al. (2016). These
authors actually focus on classification, but proof ideas translate
over to the regression setting.

e Classification (Chapter 4). We show how the theoretical guar-
antees for regression can readily be converted to ones for classi-
fication. However, it turns out that we can obtain classification
guarantees using weaker conditions. We explain how Chaudhuri
and Dasgupta (2014) achieve this for k-nearest neighbor classifi-
cation and how the basic idea readily generalizes to fixed-radius
near neighbor and kernel classification.

e Prediction Guarantees in Three Contemporary Applica-
tions (Chapter 5). We present theoretical guarantees for nearest
neighbor prediction in time series forecasting (Chen et al., 2013),
online collaborative filtering (Bresler et al., 2014), and patch-based
image segmentation (Chen et al., 2015). Despite these applica-
tions seeming disparate and unrelated, the theoretical guarantees
for them turn out to be quite similar. In all three, clustering
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structure enables successful prediction. We remark that the in-
dependence assumptions on training data and where clustering
structure appears are both application-specific.

Computation (Chapter 6). We provide an overview of effi-
cient data structures for exact and approximate nearest neighbor
search that are used in practice. We focus on motifs these methods
share rather than expounding on theoretical guarantees, which
many of these methods lack. Our starting point is the classical
k-d tree data structure for exact nearest neighbor search (Bent-
ley, 1979), which works extremely well for low-dimensional data
but suffers from the “curse of dimensionality” due to an expo-
nential dependence on dimension when executing a search query.
To handle exact high-dimensional nearest neighbor search, more
recent approaches such as the cover tree data structure exploit
the idea that high-dimensional data often have low-dimensional
structure (Beygelzimer et al., 2006). As such approaches can still
be computationally expensive in practice, we turn toward ap-
proximate nearest neighbor search. We describe locality-sensitive
hashing (LSH) (Indyk and Motwani, 1998), which forms the foun-
dation of many approximate nearest neighbor search methods
that come with theoretical guarantees. We also discuss empirically
successful approaches with partial or no theoretical guarantees:
random projection or partition trees inspired by k-d trees, and the
recently proposed boundary forest.

Adaptive Nearest Neighbors and Far Away Neighbors
(Chapter 7). We end with remarks on distance learning with a
focus on decision trees and various ensemble methods that turn
out to be nearest neighbor methods, and then turn toward a new
class of nearest neighbor methods that in some sense can take
advantage of far away neighbors.

For readers seeking a more “theory-forward” exposition albeit with-

out coverage of Chaudhuri and Dasgupta’s classification and related

regression results, there are recent books by Devroye et al. (2013) (on
classification) and Biau and Devroye (2015) (on nearest neighbor meth-
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ods with sparse discussion on kernel regression and classification), and
earlier books by Gyorfi et al. (2002) (on nonparametric regression)
and Tsybakov (2009) (on nonparametric estimation). Unlike the other
books mentioned, Tsybakov’s regression coverage emphasizes fixed de-
sign (corresponding to the training feature vectors having a deterministic
structure, such as being evenly spaced in a feature space), which is
beyond the scope of this monograph. As for theory on nearest neighbor
search algorithms, there is a survey by Clarkson (2006) that goes into
substantially more detail than our overview in Chapter 6. However, this
survey does not cover a number of very recent advances in approximate
nearest neighbor search that we discuss.
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Background

Given a data point (also called a feature vector) X € X (for which
we call X the feature space), we aim to predict its label Y € R.! We
treat feature vector X as being sampled from a marginal distribution
(which we also call the feature distribution) Py. After sampling feature
vector X, its label Y is sampled from a conditional distribution Py x.2
To assist us in making predictions, we assume we have access to n
training data pairs (X1,Y7), (X2,Y2),...,(Xn,Ys) € X x R that are
sampled i.i.d. in the same manner as for X and Y, so the i-th training
data point X; has label Y;. We now describe the two basic prediction
problems of regression and classification.

!For simplicity, we constrain the label to be real-valued in this monograph. In
general, the space of labels could be higher dimensional and need not be numeric.
Terminological remarks: (1) Some researchers only use the word “label” for when Y
takes on a discrete set of values, whereas we allow for labels to be continuous. (2) In
statistics, the feature vector X consists of entries called independent (also, predictor
or experimental) variables and its label Y is called the dependent (also, response or
outcome) variable.

2 An appropriate probability space is assumed to exist. Precise technical conditions
are given in Section 3.2.

13
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2.1 Regression

Given an observed value of feature vector X = x, the label Y for this
feature vector is typically going to be noisy. Denoting the conditional
expectation by

n(x) LEY | X =],

then the label YV is going to be n(x) with some noise added. As we
generally cannot predict noise, the expected label n(x) may seem like a
reasonable guess for label Y. This motivates the problem of regression,
which is to estimate (or “learn”) the conditional expectation function
n: X — R given training data (X1,Y1),...,(X,,Y,) € X x R. Once
we have an estimate 7) for 7, then for any feature vector z € X that
we observe, we can predict its label to be 7j(x). The function 7 is also
called the regression function.

Let’s make precise in what way regression function 7 is a good guess
for labels. Suppose we come up with a prediction function f: X — R
where when we observe feature vector X = x, we predict its label Y to
be f(z). Then one way to measure the error is the expected squared
difference between the true label Y and the predicted label f(z) condi-
tioned on our observation X = x, i.e., E[(Y — f(x))? | X = z]. It turns
out that the lowest possible error is achieved by choosing f = 7, so
in this minimal expected squared error sense, regression function 7 is
optimal for predicting labels.

Proposition 2.1.1. Let f : X — R be any measurable function
that given a feature vector outputs a label. For observed feature
vector X = z, the expected squared error for prediction f(x)
satisfies

E[(Y — f(2))? | X = 2] > E[(Y —n(2))” | X = a].

In the inequality above, the right-hand side says what the lowest possible
expected squared error is (in fact, since n(z) = E[Y | X = z|, the
right-hand side is the noise variance). Equality is attained by choosing
f =mn. Of course, we don’t know what the regression function 7 is. The
regression problem is about estimating n using training data.
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Put another way, for a test point X = x, recall that its label Y is
generated as 7(x) plus unknown noise. In an expected squared prediction
error sense, the best possible estimate for Y is n(x). However, even if
we knew n(z) perfectly, Y is going to be off by precisely the unknown
noise amount. The average squared value of this noise amount is the
noise variance, which is the right-hand side of the above inequality.

Proof of Proposition 2.1.1. The proposition follows from a little bit of
algebra and linearity of expectation:

E[(Y — f(x))? | X = 4]
—E[((Y = () + (n(z) — f(x)))*| X = 2]
=E[(Y —1(2))? +2(Y —n(z))(n(z) — f(2)) + (n(x) — f(z))?| X = 2]
= E[(Y — n(2))? | X =]
+2(E[Y | X = 2] —n(z))(n(z) — f(2)) + El(n(z) — f(2))? | X = 2]
n(x) >0
> E[(Y — n(2))? | X = 2l. O

The Bias-Variance Decomposition and Tradeoff

Now that we have motivated that regression function 7 is worth es-
timating as it would minimize the expected squared prediction error,
we present a way to analyze whether an estimate 7 for 7 is any good.
Building off our exposition above, the predictor f will now be written
as 7] to emphasize that we are estimating 1. Moreover, we now will use
the fact that 7 is estimated using n random training data. Different
realizations of training data result in a different function 77 being learned.
In particular, we can decompose the expected squared prediction error
for any estimate 7 of 7 into three terms:

e the bias of the estimator 7, which measures error in terms of
assumptions made by estimator 7) (for example, if 7 is highly
nonlinear, and 7] is constrained to be a linear fit, then the bias
will tend to be large)

e the variance of the estimator 7, which measures how much the
estimator changes when we change the training data (for example,



16 Background

if 77 fits a degree-n polynomial to the n training data, then it will
have high variance—changing any of the n training data points
could have a dramatic effect on the shape of 7j; contrast this to if
7 fit a straight line instead)

e “irreducible” noise variance (as explained by Proposition 2.1.1,
even if we knew the regression function 7 perfectly, the test point
X = x has label Y that deviates from n(z) by an unknown noise
amount; the variance of this noise serves as a lower bound for the
expected squared prediction error of any estimator)

We formally state the bias-variance decomposition shortly, which also
makes it clear what the above three quantities are. Importantly, a good
estimator 7 should simultaneously achieve low bias and low variance.
Finding conditions that ensure these two quantities to be small is a
recurring theme in both analyzing and designing prediction methods.
This concept plays a critical role when we analyze nearest neighbor
regression and classification methods in Chapters 3 and 4.

We now state the bias-variance decomposition of the expected
squared prediction error of estimator 7 at test point X = x. The
derivation is short, so we provide it along the way. We use “E” to
denote expectation over the training data (Xi,Y?),..., (X,,Y,) and
test label Y (and not over X since we condition on X = z), “Ey|x_,"
to denote the conditional expectation of Y given X = x, and “E,,” to
denote the expectation over the n training data. Then the decomposition
is

E[(Y - 7(2))* | X =]
— Eyx—e [En[(Y — 7())?]]
[

D By [(V — 1(2)?] +(Eali(@)] = 1(2))” + Ea[(0(z) — Ea[7(@)°),

- - . . ~ ~
noise variance bias of estimator n at x variance of estimator n at z
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where steps (i) and (i7) each involves expanding a squared quantity
and noting that there is a term with expectation 0 that disappears
(the same idea as described in the second-to-last line of the proof of
Proposition 2.1.1). As a remark, the noise variance is precisely the right-
hand side of the inequality in Proposition 2.1.1 using slightly different
notation.

A key observation is that more complex estimators tend to have lower
bias but higher variance. For example, consider when 7] is a polynomial
fit. If we use a higher-degree polynomial, we can more accurately predict
71, but changes in the training data could have a more dramatic effect
on the shape of 7. This phenomenon is referred to as the bias-variance
tradeoff. As we discuss shortly when we introduce the different nearest
neighbor regression and classification algorithms, choosing different
algorithm parameters corresponds to changing an algorithm’s bias and
variance.

2.2 Classification

In this monograph, we focus on binary classification, which has the same
setup as regression for how the data are generated except that each
label Y takes on one of two values {0, 1} (if the labels took on some two
other values, which need not be numeric, we could always map them
to 0 and 1). Then the problem of classification is to use the training
data (X1,Y1),...,(X,,Y,) € X x {0,1} to estimate a function Y that,
given a feature vector x € X, outputs a predicted label 17(33) € {0,1}
(i.e., the function Y “classifies” z to be either of class 0 or of class 1).3
The function Y is called a classifier.

The best classifier in terms of minimizing probability of error

3Unlike in the regression problem, for the classification problem our goal is not
to estimate the conditional expected label n(z) = E[Y | X = z]|. The reason for this
is that often in classification (especially in the non-binary case when we have many
labels), the underlying labels are not numeric and have no notion of an average, and
thus talking about an average label lacks a meaningful interpretation, even if we
relabel the non-numeric labels to be numeric.
Also, as a terminological remark, classification is some times also called discrimi-
nation (e.g., Fix and Hodges 1951) or pattern recognition (e.g., Devroye et al. 2013),
although the latter is often used more generally than just for classification.
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turns out to be simple to describe. Given observed feature vector
X = z, we compare the conditional probabilities P(Y =0 | X = z) and
P(Y =1| X = x); if the former is higher than the latter, we predict
X to have label 0 and otherwise we predict X to have label 1. (If the
probabilities are equal, we can actually break the tie arbitrarily, but for
simplicity, let’s say we break the tie in favor of label 1.) This prediction
rule is called the Bayes classifier:

?Bayes(l') =argmax P(Y =y | X = 2) (2.1)
ye{0,1}
- {1 HPY =1|X=2)>P(Y =0| X = 2),

(2.2)
0 otherwise.

As an aside, if distributions Py and Py |x are both known, then from
a Bayesian perspective, we can think of Py as a prior distribution for
label Y, Py|x as a likelihood model, and n(z) =P(Y = 1| X = z) as
the posterior probability of label 1 given observation X = z. Then the
Bayes classifier yields a mazimum a posteriori (MAP) estimate of the
label Y.

The Bayes classifier minimizes the probability of misclassification.

Proposition 2.2.1. Let f: X — {0,1} be any classifier that
given a feature vector outputs a label. For observed feature vector
X = z, the probability that the predicted label f(x) is erroneous
satisfies

P(Y # f(z) | X =2) 2 P(Y # VBayes(2) | X = 2).

In fact, the misclassification probability of classifier f at the
point = exceeds that of the Bayes classifier Yg,yes by precisely

P(Y # f(2) | X = 2) = P(Y # Viayes(2) | X = 2)
= [20(2) = L{f () # Viayes ()}
where 1{-} is the indicator function (1{A} = 1 if statement A
holds, and 1{A} = 0 otherwise).

Thus, to achieve the lowest possible misclassification probability, we
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want to choose f = ?Bayes. Unfortunately, similar to how in regression
we do not actually know the regression function n (which minimizes
expected squared error) and instead have to estimate it from training
data, in classification we do not know the Bayes classifier ?Bayes (which
minimizes probability of misclassification) and have to estimate it from
training data.

In fact, in the binary classification setup with labels 0 and 1, the
regression function 1 and the Bayes classifier }A/Bayes are intricately
related. To see this, note that in this binary classification setting, the
regression function n tells us the conditional probability that an observed
feature vector = has label 1:

nz)=EY | X=2]=P(Y =1| X =x).

Thus, we have P(Y =0 | X =2)=1-PY =1| X =2) =1 —n(x),
and with some rearranging of terms, one can show that equation (2.2)
can be written

5 1 if n(z) > 3,

Ypayes(7) 0 otherwise. (2:3)
In light of equation (2.3), the Bayes classifier effectively knows where the
decision boundary {x : n(z) = 1/2} is! In practice, without assuming a
known distribution governing X and Y, we know neither the regression
function n nor where the decision boundary is. A natural approach is to
first solve the regression problem by obtaining an estimate 7 for n and
then plug in 7 in place of ) in the above equation for the Bayes classifier.
The resulting classifier is called a plug-in classifier. Of course, if we are
able to solve the regression problem accurately (i.e., we produce an
estimate 7] that very close to 1), then we would also have a good classifier.
The nearest neighbor and related kernel classifiers we encounter are all
plug-in classifiers.?

We remark that regression can be thought of as a harder problem

than classification. In regression, we care about estimating 1 accurately,

“In this monograph, we focus on nearest neighbor and related kernel classifiers
rather than general plug-in classifiers. We mention that there are known theoretical
results for general plug-in classifiers, such as the work by Audibert and Tsybakov
(2007).
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whereas in classification, we only need to estimate the regions in which 7
exceeds a threshold 1/2 accurately. For example, near a particular
point z, the function 7 could fluctuate wildly yet always be above 1/2.
In this scenario, estimating n(z) from the labels of nearby training data
points is challenging, but figuring out that n(z) > 1/2 is easy (since
very likely the majority of nearby training points will have label at least
1/2). We make this intuition rigorous in Chapter 4.

Proof of Proposition 2.2.1. For any classifier f : X — {0,1}, we have

B(Y # f() | X = x)
—1—PB(Y = f(@) | X = a)

— 1 [1{f(&) = YB(Y = 1| X = 2) + 1{f(z) = 0}B(Y =0 | X = 2)]
— 1 - [1{f(2) = n(x) + 1{f(z) = 0}(1 - n(x))]
— 1 1{f(x) = Ln(x) — 1{f(x) = 0}(1 - n(x))] (2.4)

The above equation holds even if we replace f with ?Bayes:

P(Y # YBayes(7) | X = )
=1 — 1{VBayes () = 1}n(2) — 1{VBayes(x) = 0}(1 = n(x)). (2.5)

Hence, the difference in misclassification rate at point x between classi-
fiers f and Ypayes is given by the difference of equations (2.4) and (2.5):

P(Y # f(2) | X = 2) =P(Y # YVayes(2) | X = )
=[1-1{f(z) = 1}n(z) - 1{f(z) = 0}(1 — n(x))]
— [1 = 1{VBayes() = 1}(x) = 1{Viayes(x) = 0}(1 = n(=))]
= (@) (1{ Vayes (¥) = 1} — 1{f () = 1})
+ (1= (@) (1{VBayes () = 0} = 1{f(x) = 0}). (2.6)
We can evaluate equation (2.6) exhaustively for all possible cases:

e Case 1: f(x) = ?Bayes(x). Then equation (2.6) equals 0.

e Case 2: f(x) =0 and ?Bayes(a:) = 1. Then equation (2.6) equals
n(xz) + (1 —n(z))(—1) = 2n(x) — 1. From equation (2.3), recall
that ?Bayes($) = 1 means that n(z) > . In particular, 2n(z) — 1
is nonnegative.
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e Case 3: f(x) =1 and ?Bayes(a;) = 0. Then equation (2.6) equals
n(x)(=1)+(1—n(z)) = 1—2n(x). From equation (2.3), Yayes(z) =
0 means that n(z) < 1. Thus, 1 — 2n(z) is nonnegative.

Cases 2 and 3 can be combined to say that when f(x) # }A/Bayes(x),
equation (2.6) equals |2n(z) — 1|. Thus, we can write equation (2.6) as

P(Y # f(l') | X = $) - P(Y - ?Bayes(x) | X = :E)

_Jo if Viayes(7) = f(),
2n(z) — 1| if Yayes(z) # f(2),
= 12n(2) — 11 {VBayes(z) # f(2)}. (2.7)
Since the right-hand side of equation (2.7) is nonnegative,
P(Y # f(2) | X =) > P(Y # Ypayes() | X = 2). O

2.3 Nearest Neighbor and Kernel Regression

We present regression methods before their classification variants since
we will just plug in estimated regression functions into equation (2.3) to
yield classifiers. In all methods we consider, we assume we have decided
on a distance function p : X x X — Ry to use for measuring how far
apart any two feature vectors are. In practice, distance function p is
often chosen by a practitioner in an ad-hoc manner and it could, for
instance, not be a proper metric (as is the case when we discuss time
series forecasting in Chapter 5). We now present three nearest neighbor
and related kernel methods.

2.3.1 k-Nearest Neighbor Regression

In k-nearest neighbor (k-NN) regression,® to determine what the label
should be for a point z € X, we find its k nearest neighbors in the

5The k-NN method was first formalized in an unpublished technical report by
Fix and Hodges (1951) for classification (Alhazen’s Book of Optics only describes
1-NN classification rather than the general k-NN case; we remark that Alhazen’s
description has a “reject” option in case the test feature vector is too different from all
the training feature vectors, cf., Pelillo 2014). Moving beyond classification, Watson
(1964) mentions that Fix and Hodges’ k-NN method can easily be used for regression
as well.
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training data and average their labels.

To make this precise, we use the following notation. Let (X3 (), Y(;y(z))
denote the i-th closest training data point among the training data
(X1,Y7),...,(Xp,Y,). Thus, the distance of each training data point to
x satisfies

p(z, X1y (@) < plz, X2)(2)) < -+ < pla, Xn)(2)).

The theory presented later requires that ties happen with probability 0.
In case the marginal distribution Px allows for there to be ties with
positive probability (e.g., the feature space X is discrete), we break ties
randomly in the following manner. For each training data point X;, we
sample a random variable Z; ~ Uniform|0, 1] that can be thought of as
a priority. Then for the test feature vector X that we are predicting
the label for, whenever multiple training feature vectors are the same
distance to X, we break ties by favoring lower values of Z;.6

Then the k-NN estimate for the regression function 7 at point z € X
is the average label of the k£ nearest neighbors:

_ 1
kNN (T) = T > Y (@),
i=1

where we pre-specify the number of nearest neighbors k € {1,2,...,n}.

Intuitively, since the labels are noisy, to get a good estimate for the
expected label n(x), we should average over more labels by choosing
a larger k. However, choosing a larger k corresponds to using training
points farther away from x, which could have labels more dissimilar
to n(z). Thus, we want to choose k to be in some sweet spot that is
neither too small nor too large. This could be thought of in terms of
the bias-variance tradeoff. By choosing a smaller k, we obtain a more
flexible regressor with lower bias but higher variance. For example, with
k =1 and assuming no ties in distances between any pair of training
points, then k-NN regression would have 100% prediction accuracy on
training data labels. This of course is likely an overfit to training data.
On the opposite extreme, with k = n, then regardless of what the test

5This tie breaking mechanism was referred to as tie breaking by randomization by
Devroye et al. (1994), who—on the way of establishing strong consistency of k-NN
regression—compared three ways of breaking ties in nearest neighbor search.
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point x is that we wish to predict n(z) for, the prediction is always just
the average of all training labels. This corresponds to a regressor with
high bias and low variance. Choosing k& to be neither too small nor too
large ensures both bias and variance are sufficiently low.

2.3.2 Fixed-Radius Near Neighbor Regression

Instead of looking at k nearest neighbors, we can look at all nearest
neighbors up to a threshold distance A > 0 away. Finding these neighbors
within radius b is referred to as the fized-radius near neighbor problem.”
We refer to regression using these neighbors as fized-radius NN regression,
which we denote as 7NN (p):

vy (z) =S 2is Hp(z, Xi) < h}
0 otherwise,

where, as a reminder, 1{-} is the indicator function that is 1 when its
argument is true and 0 otherwise.

As with k-NN regression where we want to choose k that is neither
too small nor too large, with fixed-radius NN regression, we want to
choose threshold distance h that is neither too small nor too large.
Smaller h yields a regressor with lower bias and higher variance. Note
that fixed-radius NN regression has an issue that k-NN regression does
not have to deal with: it could be that there are no training data found
within distance h of test point 2. We could avoid this situation if the
number of training data n is sufficiently large so as to ensure some
training data points land within distance h of x.

2.3.3 Kernel Regression

Lastly, we have the case of kernel regression, for which we focus on
the Nadaraya-Watson method proposed separately but within the same
year by Nadaraya (1964) and Watson (1964). Here we have a kernel
function K : Ry — [0, 1] that takes as input a “normalized” distance

"Fixed-radius near neighbor search was used as part of a molecular visualization
system by Levinthal (1966). An early survey on fixed-radius near neighbor methods
was provided by Bentley (1975).
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and outputs a similarity score between 0 and 1, where the distance
is “normalized” because we divide the input distance by a bandwidth
parameter h > 0. Specifically, the kernel regression estimate for n(x) is
denoted

n K(p(x;in) )Yz

=~ . _ X
Aic(wh) = s, K (2eX)
0 otherwise.

if Sy K (255 > o,

For example, fixed-radius NN regression corresponds to choosing K (s) =
1{s < 1}, where bandwidth A is the threshold distance. As a second
example, a Gaussian kernel corresponds to K(s) = exp(—3s*) and the
bandwidth h corresponds to the standard deviation parameter of the
Gaussian. A natural assumption that we make is that K is monotonically
decreasing, which is to say that two points being farther away implies
them having smaller (or possibly the same) similarity score.

The kernel function K affects how much each training point X;
contributes to the final prediction through a weighted average. Ideally,
for a test point x, training points with labels dissimilar to the expected
label n(z) should contribute little or no weight to the weighted average.
Rather than down-weighting training points with labels dissimilar to
the expected label n(x), kernel function K down-weights training points
that are far from x. The hope is that training points close to = do
indeed have labels close to n(z), and training points farther from = have
labels that can deviate more from n(x). Thus, in addition to choosing
bandwidth h to be not too small and not too large as in fixed-radius
NN regression, we now have the additional flexibility of choosing kernel
function K, which should decay fast enough to reduce the impact of
training points far from x that may have labels dissimilar to n(x).

2.4 Nearest Neighbor and Kernel Classification

By plugging in each of the regression function estimates 7x.NN, 7NN(R),
and 7k (+; h) in place of 1 in the optimal Bayes classifier equation (2.3),
we obtain the following plug-in classifiers corresponding to k-NN, fixed-
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radius NN, and kernel classifiers:

9

DN |

1k
1 if =» Y, >
i ki§=1 () =
0 otherwise,

AN e SEtr s ORI
NN(w) () = and denominator 7 ; 1{p(x, X;) < h} >0,

0 otherwise,

Yinn(z) =

' n K(P(ﬂﬁ;fﬁ))y; 1

1 if > Z

N n K(ﬂ(w,Xi)) 2
YK([B; h) = =1 h

and denominator Y7 ; K(p(x’Xi)) >0,

0 otherwise.

We remark that these classifiers have an election analogy and some
times are referred to as running weighted majority voting. Specifically,
each training point X; casts a vote for label Y;. However, the election is
“biased” in the sense that the voters do not get equal weight. For example
in kernel classification, the i-th training point’s vote gets weighted by

a factor K (%) Thus the sum of all weighted votes for label 1 is

Vi(z; K, h) = S0, K(%)H{YZ = 1}, and similarly the sum of all
weighted votes for label 0 is Vp(x; K, h) & 37, K(@)]I{YZ = 0}.
By rearranging terms, one can verify that the kernel classifier chooses
the label with the majority of weighted votes, where we arbitrarily break

the tie here in favor of label 1:

1 if Vi(z; K, h) > Vo(x; K, h),

0 otherwise.

?K(x;h) = {

In £-NN classification, only the k£ nearest training data to x have equal
positive weight and the rest of the points get weight 0. In fixed-radius
NN classification, every training point X; within distance h of x has
equal positive weight, and all other training data points get weight 0.
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Theory on Regression

In this chapter, we present nonasymptotic theoretical guarantees for
k-NN, fixed-radius NN, and kernel regression. Our analysis is heavily
based on binary classification work by Chaudhuri and Dasgupta (2014);
their proof techniques easily transfer over to the regression setting.
Specifically in analyzing expected regression error, we also borrow ideas
from Audibert and Tsybakov (2007) and Gadat et al. (2016).

We layer our exposition, beginning with a high-level overview of the
nonasymptotic results covered in Section 3.1, emphasizing key ideas
in the analysis and giving a sense of how the results relate across the
three regression methods. We then address technicalities in Section 3.2
needed to arrive at the precise statements of theoretical guarantees
given for each of the methods in Sections 3.3, 3.4, and 3.5. As the final
layer of detail, proofs are unveiled in Section 3.6.

We end the chapter in Section 3.7 with commentary on automatically
selecting the number of nearest neighbors k for k-NN regression, and the
bandwidth A for fixed-radius NN and kernel regression. We point out
existing theoretical guarantees for choosing k and h via cross-validation
and data splitting. We also discuss adaptive approaches that choose
different k and h depending on the test feature vector .

26
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3.1 Overview of Results

In this section, we highlight key ideas and intuition in the analysis,
glossing over the technical assumptions needed (specified in the next
section). Our overview here largely motivates what the technicalities
are. Because key ideas in the analysis recur across methods, we spend
the most amount of time on k-NN regression results before drawing
out similarities and differences to arrive at fixed-radius NN and kernel
regression results.

3.1.1 Kk-NN Regression

For an observed feature vector X = =z, recall that k-NN regression
estimates expected label n(x) with the following estimate 7NN (z):

_ 1o
e () = - > Y (@),
=1

where (X(;)(7),Y(;)(z)) denotes the i-th closest training data pair to
point z among the training data (X1, Y1),...,(Xn,Yn), where ties hap-
pen with probability 0 (as ensured by random tie breaking as described
in Section 2.3.1). In particular, the k-NN estimate for n(x) is the aver-
age label of the k£ nearest neighbors. We denote the distance function
being used by p. For example, p(z, X, 1)(z)) refers to the distance
between feature vector z and its (k + 1)-st nearest neighbor X 1)(z).
Pictorially, with blue points denoting training data and the single black
point denoting the “test” feature vector x that we aim to estimate the
regression function’s value at, then the k-NN estimate is the average
label of the blue points strictly inside the shaded ball of Figure 3.1.
Since labels of training data are noisy, to get a good estimate for
the expected label n(z) = E[Y | X = z], we should average over more
values, i.e., we should choose k to be large. However, using a larger k
means that the average label is based on training points that could be
farther away from z (in Figure 3.1, larger k corresponds to growing the
radius of the shaded ball each time to include the next closest training
data point along the ball’s boundary). Training data farther from x
could have labels far from the expected label at point x (i.e., n(x)),
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(k + 1)-st nearest neighbor of x
X(it1) ()

1 (2))

k nearest neighbors are strictly inside this ball
centered at x with radius p(z, X 41y (2))

Figure 3.1: Illustration to help with k-NN analysis (k = 6 in this example): the
blue points are training data, the test feature vector that we are making a prediction
for is the black point x and its k-th nearest neighbor X (;41)(x) is on the boundary
of the shaded ball, which has radius p(z, X (x41)()).

leading to a bad estimate. We formalize these two bad events next and
provide some intuition for how we can prevent each bad event from
happening. We also relate them to the bias-variance tradeoff.

Let ¢ > 0 and § € (0,1) be user-specified error and probability
tolerances, respectively, where we shall guarantee that the regression
estimate 7NN (z) for n(z) has error |N.nn(z) — n(x)| < e with proba-
bility at least 1 — d. Let [E,, denote expectation over the training data
(X1,Y7),...,(Xp,Y,) (note that we are treating observed feature vector
x as fixed here). Then we have:

e Bad event #1. We are not averaging over enough labels in
estimating 7(z) to combat label noise. In other words, the number
of nearest neighbors k& (which is the number of labels we average
over) is too small. As a result, the k-NN regression estimate
Mk-NN(2) is not close to its expectation E, [7x.nN(2)], which we
formalize as |7/7\k—NN (.%') —E, [ﬁk-NN (.’L‘)H > %

Naturally, to prevent this bad event from happening, we shall ask
that k& be sufficiently large so that |~ (z) — Ep[frnn(2)]] < 5,
which—in terms of the bias-variance tradeoff—controls the vari-
ance of k-NN regression to be small. To see this, note that we are
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ensuring (Me-nn(2) — En[fe-nn(2)])? to be small (at most %), and
the expectation of this quantity over randomness in the training
data is the variance of estimator fp.nN at z.

Prevention: With a large enough number of nearest neighbors
k= Q(%2 log 5), we can control the probability of this bad event
to be at most g (Lemma 3.6.2).

Bad event #2. Even if there were no label noise (i.e., the average
label computed by k-NN is exactly E, [x.nn(2)]), the average label
is not close to n(x), likely due to the average being computed using
labels of nearest neighbors that are too far from x. In other words,
k is too large! (For example, consider when k = n.) We formalize
this bad event as |E,[fr-nn(z)] —n(z)] > §, and we encode the
notion that training data farther from = could have labels farther
from n(x) using a smoothness condition on 7 (specifically, Holder
continuity, defined shortly in Section 3.2).

In terms of the bias-variance tradeoff, preventing this bad event
means ensuring that |E,[fr.n~(z)] —n(z)| < §, where the left-
hand side is precisely the absolute value of the k-NN estimator’s
bias at x. Thus, we control k-NN regression’s bias to be small.

Idea behind prevention: Here, how regression function 7 varies
around the point x is crucial. For example, if 1 is just a constant
function across the entire feature space X, then we can choose
the number of nearest neighbors k£ to be as large as the number
of training points n. However, if within a small distance from =z,
n already starts taking on very different values from n(x), then
we should choose k£ to be small.

More formally, there is some critical distance h* (that depends on
how 7 varies around z, and how much error € we tolerate in the
regression estimate) such that if all k£ nearest neighbors found are
within distance A* from z, then we will indeed prevent this second
bad event from happening (i.e., we successfully control k-NN
regression’s bias at = to have absolute value at most §). If 7 is
“smoother” in that it changes value slowly as we move farther away
from x, then h* is larger. If the desired regression error tolerance
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¢ is smaller, then h* is smaller. In the extreme case where 7 is a
constant function, A* can be taken to be infinity, but otherwise h*
will be some finite quantity. The exact formula for critical distance
h* will be given later and will depend on smoothness (Holder
continuity) parameters of  and error tolerance e. In particular,
h* does not depend on the number of nearest neighbors k or the
number of training data n. Rather, with h* treated as a fixed
number, we aim to choose k small enough so that with high
probability, the k nearest neighbors are within distance h* of x.

Pictorially, critical distance h* tells us what the maximum radius
of the shaded ball in Figure 3.1 should be to prevent this second
bad event from happening. The shaded ball has radius given by
the distance from z to its (k + 1)-st nearest neighbor. We can
shrink the radius of this shaded ball in two ways. First, of course,
is to use a smaller k. The other option is to increase the number of
training data n. In particular, by making n larger, more training
points are likely to land within distance h* of x. Consequently,
the k nearest neighbors found will get closer to x, so the shaded
ball shrinks in radius.

To ensure that the shaded ball has radius at most h*, only shrink-
ing k£ (and not increasing n) may not be enough. For example,
suppose that there is only a single training data point and we
want to estimate 7(x) using k-NN regression with & = 1. Then
it is quite possible that we simply got unlucky and the single
training data point is not within distance h* of x. We cannot
possibly decrease k any further, yet the shaded ball has radius
exceeding h*. Thus, not only should k& be sufficiently small, n
should be sufficiently large.

Formally, we want enough training points to land in the ball
centered at x with radius h*, which we denote as

Bep £ {2’ € X : p(x,2') < h*}. (3.1)

(In general, B, denotes a ball centered at ¢ with radius r.) The
number of training data that fall into ball B, j,« scales with the
probability that a feature vector sampled from Px lands in the
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ball:

Px (By,n+) = P(feature vector ~ Px lands in By p+).

We can now concisely state how we prevent this second bad event.

Prevention: With a small enough number of nearest neighbors
k = O(nPx (B r+)) and large enough number of training data n =
Q(m log %), we can control the probability of this second

bad event to happen with probability at most % (Lemma 3.6.3).

In summary, if we have a large enough number of training data n =
Q(m log %) and choose a number of nearest neighbors k neither
too small nor too large, (9(%2 log $) < k < O(nPx (B, p+)), then we can
prevent both bad events from happening with a probability that we
can control, which in turn ensures that the error in estimating n(x)
is small. Concretely, with probability at least 1 — J, we ensure that
[7k-Nn () — n(z)| < e.

To see why we have this guarantee, note that the probability that
at least one of the bad events happen (i.e., the union of the bad events
happens) is, by a union bound, at most % + % = ¢. This means that
with probability at least 1 — J, neither bad event happens, for which
the error |Mp.nn(2) — n(x)| in estimating n(z) is guaranteed to be at
most € since, with the help of the triangle inequality,

Tenn (@) — ()] = | (Frnn (@) — En[e-nn (@)]) + (Bn [fk-nn (2)] — n(2)) |
< [Mk-nn (@) = En[fe-nn (2)]] + [En [fe-nn ()] — n(2)]

E L€
-2 2
=e. (3.2)

In Section 3.3, we provide precise statements of theoretical guarantees for
k-NN regression, first in estimating n(z) for a specific observed feature
vector x (Theorem 3.3.1), which we sketched out an analysis for above,
and then we explain how to account for randomness in sampling the
observed feature vector X = z from feature distribution Px. This latter
guarantee ensures small expected regression error E[|7xnn(X) —n(X)]],
where the expectation is over both the randomness in the training data
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kNN () estimated
using far away
training data

k nearest neighbors

=y

Most training data land here

Figure 3.2: Example where k-NN regression accuracy can be low (k = 6 in this
example): when the feature distribution Px is univariate Gaussian, training data
(blue points) are likely to land near the mean of the Gaussian, e.g., mostly within
the green region labeled Xgood. If we want to estimate n(z) for x very far from the
mean, then it is likely that its k nearest neighbors (circled in orange) are not close
to z, and unless 7 is extremely smooth, then regression estimate 7x.nn(z) will be
inaccurate.

and in the test feature vector X = = (Theorem 3.3.2). We find that
this guarantee is nearly the same as an existing result by Kohler et al.
(2006, Theorem 2).

In obtaining this expected regression error guarantee, the challenge is
that observed feature vector X = x can land in a region with extremely
low probability. When this happens, the nearest neighbors found are
likely to be far away, and unless 7 is extremely smooth, then the
estimate M,.nN(2) for n(x) is going to be inaccurate. An example of this
phenomenon is shown for when feature distribution Px is a univariate
Gaussian in Figure 3.2. As suggested by this figure, most training data
land in a region (denoted as Xyo0q) Of the feature space that, in some
sense, has high probability. We examine a way to define this sufficient
mass region Xgooq that relates to the strong density assumption by
Audibert and Tsybakov (2007) and the strong minimal mass assumption
by Gadat et al. (2016). After defining the sufficient mass region Xyp0d,
then the derivation of the expected regression error bound basically
says that if X = x lands in Xyy0q, then with high probability we can
control the expected error E[|7x.nn(X) — n(X)|] < e. Otherwise, we
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tolerate potentially disastrous regression error.

As a preview, splitting up the feature space into a “good” region
and its complement, the “bad” region, is a recurring theme across
all the nonasymptotic regression and classification results we cover
that account for randomness in observed feature vector X = z. In
classification, although the same good region as in regression can be
used, we shall see that there is a different way to define the good region
in which its complement, the bad region, corresponds precisely to the
probability of landing near the decision boundary.

We also show an alternative proof technique in Section 3.3.3 for
establishing an expected k-NN regression error guarantee using topo-
logical properties of the feature space and distribution. This argument
is stylistically different from using notions such as the sufficient mass
region, strong density assumption, or the strong minimal mass assump-
tion and is in some sense more general, although it comes at a cost:
it asks for a larger number of training data than the other expected
regression error guarantees we present. The proof idea is to show under
fairly general conditions on the underlying feature space and distri-
bution, a finite number of small balls with radius h*/2 “cover” the
whole feature space X’ (meaning that their union contains X), and that
there are enough training data that fall into nearly every one of these
small balls. As a result, for any test feature vector x sampled from the
feature distribution, since it will belong to one of these balls, it is highly
likely that it has enough nearby neighbors (at least k neighbors within
distance h*). A diagram illustrating this covering argument is shown in
Figure 3.3. While this proof technique also works for fixed-radius NN
and kernel regression, we only state the result for k-NN regression.

Lastly, we remark that all the main theorems in this chapter state
how to choose the training dataset size n and number of nearest neigh-
bors k to achieve a user-specified regression error tolerance € > 0.
Thus, n and k£ can be thought of as functions of €. In Section 3.6.10
(at the very end of all the proofs of this chapter), we explain how to
translate these theorems to instead state, for a fixed choice of n and &,
what error tolerance € can be achieved, i.e., € is a function of n and k.
As this translation is relatively straightforward (especially if one does
the translation in big O notation and ignores log factors), we only show
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Test point x

Thick gray line indicates
- distance h* from z

Figure 3.3: Diagram to help explain the alternative strategy for guaranteeing low
expected regression error. The shaded region is the feature space X', which is covered
by small balls each with radius h* /2. Test point x lands in one of these small balls.
Regardless of where x lands, the small ball that it lands in is contained in the ball
with radius h* centered at x. Enough training data should be collected so nearly
every small ball has at least k training points land in it.

how to do it for two of the k-NN regression guarantees (Theorems 3.3.1
and 3.3.2), with the details spelled out (without big O notation). We
refrain from presenting similar translations for all the other theorem
and corollary statements in this chapter.

3.1.2 Fixed-Radius NN Regression.

Recall that the fixed-radius near neighbor estimate with threshold
distance h > 0 is given by:
i=1 H{p(z, Xi) < h}Y;

TINN(h) () =< 2z 1{p(z, X;) < h}
0 otherwise.

if Y, 1{p(a, X,) < b} > 0

Pictorially, the nearest neighbors whose labels are used in the averaging
are precisely the training data (blue points) in the shaded ball (including
on the ball’s boundary) of Figure 3.4.

Similar to the case of k-NN regression, to combat noise in estimating
the expected label n(x), we want to average over more values, i.e., set
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Nearest neighbors within distance h are °
inside this ball (including on its boundary)
centered at x with radius h

Figure 3.4: Illustration to help with fixed-radius NN analysis: the blue points are
training data, the test feature vector that we are making a prediction for is the black
point x and the nearest neighbors used are the ones inside the shaded ball, which
has radius h.

the threshold distance h to be large (this is analogous to preventing
k-NN regression’s bad event #1 in Section 3.1.1). But having h be too
large means that we may be averaging over the labels of points which are
not close to n(x) (this is analogous to k-NN regression’s bad event #2
in Section 3.1.1). However, unlike k-NN regression, fixed-radius NN
regression has an additional bad event: if threshold distance h is chosen
to be too small, then there could be no nearest neighbors found, so
no labels are averaged at all. Put another way, k-NN regression can
adapt to regions of the feature space with sparse training data coverage
by latching onto farther away training data whereas fixed-radius NN
regression cannot.

Thus, we have the following bad events (and how to prevent them),
where the first two are like the two k-NN regression bad events; as with
our presentation of k-NN regression results, e > 0 and § € (0, 1) are user-
specified error and probability tolerances, and [E, denotes expectation
over the random training data:

e Bad event #1. We are not averaging enough labels:
€

NN () (2) = Enlion ) (2)]] > 5-

In terms of the bias-variance tradeoff, as with the k-NN regression
case, preventing this bad event relates to controlling estimator
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variance to be small.

Prevention: Assuming that bad event #3 below does not hap-
pen, then with a large enough number of training data n =
Q(W log %), we can control this bad event to happen with

probability at most g (Lemma 3.6.6).

Bad event #2. The true expected estimate deviates too much
from the true value: |E,[fxnen)(z)] — n(z)| > §. In terms of the
bias-variance tradeoff, as with the k-NN regression case, preventing
this bad event directly controls estimator bias to be small.

Prevention: Assuming that bad event #3 below does not happen,
then this bad event deterministically does not happen so long as
the threshold distance h is chosen to be at most ~A*, which depends
on the smoothness of regression function 7 (Holder continuity
parameters) and the user-specified error tolerance £ (Lemma 3.6.7).
In fact, hA* is the same as in k-NN regression.

Bad event #3. The number of training data landing within
distance h of x is too small, specifically < %n]P’ x(Bazp)-

Prevention: With the number of training data n = Q(m log %),
we can control this bad event to happen with probability at most
¢ (Lemma 3.6.5).

Thus, with a large enough number of training data n = Q(W log %)

and a threshold distance h to be at most critical threshold h*, we can
prevent the bad events from happening with a probability that we can

control, which then means that the error |[fxnn) () —n(x)| is at most ¢,

again using a triangle inequality argument similar to inequality (3.2).

The probability of any of the bad events happening this time is still

derived with a union bound but has a few extra steps. Letting &1, &,
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and &3 denote the three bad events, respectively, then

P(&; or & or &3)

=P([&1 or &) and &) + P([€; or &] and [not &3))

= P(gl or & ’ 53) P(gg) + P([gl or 52] ‘ not 53) IF’(not 53)
—_———

<1 <P(&1|not E3)+P(E2|not £3) <1
union bound

< P(&3) + P(& | not &) + P(& | not &).

The prevention strategies ensure that P(&; | £3) < %, P(& | €3) = 0,
and P(&3) < g, which plugged into the above inequality means that the
probability of at least one bad event happening is at most 4, i.e., the
probability that none of them happen is at least 1 — 6.

The fixed-radius NN regression guarantees (Theorem 3.4.1, for a
specific observed feature vector X = z, and Theorem 3.4.2, accounting
for randomness in sampling X = x from Px) turn out to be almost
identical to those of k-NN regression. The reason for this is that in both
cases, the analysis ends up asking that the radius of the shaded ball (in
either Figures 3.1 or 3.4) be at most h*. In k-NN regression, we choose
k in a way where the distance from z to its (k + 1)-th nearest neighbor
is less than A* whereas in fixed-radius NN regression, we directly set the
threshold distance h to be less than h*. We find that the fixed-radius
NN regression result (accounting for randomness in X = x) nearly
matches an existing result by Gyorfi et al. (2002, Theorem 5.2).

3.1.3 Kernel Regression

Recall that for a given bandwidth A > 0 and kernel function K : Ry —
[0,1] that takes as input a normalized distance (i.e., distance divided
by the bandwidth h) and outputs a similarity score between 0 and 1,
the kernel regression estimate for n(z) is
n K(P($7Xi))}/;

I if S0 K (25)) S,

fo n Ty XN q h
k() = S K (o)

0 otherwise.

The analysis for kernel regression is more delicate than for k-NN and
fixed-radius NN regression (despite the latter being a special case of
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kernel regression). The main difficulty is in the weighting of different
training data. For example, the kernel weight K ( %)
data point X; extremely far from z could still be positive, and such a
faraway point X; could have label Y; that is nowhere close to n(z). To
limit the impact of far away points, the kernel K needs to decay fast
enough. Intuitively how fast the kernel K decays should relate to how

for a training

fast n changes.

The weighting also affects a collection of training points. In particu-
lar, in both k-NN and fixed-radius NN regression, we take an unweighted
average of nearest neighbors’ labels, which substantially simplified anal-
ysis as the usual desired behavior occurs in which error can be reduced
by averaging over more labels. In kernel regression, however, since we
take a weighted average, even if we increase the number of labels we
average over, in the worst case, all the weight could be allocated toward
a point with a bad label estimate.

For simplicity, we only present a result for which kernel K monoton-
ically decreases and actually becomes 0 after some normalized distance
7> 0 (i.e., K(s) < 1{s < 7} for all normalized distances s > 0), which
completely eliminates the first issue mentioned above of extremely
far away points possibly still contributing positive kernel weight. The
second issue of weighted averaging remains, however. Kernels that
satisfy this monotonic decay and zeroing out condition include, for
instance, the naive kernel K(s) = 1{s < 1} (in this case 7 = 1) that
yields fixed-radius NN regression, and a truncated Gaussian kernel
K(s) = exp(—3s?)1{s < 3} that gives weight 0 for distances exceeding
3 standard deviations (in this case 7 = 3). Also, we assume that re-
gression function 7 satisfies a smoothness condition (once again, Holder
continuity).

The above monotonic decay and zeroing out assumption on the
kernel is not disastrous. In practice, for massive training datasets (i.e.,
n extremely large), kernel functions with infinite support (i.e., where
K (s) never becomes 0) are often avoided since in general, computing
the estimate 7x (z; h) for a single point x would involve computing n
distances and corresponding kernel weights, which could be prohibitively
expensive. For example, in medical image analysis, computing the
distance between two 3D images may involve solving a nonlinear image
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alignment problem. Instead, approximate nearest neighbors are found
and then only for these approximate nearest neighbors X; do we compute
their kernel weights K (%) Separately, for kernels that have infinite
support, after some normalized distance away, the kernel weight is
well-approximated by 0 (and might even actually be represented as 0
on a machine due to numerical precision issues, e.g., a Gaussian kernel
evaluated at a distance of 100 standard deviations).

As with the k-NN and fixed-radius NN regression results, to guar-
antee that kernel regression has low regression error, we appeal to the
triangle inequality. We bound the estimation error of n(x) in absolute
value, although this time with a slight twist:

firca: ) —n(@)] < fi(a )~ 5| +| 5 —n@],  (63)

where A £ En[K(@)Y], B £ En[K(@)], and E,, is again the
expectation over the n random training data. In our earlier analysis of
k-NN and fixed-radius NN regression, we did not have a term like % and
instead used the expected regression estimate, which in this case would
be E, [Nk (x; h)]. For kernel regression, this expectation is cumbersome
to work with due to the technical issue mentioned earlier of the average
label being weighted. We remark that as n — oo, indeed we have
E, [Nk (z;h)] — % (using Slutsky’s theorem). However, we restrict our
attention to finite n.

As before, for a user-specified error tolerance € > 0 and probability
tolerance 6 € (0,1), we ensure that with probability at least 1 — ¢,
the error in estimate n(z) is at most £ by asking each error term in
decomposition (3.3) to be at most /2. The bad events are as follows,
where our sketch of the result assumes K (1) > 0 (which we can always
get by rescaling the input to the kernel; the formal theorem statements
later do not make this assumption):

e Bad event #1. |nx(x;h) — %| > 5

Prevention: With a large enough number of training data n =
Q(W log 5), we can control the probability of this bad
event to be at most 0 (Lemma 3.6.9).

e Bad event #2. |% —n(z)] > 5.
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Prevention: If the bandwidth A is at most some h* > 0 that
depends on smoothness of regression function 7, the desired error
tolerance €, and the cutoff normalized distance 7, then this bad
event deterministically does not happen (Lemma 3.6.10). Note that
for the naive kernel corresponding to fixed-radius NN regression,
the h* here is the same as in the k-NN and fixed-radius NN
regression results.

In terms of the bias-variance tradeoff, depending on how well the ratio %
approximates the expected regression estimate E, [k (x; )] (again, this
approximation gets better with a larger training dataset size n), then
preventing bad events #1 and #2 relate to controlling estimator variance
and bias, respectively, as in the k-NN and fixed-radius NN regression
cases.

Putting together the above two prevention strategies, we see that
m log %), then with probabil-
ity at least 1—4, we guarantee bounded regression error |fjx (x; h) — n(z)| < e.

with enough training data n = (

Precise statements are given in Theorem 3.5.1 for a specific observed
feature vector z, and Theorem 3.5.2, which accounts for randomness in
sampling X = x from Px.

Specifically for fixed-radius NN regression, the theoretical guarantee
using this general kernel result is weaker than the earlier guarantee
specifically derived for fixed-radius NN regression in terms of how much
training data is sufficient to ensure the same level of error: the kernel
result asks for n = Q( L yr log %) whereas the fixed-radius NN

e2Px (By,n)*
regression result asks for n = Q(m log %) Of course, on the flip
side, the kernel regression result is more general.

We end our high-level overview of kernel regression guarantees by
remarking that a series of results establish rate of convergence guarantees
for kernel regression that handle more general kernel functions (Krzyzak,
1986; Krzyzak and Pawlak, 1987). These results are a bit messier as
they depend on the smallest solution to a nonlinear equation related to

how the kernel function decays.
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3.2 Key Definitions, Technicalities, and Assumptions

This section summarizes all the key definitions, technicalities, and as-
sumptions that appear in the theorem statements of regression and
classification guarantees (in both Chapters 3 and 4). Importantly, we
adopt abbreviations for all the major assumptions. Because these as-
sumptions repeatedly appear in the theorem statements, rather than
restating the assumptions each time, the shorthand notation we adopt
will keep the theorem statements a bit more concise.

The theory to be presented is fairly general as to handle a wide
range of distributions governing feature vectors and labels. To support
this level of generality, two key assumptions required by the guarantees
will be technical and will ensure that some measure-theoretic argu-
ments carry through. We bundle these two assumptions together in
Assumption 3.2.1 below.

Assumption 3.2.1 (abbreviated At;fg,’ﬁ!?').

(a) The feature space X and distance p form a separable metric
space (Section 3.2.1).

(b) The feature distribution Px is a Borel probability measure
(Section 3.2.2).

In addition to providing mathematical grounding needed for the theory,
these assumptions enable us to properly define what a feature vector
being “observable” means (Section 3.2.3). This is important because we
measure regression error only for such observable feature vectors.

Also as suggested by our overview of results, smoothness of the
regression function 7 comes into play, which we formalize through Holder
continuity (Section 3.2.4). When we talk about regression guarantees
at a specific observable feature vector x, we can get away with a
weaker assumption than Holder continuity, referred to as the Besicovitch
condition (Section 3.2.5).

Lastly, as we have actually already described for kernel regression
in Section 3.1.3, we work with kernel functions satisfying the following
decay assumption.
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Assumption 3.2.2 (abbreviated Aclj?caY(T)). Kernel function K :
R4+ — [0, 1] monotonically decreases and becomes 0 after some
normalized distance 7 > 0 (i.e., K(s) < 1{s < 7} for all s > 0).

3.2.1 The Feature Space and Distance Form a Separable Metric
Space

We assume that the practitioner chooses feature space X and distance
function p so that (X, p) forms a metric space (meaning that p satisfies
the requirements of a metric). As suggested by our overview, we will
often be reasoning about balls in the feature space, and working with
a metric space ensures that these balls are properly defined. For a
technical reason to be described later in this section, we ask that the
metric space be separable (meaning that it has a countable dense subset).
Examples of metric spaces (X, p) that are separable include when X is
any finite or countably infinite set (in which X itself is the countable
dense subset), as well as when X is the Euclidean space R? for any fixed
dimension d (in which the d-dimensional rational number grid Q% is a
countable dense subset).

As a preview, in Chapter 5 we encounter scenarios where distance
function p is not a metric (in time series forecasting) or cannot be
computed exactly (in online collaborative filtering, where we only obtain
noisy distances). Of course, in these settings, there is additional problem
structure that enables nearest neighbor methods to still succeed.

3.2.2 The Feature Distribution is a Borel Probability Measure

Next, we assume that the feature distribution Py is a Borel probability
measure, which roughly speaking means that it assigns a probability
to every possible ball (whether open or closed) in the metric space
(and consequently also countable unions, countable intersections, and
relative complements of these balls). This is a desirable property since,
as suggested by the outline of results in the previous section, we will
reason about probabilities of feature vectors landing in different balls.
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3.2.3 Support of the Feature Distribution and Separability

Thus far, we have generally been careful in saying that for an observed
feature vector x € X, we want to estimate n(z). The technical caveat
for why the word “observed” appears is that the conditional expectation
E[Y | X = z] as well as the conditional distribution of Y given X =z
need to be well-defined. For instance, if X is a discrete random variable
and we observe feature vector x with probability 0 (i.e., P(X = z) = 0),
then we cannot actually condition on X = z. We aim to estimate n(z)
only for “observable” feature vectors x, which we formalize via the
support of distribution Py:

supp(Px) £ {z € X : Px(B,,) > 0 for all 7 > 0},

where as a reminder, the definition of the closed ball B, , is given in
equation (3.1). In words, any feature vector for which landing in any size
ball around it has positive probability is in the support. This definition
neatly handles when feature distribution Px is, for instance, either
discrete or continuous, e.g., if Px is Bernoulli, then supp(Px) = {0, 1},
and if Px is uniform over interval [0, 1], then supp(Px) = [0, 1].

The support of Px seemingly tells us which feature vectors are
observable. However, could it be that the probability of landing outside
the support has positive probability, meaning that there are other feature
vectors worth considering as observable? This is where the technical
condition mentioned earlier of the metric space (X, p) being separable
comes into play. Separability ensures that the support is all that matters:
feature vectors land in the support with probability 1. Cover and Hart
(1967) provide a proof of this albeit embedded in another proof; a
concise restatement and proof are given by Chaudhuri and Dasgupta
(2014, Lemma 23).

3.2.4 Regression Function Smoothness via Holder Continuity

Throughout our overview of results, we alluded to smoothness of the
regression function n. This is formalized using Hoélder continuity.
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Assumption 3.2.3 (abbreviated Agélder(c’a)). Regression func-

tion n is Holder continuous with parameters C' > 0 and « > 0
if
In(z) — n(z")| < Cp(z,x")” for all z,2' € X.

We remark that Lipschitz continuity, which is also often used as a
smoothness condition, corresponds to Holder continuity with a = 1.
Holder continuity tells us how much the regression function n’s value
can change in terms of how far apart two different feature vectors are.
For example, suppose z is the observed feature vector of interest, and a
training feature vector 2’ is a distance h = p(x,2’) away. If we want to
ensure that the regression function values n(z) and n(z’) are close (say,
at most 5), then Holder continuity tells us how large h should be:
, o €
) -G <ore < L
want this to hold

So long as h < (%)1/ @ £ p* then the desired second inequality above

does indeed hold. In fact, as a preview, this h* turns out to be the h*
in the earlier overview of k-NN and fixed-radius NN regression results.

Hélder continuity enforces a sort of “uniform” notion of smoothness
in regression function 7 across the entire feature space X. If we only
care about being able to predict n(z) well for any specific observable
feature vector x, then we can get by with a milder notion of smoothness
to be described next, referred to as the Besicovitch condition. A major
change is that for any x, the critical distance h* for which we want
nearest neighbors of = to be found will now depend on z, and we will
only know that there exists such an h* rather than what its value should
be as in the case of 1 being Holder continuous.

3.2.5 Regression Function Smoothness via the Besicovitch Condi-
tion

When focusing on predicting n(x) at any specific observable feature
vector z (so we pick any z € supp(Px) and do not account for random-
ness in sampling = from Py ), whether the regression function n has
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crazy behavior far away from x is irrelevant. In this case, instead of
Holder continuity, we can place a much milder condition on 7 called the
Besicovitch condition.

Assumption 3.2.4 (abbreviated Apesicovith), Regression func-
tion n satisfies the Besicovitch condition if

lif(r)l E[Y | X € B, =n(x) for z almost everywhere w.r.t. Px.
e

This condition says that if we were to sample training feature vectors
close to x (up to radius r), then their average label approaches n(x)
as we shrink the radius r. These closeby training data would be the
nearest neighbors found by k-NN regression. One can check that Holder
continuity implies the Besicovitch condition.

We remark that there are different versions of this Besicovitch
condition (e.g., a version in Euclidean space used for establishing nearest
neighbor regression pointwise consistency is provided by Devroye (1981),
and a general discussion of the Besicovitch condition in dimensions both
finite and infinite is provided by Cérou and Guyader (2006)). This
condition is also referred to as a differentiation condition as it is asking
that Lebesgue differentiation holds (this terminology is used, for instance,
by Abraham et al. (2006) and Chaudhuri and Dasgupta (2014)).

3.3 Theoretical Guarantees for k-NN Regression

We are ready to precisely state theoretical guarantees for k-NN regres-
sion. We first provide a guarantee for the regression estimation error at
a specific observed feature vector x € supp(Px). This is referred to as
a pointwise regression error since it focuses on a specific point x. As a

: ; o : technical Besicovitch
reminder, the recurring key assumptions made (A /{?fp’rﬁjlgf , ApesteoviEen,

Ag élder(c’a)) are precisely stated in Section 3.2.

Theorem 3.3.1 (k-NN regression pointwise error). Under as-
sumptions AB?CE?PE?I and A'fles‘c""i“h, let = € supp(Px) be a fea-
ture vector, € > 0 be an error tolerance in estimating expected
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label n(xz) = E[Y | X = z], and § € (0,1) be a probability toler-
ance. Suppose that Y € [Ymin, Ymax| for some constants ymin and
Ymax- There exists a threshold distance h* € (0, 00) such that for
any smaller distance h € (0, h*), if the number of training points

satisfies 3 5
n>-———log—, 3.4
2 BB 85 (3-4)
and the number of nearest neighbors satisfies
2(ymax - ymin)2 4 1
- < k<= .
= log 5 S k< 2n]P’X(Bx,h), (3.5)

then with probability at least 1 — ¢ over randomness in sampling
the training data, k-NN regression at point x has error

|7k-nn () — ()] < e.
. . . g Holder(C,a)
Furthermore, if the function 7 satisfies assumption Ay, ,
then we can take h* = ( %)1/ @ and the above guarantee holds

for h = h* as well.

Let’s interpret this theorem. Using any distance h less than h* (or also
equal to, when 7 is Holder continuous), the theorem gives sufficient
conditions on how to choose the number of training data points n and
the number of nearest neighbors k. What is happening is that when the
training data size n is large enough, then we will with high probability
see at least k points land within distance h from z, which means that
the k nearest neighbors of z are certainly within distance h. Then
taking the average label value of these k nearest neighbors, with high
probability, this average value gets close to n(x) = E[Y | X = z], up to
error tolerance €.

If we demand a very small error ¢ in estimating 7(x), then depending
on how the function n fluctuates around the point z, we may need h to
be very small as well, which means that we need a lot more training
data so as to see more training points land within distance h from z.
Specifically in the case when 7 is Holder continuous, we see that the
largest h that we provide a guarantee for is h = (%)1/ @, For example,
in the case that n is Lipschitz (o = 1), we have h = O(¢).
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Note that if error tolerance € is too small, then there could be no
choice of number of nearest neighbors k satisfying the condition (3.5).
In particular, smaller € means that we should average over more values
to arrive at a good approximation of 7, i.e., the number of nearest
neighbors k should be larger. But larger £ means that the k nearest
neighbors may reach beyond distance h from x, latching onto training
data points too far from z that do not give us label values close to n(x).

Fundamentally, how much 7 fluctuates around the point z signifi-
cantly impacts our ability to estimate n(x) accurately. Binary classifica-
tion, as we will discuss more about later in Chapter 4, is a much simpler
problem because we only care about being able to correctly identify
whether 7(x) is above or below 1/2. This suggests that somehow in the
classification case, we can remove the Holder continuity assumption.
What matters in binary classification is how 1 fluctuates around the
decision boundary {2’ € X : n(2’) = 1/2}. For example, if test feature
vector x is near the decision boundary, and if n fluctuates wildly around
the decision boundary, then the nearest neighbors of x may have labels
that do not give us a good estimate for n(z), making it hard to tell
whether 7(x) is above or below 1/2.

Our analysis of k-NN regression makes it clear that we want to
choose k carefully so nearest neighbors found are within distance h
from z, for a range of possible h that ensure that regression error
can be at most €. Here, using a larger h (in the theorem of course;
there is no parameter h in the algorithm) means that to achieve the
same error £, we can use a smaller number of training data n (cf.,
inequality (3.4)) and a wider range of possible k (since the upper bound
in sandwich inequality (3.5) increases). However, we cannot in general
make h arbitrarily large, as we only provide a guarantee for h being
less than h* (or also equal to, when 7 is Holder continuous).

The analysis we present for k-NN regression reasons about training
data points landing within distance h from a test point z, and relates
this distance h with the chosen number of nearest neighbors k. Of
course, we could sidestep this issue of relating A and k by just having
the algorithm look at all nearest neighbors within a distance h, which
precisely results in the fixed-radius NN regression.
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3.3.1 Toward Expected Regression Error: Partitioning the Feature
Space Using the Sufficient Mass Region

As mentioned in the overview of results, to turn the guarantee on
pointwise regression error |7j(x) — n(z)| of Theorem 3.3.1 into one on
the expected regression error E[|7(X) — n(X)|], where the expectation
is over all training data and the test feature vector X = x sampled
from feature distribution Px, the key idea is to partition the feature
space into a high probability “good” region Xyo0a (Where we can choose
n and k to control regression error) and its complement g00d = X \
Xeood, the bad region (where we tolerate potentially terrible regression
accuracy). Formally, we define the sufficient mass region Xyo0q of feature
distribution Px parameterized by constants pymin > 0, d > 0, and r* > 0
to be

Xgood (]PX; Pmin» d? T*)
£ {x € supp(Px) : Px(By,) > Pminr® for all r € (0,7]}.

The basic idea is that inside this region Xyo0q (specifically with r* =
(%)1/ @), we can readily apply Theorem 3.3.1 (with the case where 7 is
Holder continuous with parameters C' and «), and outside this region,
we just assume a worst-case regression error of ymax — Ymin- In fact, we
do not need 7 to be Holder continuous outside of the sufficient mass
region Xgo0q (plus a little bit of radius around this region due to some
boundary effects). We remark that the sufficient mass region is a slight
variant on the strong minimal mass assumption by Gadat et al. (2016),
which in turn is related to the strong density assumption by Audibert
and Tsybakov (2007).!

!The strong minimal mass assumption (SMMA) of Gadat et al. (2016) essentially
asks that for every 2 € supp(Px), we have Px (Bs,r) > phinpx (2)r?, where pl, > 0
is some constant and px is the density of distribution Px with respect to Lebesgue
measure. The definition we introduced for the sufficient mass region does not need to
hold over all of supp(Px ), nor does it depend on a density with respect to Lebesgue
measure. If the entire support of Px is inside a sufficient mass region, and Px has a
density px with respective to Lebesgue measure that is lower-bounded by a positive
constant, then it is straightforward to see that SMMA and the sufficient mass region
are equivalent; in this case SMMA is also equivalent to the strong density assumption
(SDA) by Audibert and Tsybakov (2007) (cf., Gadat et al. 2016, Proposition 3.1), so
all three conditions coincide. We discuss the SDA more later.
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Let’s build some intuition for the sufficient mass region Xyo0d (Px; Prin, d, )
of the feature space. First off, this region is defined for any choice of
Pmin > 0, d > 0, and r* > 0. A poor choice of these parameters could
mean that Xeood(Px; Pmin, d, ") = (), a fruitless region to work with.
We give a few examples of feature distributions and nonempty sufficient
mass regions.

Example 3.3.1 (Uniform distribution). Suppose the feature
space is the real line X = R, the feature distribution is Px ~
Uniform[a, b] for constants a < b, and the metric p is the usual
distance p(z, 2’) = |x—a'|. Then every part of supp(Py) is equally
likely, so there should be a sufficient mass region corresponding
to the full support of the feature distribution. Formally, this
means that we should be able to find ppin > 0, d > 0, and 7* > 0
such that Xyo0d (Px; Pmin, d, 7*) = [a, b]. This of course turns out
to be the case since for any = € supp(Px) = [a,b], and any
r € (0,b—al,

Px (By,r) > r (3.6)

b—a’
meaning that Xgood(Px; 7,1,b — a) = [a,b] = supp(Px).

Let’s see why inequality (3.6) holds. The basic idea is to look
at the probability of a feature vector sampled from Px landing
in balls of radius 7 centered at different points in interval [a, b].
Consider a ball B, = [x — 7,z + r] that is completely contained
in interval [a,b], as shown in Figure 3.5(a). The probability of
landing in this ball is the area of the shaded pink rectangle,
ﬁ - 27,

Pictorially, by thinking about sliding this ball B, ; from left
to right so that its center x goes from endpoint a to endpoint b,
note that the probability of landing in the ball is lowest precisely
when the center of the ball is at either a or b, when exactly half of
the ball is contained in interval [a, b]. As shown in Figure 3.5(b),
landing in the ball centered at the left endpoint a has probability
ﬁ -r. One can check that the probability of landing in ball
centered at the right endpoint b is the same.
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b—a Bz,r
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(a) The probability of landing in B - is ﬁ - 2.
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- —>
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(b) The probability of landing in B, is ;= - 7.

Figure 3.5: Probability density function of Px ~ Uniform[a, b], and examples of two
different balls that a feature vector drawn from Px can land in, one ball completely
contained in [a,b] (top), and one ball on an endpoint of [a, b] (bottom).

By this pictorial argument, ﬁ - r is the lowest probability
of landing in any of these balls, which almost fully justifies
inequality (3.6). The missing piece is how large the radius r can
be. By looking at Figure 3.5(b), note that the largest r such that
the area of the shaded region is still ﬁ -ris r = b— a. One
can check that for this choice of r, sliding the ball from a to b,
the probability of landing in the ball is always at least (and in
fact in this case equal to) ﬁ - 7. Any larger r makes this lower
bound no longer hold.

We remark that inequality (3.6) holding implies that [a, b] is
a subset of Xgo0d(Px; ﬁ, 1,b—a). Of course, since the sufficient
mass region is defined to be a subset of supp(Px) = [a, b], we get a
sandwich relationship and can conclude that Xeo0q(Px; ﬁ, 1,b—
a) = [a,b] = supp(Px) in this case. The next example shows a
setting in which this sandwich relationship does not hold.
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N(k;0,1
(= Ba.s
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p—ko = 5 2 p+ ko X
- —>
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Figure 3.6: The probability density function of Px ~ N (u,c?) (outer unshaded
envelope) is lower-bounded on the interval [u — ko, u + ko] by a box function
with height N(u + ko; pu,0%) = N(k;0,1). The probability of landing in B, is
lower-bounded by the area of the pink rectangle.

Example 3.3.2 (Gaussian distribution). Suppose the feature
space is the real line X = R, the feature distribution is Px ~
N (i, %), and the metric p is the usual distance p(z,z') = |z —2/|.
Intuitively, due to the symmetry of the Gaussian distribution
and that it strictly decreases at feature values farther away from
the mean p, a sufficient mass region of the feature space should
correspond to an interval centered at the mean p. It turns out
that for any x > 0, the interval [y — Ko, + Ko is contained in
Xgood(Px; N (£;0,1),1,2k0), where N (z; p, o2) is the probability
density function of a A (u,o?) distribution evaluated at z (so
N (k;0,1) is the standard Gaussian density evaluated at ).

To see why this is the case, note that the Gaussian density of
N (u, 0?) within interval [p — ko, i + ko] is lower-bounded by a
“box” function that is precisely a uniform distribution’s density
except with height N'(u + xo; p, 0?) = N(k;0,1), as shown in
Figure 3.6. Our pictorial analysis from the uniform distribution
case carries over to this Gaussian case since we can just reason
about the shaded box in Figure 3.6. Once again, we find a lower
bound on Px (B, ,) by looking at the area of the shaded pink
rectangle when the ball B, , is centered at either of the endpoints
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of interval [u — ko, p+ ko, and the maximum radius is the width
of the gray shaded box. This yields the inequality

Px(Bs,) > N(k;0,1)-r for all x € [p—ko, p+ro],r € (0,2K0],

which implies that [p—ro, p+ko] C Xeood(Px; N (%;0,1),1,2k0).
Note that the sufficient mass region with those parameters is in
fact larger than the interval [y — ko, u+ ko] as it includes a little
bit more probability mass beyond either end of that interval.

A large generalization of the two examples above is also true. Notice
the pattern: in the uniform distribution example, we showed that the
compact set [a, b] that is contained in (and actually equal to) the support
of the feature distribution Px ~ Uniform|a, b] is inside a sufficient mass
region (with appropriately chosen parameters). A key fact used is that
the density of Px has a lower bound within the compact set [a,b]
(namely, ;2-). In the Gaussian distribution example, we showed that
the compact set [ — ko, i + ko] that is contained in the support of
feature distribution Px ~ N(u,0?) is inside a sufficient mass region
(again, with appropriately chosen parameters). Once again, we crucially
used the fact that the density of Px has a lower bound within the
compact set [u — ko, u + ko), namely N (k;0,1). It turns out that for
a wide variety of compact sets that are subsets of supports of feature
distributions, we can readily say what sufficient mass regions X004 they
fall in.

A technical wrinkle is that the geometry of the compact set matters,
specifically at the boundary of the set. In both the uniform and Gaussian
distribution examples, the lower bound depended on the boundary
behavior, specifically that the ball B, , centered at an endpoint was only
half inside the compact set we cared about ([a,b] and [ — ko, p + ko).
This factor of % changes depending on the shape of the compact set
and the dimensionality the feature space is in. Without imposing a
constraint on the geometry of the compact set, putting a handle on
this factor could be problematic and the factor could also be 0 (e.g.,
the feature distribution is uniform over the unit square [0, 1]? and the
compact set chosen is a line segment within the square, which has
volume 0).
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Formally, for feature distribution Px defined over a feature space X
that is a subset of Euclidean space RY, we say that a set A C supp(Px)
is a strong density region with parameters pr, > 0, py > 0, ¢ € (0, 1],
and r* > 0 if:

e The set A is compact.

e The feature distribution Px has a density px with respect to

Lebesgue measure \ of RY,
e The density px has lower bound p;, and upper bound py within
set A:
pr < px(r) < pu for all z € A.

We emphasize that lower bound parameter pr, is strictly positive.
e The set A has a boundary that is in the following sense “regular”:

AMAN By ) > coA(Beyr) forallz e A,r <r*.

The last constraint is geometric. While we ask it to hold for all = € A,
whenever the ball B, , is strictly in the compact set A, the inequality
trivially holds for any ¢y € (0, 1], so what matters is the boundary
geometry. In the earlier uniform and Gaussian distribution examples,
co = % with the least amount of overlap happening when B, was
centered at an endpoint of the compact set (which was a one-dimensional
closed interval). As a much broader example, any convex polytope
A C supp(Px) with a non-empty d-dimensional interior satisfies this
regularity condition for some r* > 0 that relates to how far apart corners
of the polytope are.

We remark that A = supp(Px) being a strong density region pre-
cisely corresponds to the strong density assumption of Audibert and
Tsybakov (2007) holding for feature distribution Px. In this sense, the
strong density region is a simple theoretical tool for partitioning the
feature space into a piece that satisfies the strong density assumption
(and falls in a sufficient mass region Xyo0q for which pointwise regression
will easily succeed in) and another piece that we give up on (and tolerate
awful regression accuracy).

The following proposition makes it clear in what way our earlier
definition of a sufficient mass region is a generalization of the strong
density region.
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Proposition 3.3.1. For any feature distribution Px with sup-
port contained in R?, and for strong density region A C supp(Px)
with parameters pr, > 0, py > 0, ¢ > 0, and r* > 0, then
A C Xyood(Px; prcovy, d, ), where vy is the volume of a unit
closed ball (as a reminder, this ball’s shape depends on metric

p)-

For example, in the earlier uniform and Gaussian distribution examples,

vg = 2, which is the diameter of a closed interval of radius 1.

3.3.2 Expected Regression Error

Equipped with intuition for what the sufficient mass region Xgq0q is
through examples and connections to existing literature, we are ready
to state a performance guarantee for k-NN regression accounting for

randomness in the test feature vector X = z. In what follows, we denote
the “bad” region to be the complement of the sufficient mass region:

A

Xbad (PX;pmim d, T*) = [Xgood (PX§ Prmin, d, r*)]c
=X \ Xgood(PX;pmina d7 T*)-

Theorem 3.3.2 (k-NN regression expected error). Let ¢ > 0
and § € (0,1). Under assumptions AB??L‘E;?' and A,I;IOIder(C’O‘),
suppose that Y € [¢min, Ymax] for some constants ymin and ymax-
Let pmin > 0 and d > 0. If the number of training points satisfies

n > (§>d/a s log v8

€ Pmin T

and the number of nearest neighbors satisfies

4(ymax - ymin)2 4 1 € d/a
52 lOg 5 S k S inpm1n<7) 9
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then k-NN regression has expected error

E[[7ke-nn (X) = n(X)]]
<e+ (ymax - ymin) (]P)X(Xbad(IP)X;pmina d, (%)l/a)) aF 5)

The high-level idea is exactly as we have already mentioned: if X lands
in the sufficient mass region, then we should expect error at worst ¢
for the same reason as why Theorem 3.3.1 holds. Specifically, we apply
Theorem 3.3.1 with choice h* = (%)1/ “. When X lands outside the
sufficient mass region, then the regression error could be terrible, where
the worst it could be iS ¥max — Ymin-

As a technical note, the conditions on the number of training data n
and the number of nearest neighbors k differ slightly from those in
Theorem 3.3.1. We actually plug in % in place of § in Theorem 3.3.1;
this is explained in the proof (Section 3.6.2). Qualitatively, this change
has little impact since the dependence on ¢ is logarithmic.

If the entire support of the feature distribution Px is in a good region
Xgood With appropriately chosen parameters (so that the probability of
landing in Apaq is 0), then we obtain the following result by plugging
ine= %/ and 0 = e 3 for & € (0, 2(Ymax — Ymin))- (The result

2(ymax_?,/min
would then be strictly in terms of ¢/, which we write simply as & below.)

Corollary 3.3.1. Under assumptions Ag?f;‘%if' and A;'é'der(cva)’

suppose that Y € [Ymin, Ymax] for some constants ymin and ymax-
Let € € (0,2(Ymax — Ymin)) be an estimation error tolerance. If

supp(Px)
= Xgood (Px; Pmin, d, (%)1/0‘) for some pmin > 0 and d > 0,
(3.7)
the number of training points satisfies
4C\d/> 16 32 — Ymi
s (1) 10 e i)
€ Pmin 9
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and the number of nearest neighbors satisfies

16(ymax - ymin)2 8(ymax - ymin) 1 € \d/a
< < — o -
-2 log 5 S k < 2npm1n(4c) (379)

then k-NN regression has expected error

E[[7k-nn(X) = n(X)[] < e.

An implication of Proposition 3.3.1 is that any feature distribution Px
with compact support in R? and that has density (again, need not be
with respect to Lebesgue measure) lower-bounded by a positive constant
satisfies condition (3.7) provided that € > 0 is chosen to be sufficiently
small. Thus, this wide class of feature distributions works with the
above corollary.

We compare Corollary 3.3.1 to an existing result on k-NN regression
in Euclidean feature spaces of sufficiently high dimensionality (Kohler
et al., 2006, Theorem 2). This result is actually stated in terms of
expected squared error E[(fr.nn(X) — n(X))?]. With an application of
Jensen’s inequality and some algebra (as detailed in Section 3.6.4), we
can phrase it in terms of expected error E[|7.nn(X) — n(X)|].

Theorem 3.3.3 (Kohler et al. 2006, Theorem 2 rephrased). Let
€ > 0 be an estimation error tolerance. Suppose that:

e The regression function 7 is both bounded in absolute value
by some constant L > 1, and also Hélder continuous with
parameters C' > 1 and « € (0, 1].

e The feature space is in R? for some d > 2a, and the feature
distribution Py satisfies E[|| X ||*] < oo for some constant
B > d2_a2da, where || - || is the Euclidean norm.

e The conditional variance of the label given a feature vector
is bounded: sup,cga Var(Y | X = x) < o2 for some o > 0.

Then there exists a constant ¢ that depends on d, «, 8, L, o2,
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and E[|| X %] such that if the number of training points satisfies

62a+100¢

then k-NN regression has expected error

E[|fe-nn(X) —n(X)|] <e.

To put Corollary 3.3.1 and Theorem 2 of Kohler et al. (2006) on equal
footing for comparison, consider when the feature distribution Px
satisfies the strong density assumption, 7 is Hélder continuous with
parameters C' > 1 and « € (0, 1], d > 2a, and label Y is bounded in the
interval [Ymin, Ymax] for some constants ymin and ymax. These conditions
readily meet those needed by both of the theoretical results.
Specifically for Theorem 2 of Kohler et al. (2006), we explain what 3,
L, and o2 can be taken to be. The compactness of the feature distribution
support means that X is bounded, and so trivially E[||X||’] < oo for
every 3 > O‘d . Since the label Y is bounded in [¢min, Ymax], this implies
that the condltlonal expected label n(z) = E[Y | X = z] is also bounded

N [Ymin, Ymaz), i€, L = max{|ymin|, |Ymax|}. Moreover, one can show

that for any z € supp(Py),

_ . )2
Var(V | X = 2) < —(ymax 4ymm) = o2

(In general, any random variable bounded in [a, b] has variance at most
(b—a)® )
.

Now let’s see what the two different results ask for to ensure that

E[l7(X) = n(X)]] <&

e Corollary 3.3.1: We choose the number of nearest neighbors to be

1 d/a
= [ ()]



58 Theory on Regression

in which case to ensure that both of the conditions (3.8) and (3.9)
are met, we ask that

d/ max — Ymin
anax{(w) @10 log V32(y Vinin)

Y

9 Pmin €
2 (&)d/a ’716(ymax 2_ ymin)2 log 8(ymax - ymin)-‘ }7
Pmin N € € €

where the second part of the maximum ensures that

k> |,16(ymax 2_ ymin)2 IOg 8(ymax - ymin)—|‘
€ €
In fact, this second part of the maximum is always larger than

the first, so it suffices to ask that

d/a _ )2 _ .
2 (g)/ ’716(ymax ymln) 10g 8(ymax6 ymln)-‘.

n >
€ g2

Pmin

ca
i
oO(n(g djay = @(Ei2 log é) Note that we treat ppin and (Ymax —
Ymin)? = O(c?) as constants since in Theorem 2 of Kohler et al.
(2006), they get absorbed into the constant c.

Hence, we can choose n = O( log %), in which case k =

e Theorem 2 of Kohler et al. (2006): The smallest we could set the
training data size n for the theorem’s result to apply is

n =

d d d
c2a 0 ( Ca )
— d., Td.o

ca+2 a2
in which case the theorem says to choose

[ ()21

Thus, up to a log factor, the two performance guarantees both ensure
low expected error E[|7(X) — n(X)|] < € using training data size n =
d

é(ecdi) and number of nearest neighbors k = (:)(a%) For the choices of

n and k above, we see that Corollary 3.3.1 uses slightly more training
data and number of nearest neighbors by a factor of log %
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Alternatively, we can also phrase the result of Corollary 3.3.1 in
terms of what expected regression error ¢ is achievable for a given n and k
(this is in line with how Kohler et al. originally phrase their Theorem 2,
which we present in Section 3.6.4). Specifically, for sufficiently large n
and k that are treated as fixed, we can actually show that Corollary 3.3.1
implies that we can achieve expected regression error

Bl (X) - n(0)] < e =max {&(2). 8( (%))}

derived using the approach described in Section 3.6.10. Ignoring log

factors, if we make the two terms in the maximization match (i.e., we set
1

i (%)a/ 4 which amounts to optimizing our choice of k), then we get

2a
that we should set k ~ n2e+d, which agrees with Kohler et al.’s choice
for k. Plugging this in for €, we get that the expected regression error

scales as n~ 2e+d  agreeing with Kohler et al.’s Theorem 2 translated to
be in terms of absolute value error (cf., inequality (3.28)).

3.3.3 Expected Regression Error: An Alternative Approach

In this section, we present an alternative approach to guaranteeing
low expected k-NN regression error using a covering argument. We
previously depicted this argument in Figure 3.3. We start by defining
a relevant notion called the covering number for a probability space,
which is going to tell us what the minimum number of balls is needed
to cover up the feature space.

Definition 3.3.1 ((r, d)-covering number). Given § € (0,1)
and r > 0, let N(Px,r,0) > 1 be the smallest number of balls
each of radius r, say {B1,...,By} with N = N(Px,r,J), so that
IP’X(Uf\LlBi) > 1 — 6. Here, each B; = B, , is ball of radius r
centered at ¢; € X.

In principle, the covering number may not be finite. Our interest is
in the setting where the covering number is finite for all » > 0 and
d € (0,1). This turns out to hold if in addition to assumption At)ﬁfgﬁ;?' of
Section 3.2, the feature space A is compact and complete. Under these
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assumptions, X is a compact Polish space. In this case, any probability
measure Px is tight. That is, for any § > 0, there exists a compact set
Ks such that Px(Ks) > 1 — §. By compactness, the open cover of Ks
obtained by considering balls of radius r at each of its points has a
finite subcover. This leads to covering number N (Px,r, d) being finite.

Equipped with the above definition, we state the following result
that builds on Theorem 3.3.1.

Theorem 3.3.4 (k-NN expected regression error with covering
number). Suppose that assumptions At)?fg,'fp@?' and Ag Blder(Ce) hold,
feature space X" is a compact Polish space, and Y € [ymin, Ymax]
for some constants Ymin and Ymax. Let € > 0 and § € (0,1).
Suppose we choose the number of nearest neighbors k& and the
number of training data n to satisfy

2(ymax - ymin)2 4
k= { = log 5-‘ (3.10)
N 2
n > 5 max {2k, 8log 5}, (3.11)

where h* = (%)1/0‘ and N(Px, h—;, ) is the (%, J)-covering
number for Px as defined above. Then the expected regression
error satisfies the bound

EHﬁk—NN(X) - T’(X)” Se+ 36(ymax - ymin)' (312)

Let’s interpret this result. Consider a specific choice of §:
f=—225
Ymax — Ymin
Then the above result states that for small enough e, by choosing k
that scales as 8% log% (assuming Ymax — Ymin constant), it is sufficient
to have the number of training data n scale as N (Px, %, 5)% to obtain
expected regression error scaling as €.
To quickly compare this with the collection of results stated at the
end of Section 3.3.2, consider a simple scenario where Px is a uniform
distribution over a unit-volume ball in R?. Then the corresponding

covering number N(Px, -, ¢) scales as O((;%)?), which is O((%)g)
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Therefore, Theorem 3.3.4 says that to achieve expected regression error
at most e, we can choose

d
1 1 Cao 1
k:@(g—Qlogg), and n:®(5§+3 log€>.

We can compare these choices to what Theorem 2 of Kohler et al. (2006)
asks for (which come from our analysis at the end of Section 3.3.2):

d
k= @(8%), and n = @(;;:2).

Recall that Corollary 3.3.1 asks for similar choices for k and n except

each with an extra multiplicative log% factor. Thus, across all three
theoretical guarantees, we choose k = (:)(5%) However, the expected
regression error guarantee using the covering argument asks for more
training data n by a multiplicative factor of élog% compared to Kohler
et al.’s result.

Put another way, Theorem 3.3.4 asks that to achieve expected
regression error at most €, the number of training data n should scale as
5% log % times the covering number with radius h* /2. Basically, each ball
that is covering the feature space (the unit-volume ball in this example)
has roughly E%, log% training data points landing in it. Supposing that
test feature vector x lands in one such ball, Kohler et al.’s result suggests
that we only need to find k = @(E%) training data points nearby. Thus,
potentially we do not actually need 9(%3 log %) training points landing
in each ball and we could instead get away with @(6%) training points.
The extra multiplicative factor of %log é may be a penalty of the proof
technique being rather general.

3.4 Theoretical Guarantees for Fixed-Radius NN Regression

We now state results for fixed-radius NN regression, first for pointwise
error at a particular z € supp(Px) and then for expected error account-
ing for randomness in sampling X = z from Px. Turning the pointwise
error guarantee to the expected error guarantee follows the exact same
reasoning as for k-NN regression.



62 Theory on Regression

Theorem 3.4.1 (Fixed-radius NN regression pointwise error).
Under assumptions AE,??EHJ;B' and Ag‘esm"i“h, let « € supp(Px)
be a feature vector, € > 0 be an error tolerance in estimating ex-
pected label n(z) = E[Y | X = z], and ¢ € (0,1) be a probability
tolerance. Suppose that Y € [ymin, Ymax| for some constants ymin
and Ymax. Then there exists a distance h* € (0,00) such that
if our choice of threshold distance satisfies h € (0,h*), and the

number of training points n satisfies

8 2 4(ymax - ymin)2 4}
n > max ¢ ———— log —, log - ¢, 3.13

- {IPX<B:p,h) & 1) ]ij(szh)EQ & 1) ( )
then with probability at least 1 — ¢ over randomness in sampling
the training data, fixed-radius NN regression with threshold
distance h has error

NN (wy () — ()] <e.

Furthermore, if the function 7 satisfies assumption A,}? 6Ider(c’a),
then we can take h* = (%)1/ @ and the above guarantee holds

for h = h* as well.

Note that Theorems 3.3.1 and 3.4.1 are quite similar. In fact, in Theo-
rem 3.3.1, if we take the left-most and right-most sides of the constraint
on the number of nearest neighbors k (cf., sandwich inequality (3.5)),
74%;?%:1?;3)2 log %, which is
what shows up in inequality (3.13) of Theorem 3.4.1. Thus, we remove
the dependency on k but otherwise the result and intuition for the

analysis are quite similar.

rearranging terms yields the constraint n >

We now turn to the expected error guarantee.

Theorem 3.4.2 (Fixed-radius NN regression expected error).

Let ¢ > 0 and 6 € (0,1). Under assumptions Atﬁfg’rﬁ,@ij’l and

A;'élder(c’a), suppose that Y € [Ymin, Ymax) for some constants

Ymin and Ymax- Let pmin > 0 and d > 0. If the threshold distance
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satisfies h € (0, (%)1/0‘], and the number of training points
satisfies

n > 0
g2 gd

Pmin

\/g (ymax - ymin)2 4
max{2log7,—l },
then fixed-radius NN regression with threshold distance h has
expected error

IE[|77NN(h) (X) = n(X)]]
< & + max{|Ymin|, |Ymax|s Ymax — Ymin }
X (Px (Xbad(Px; Pmin, 4, (55)1/9)) + 6).

Note that the worst-case fixed-radius NN regression error is

maX{‘yminL ’ymax’a Ymax — ymin}'

For k-NN regression, the worst-case error was ¥max — Ymin. Lhe reason
why the terms |ymin| and |ymax| appear for fixed-radius NN regression
is that when test point X has no neighbors within distance h, the
estimate for n(X) is 0, which could be off by at most max{|ymin|, |Ymax|}-
Otherwise, if at least one neighbor is found, then the worst-case error
is the same as in k-NN regression: ymax — Ymin- Of course, in practice a
better solution is to report that there are no neighbors within distance h.
We have fixed-radius NN regession output 0 in this case to be consistent
with the presentation of kernel regression in Gyorfi et al. (2002).

Next, as with k-NN regression, we can specialize the expected
regression error performance guarantee to the case where the sufficient
mass region constitutes the entire support of the feature distribution Px
(which we explained earlier holds for the case when Px satisfies the
strong density assumption of Audibert and Tsybakov (2007)).

Corollary 3.4.1. Under assumptions AE{;?L‘}E?' and A;' 6Ider(c’a),

suppose that Y € [Ymin, Ymax] for some constants ymin and yYmax-
Let € € (0,2 max{|Ymin|, |Ymax|, Ymax — Ymin}) be an estimation
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error tolerance. If the support of the feature distribution satisfies
supp(Px)
= Xeood (Px'; Pmin, d, (%)1/0‘) for some ppin > 0 and d > 0,

the threshold distance satisfies b € (0, (55)'/%], and the number
of training points satisfies

\/?Emaxﬂymm!, ‘ymax‘ y Ymax — ymin}
E )

8
n > y max{2log

Pmin

4(ymax - ymin)2 3 max{|ymin|7 |ymax|7 Ymax — ymin}
3 log }
€ €
(3.14)
then fixed-radius NN regression with threshold distance h has
expected error

E[[7nne) (X) —n(X)]] < e.

We can compare this corollary with an existing result on fixed-radius
NN regression (Gyorfi et al., 2002, Theorem 5.2), which is originally
stated in terms of expected squared error E[(fnn(n) (X) —n(X))?], but
we rephrase it in terms of expected error E[|7jxn (s (X) —n(X)[]. We omit
the details of how the rephrasing is done here since it is the same way as
how we converted Theorem 2 of Kohler et al. (2006) into Theorem 3.3.3
from earlier (cf., Section 3.6.4).

Theorem 3.4.3 (Gyorfi et al. (2002), Theorem 5.2 rephrased).
Let € > 0 be an estimation error tolerance. Suppose that the fea-
ture distribution has compact support S* C R, Var(Y | X = 2) <
o2 for x € R? and some o > 0, and regression function 7 is
Lipschitz continuous with parameter C' > 0 (i.e., n is Holder
continuous with parameters C' and « = 1). Then there exist
constants ¢ > 0 and ¢’ > 0 such that if the number of training
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points satisfies

a2 g 0%+ SUP.ese n(2)]”

n > (c") cd+2 g

and the threshold distance is set to

2 2 1
_ (0 +supes M) T L
h=¢ ( 2 ) n dtz,
then fixed-radius NN regression with threshold distance h has
expected error

E[[7nne) (X) —n(X)]] < e.

To compare Corollary 3.4.1 and Theorem 5.2 of Gyorfi et al. (2002), we
consider when the feature distribution Px satisfies the strong density
assumption, regression function 7 is Holder continuous with parameters
C > 0 and a = 1 (so that n is Lipschitz continuous), and label Y is
bounded in the interval [ymin, Ymax| for some constants ymin and Ymax-
In this case, since Y is bounded in this way,

(ymax - ymin)2
4 b
so Theorem 5.2 of Gyorfi et al. (2002) applies with ¢ = ¥max-tmin,
For the comparison here, it helps to define the following quantity:

Var(Y | X =x) <

01211ax £ S;Sp |77(Z)|2 = maX{yIQnin’y?nax}'
z *

Then note that

40% = (ymax - ymin)2 < (2 max{|ymin|a |ymax|})2 = 4Jr2nax7

where the inequality holds because the largest the distance could be
between ymax and ymin is if we instead took the distance between
max{|Ymin|, |Ymax|} and — max{|ymin|, |ymax|}. In particular, 0 = O(c2.,).

Now let’s look at what the two different theoretical guarantees ask
for to ensure that E[|fjnnn) (X) —n(X)[] < e:

e Corollary 3.4.1: We choose the threshold distance to be
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and to ensure that condition (3.14) is met, we ask that

8 4(Ymax — Ymin)?
n:’7 _ d(2+ (yma 2ym1n))
Pmin(75) £
» log 8maX{’ymin‘7 ‘ymax‘aymax - ymin}-‘
g
d0.2

= @(W log Unglax).

e Theorem 5.2 of Gyorfi et al. (2002): Let’s set the number of
training data as small as possible for the theorem’s result to still

apply:
2 2
o2 g 07+ SuUp,cgs n(z)|
n=(c)=c cd+2
i 2 ~d 02 + Ug’lax
= (C ) 2 C . W
Cda—?nax
= 0(~s).
Then the choice of threshold distance is
h = c'(g2 T SUP.es- ’77(2>‘2)ﬁ 1
- 1
C? [(C”)%Cd ) 02+sup;d€f; |77(Z)|2] T3
Cl
= ——=¢
Ve'c
€
=6(5):
Up to a log factor, both results guarantee low expected error E[|7(X) — n(X)|] <
¢ using training data size n = O( C:[Z%*X) and threshold distance

h = O(§). Corollary 3.4.1 uses slightly more training data by a factor

of log Zmax  and outside of the log, it depends on o2 instead of o2,,, as

needed by Theorem 5.2 of Gyorfi et al. (2002).

3.5 Theoretical Guarantees for Kernel Regression

We now discuss the general case of kernel regression. We assume that K
monotonically decreases and actually becomes 0 after some normalized
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distance 7 > h (i.e., K(s) < 1{s <7}). We assume the regression
function 7 to be Holder continuous.

Theorem 3.5.1 (Kernel regression pointwise error). Under as-

chical, A%<2/7) and AHITC) et o € supp(Py)

be a feature vector, € > 0 be an error tolerance in estimating
expected label n(xz) =E[Y | X = z], and 6 € (0, 1) be a probabil-
ity tolerance. Suppose that Y € [Ymin, Ymax] for some constants
Ymin and Ymax. Let ¢ > 0 be any normalized distance for which
K(¢) > 0. If the chosen bandwidth satisfies

1 1/a
h<2(ee)

and the number of training data satisfies

sumptions A%

2 log%
[K(¢)Px (Bz,ph)]?’
8[max{|ymin|, [Ymax|} + (Ymax — Ymin)]*log 3 }
e2[K (¢)Px (B, gn)|* ’

then with probability at least 1—4, kernel regression with kernel K
and bandwidth h has error

anaX{

Nk (z;h) —n(x)| < e.

For example, fixed-radius NN regression estimate 7y ) with threshold
distance h satisfies the conditions of Theorem 3.5.1 with ¢ =1, K(¢) =
1, and 7 = 1. Thus, Theorem 3.5.1 says that with the number of training
data n satisfying
2log %

[Py (Byn)]?’
8[max{|yminl, [Ymax|} + (Ymax — Ymin)]* log 5 )

e?[Px (Bp)]* ’

and threshold distance h satisfying

= ()"

anaX{
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then |fxn(n)(z) — n(z)| < e with probability at least 1 — ¢. Ignoring
constant factors, this result requires more training data (specifically
because of the dependence on Px (B, ) to the second and fourth pow-
ers) and is thus a weaker performance guarantee than Theorem 3.4.1.
However, both theorems place the same constraint on the choice for
threshold distance: h = O((55)Y).

Theorem 3.5.2 (Kernel regression expected error). Let ¢ >

0 and § € (0,1). Under assumptions Atchnical A??CBY(T), and

’PJPX ’
A;'dder(c’a), suppose that Y € [Ymin, Ymax] for some constants

Ymin aNd Ymax- Let pmin > 0 and d > 0. Let ¢ > 0 be any
normalized distance for which K (¢) > 0. If the chosen bandwidth
satisfies h < %(%)1/ @ and the number of training data satisfies
satisfies

4log %
[K (¢)Pmind?h]?’
16[max{|ymin |, [ymax|} + (Ymax — Ymin)]* log 3 !
e2[K(9)Pmind?h]* 7
then kernel regression with kernel K and bandwidth h has ex-
pected error

anax{

E[|7k (X5 h) —n(X)]]
<e+ max{\ymin\, ‘ymax‘a Ymax — ymin}
X (Px (Xbad (Px; Pmin, d, L (55)1/%)) +6).

)

3.6 Proofs

We now present proofs of the main nonasymptotic theoretical guarantees
presented as well as a few auxiliary results.

3.6.1 Proof of Theorem 3.3.1

The proof is a slight variation on Chaudhuri and Dasgupta’s k-NN
classification result (Chaudhuri and Dasgupta, 2014, proof of Theo-
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rem 1). In this section, we abbreviate 7 to mean 7, nn. Importantly,
we first present a proof of the theorem for the case where ties happen
with probability 0 as is, without any form of tie breaking; the precise
statement of this no-ties guarantee is in Lemma 3.6.1 below. At the very
end of this section, we discuss how to modify the proof to handle the
random tie breaking described in Section 2.3.1, yielding a generalization
of Theorem 3.3.1 that is given by Lemma 3.6.4.

As suggested by the overview of results in Section 3.1, in the k-NN
regression case, the k nearest neighbors are strictly inside the shaded
ball of Figure 3.1, and because we want to reason about being strictly
inside a ball and not on the boundary of it, we occasionally reason
about open balls. We denote an open ball centered at ¢ € X with radius
r > 0 by

B, &£ {z' € X:p(c,a') <r}.

We begin by proving the following general lemma.

Lemma 3.6.1. Under assumption AE{?C;‘?PE?', suppose that in

finding nearest neighbors, ties happen with probability 0 without
any form of tie breaking. Let = € supp(Px) be a feature vector,
and n(z) = E[Y | X = z]| € R be the expected label value for z.
Let € > 0 be an error tolerance in estimating 7(x), and § € (0, 1)
be a probability tolerance. Suppose that Y € [ymin, Ymax] for
some constants ymin and Ymax, and

lifgIE[Y | X € By ] =n(x).

(Note that this is not quite the same as the Besicovitch condition;
this difference will be reconciled when we talk about handling
ties.) Let v € (0,1). Then there exists a threshold distance h* €
(0,00) such that for any smaller distance h € (0,h*) and with
the number of nearest neighbors satisfying k < (1 —~)nPx (B ),
then with probability at least

I—Qexp(f ke’ ))exp<72nPX(vah)),

2(ymax — Ymin 2 2
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we have
i(z) —n(z)| <e.
Furthermore, if the function 7 is Holder continuous with param-

eters C' > 0 and a > 0, then we can take h* = (%)I/Q and the
above guarantee holds for h = h* as well.

Proof of Lemma 3.6.1

Fix z € supp(Px) (the derivation often involves looking at the proba-
bility of X landing in a ball centered at z; with « € supp(Px), we can
rest assured that such probabilities are strictly positive). Let € > 0. We
upper-bound the error |7(z) — n(z)| with the triangle inequality:

n(z) = n(x)] = |(((x) = Enli(2)]) + (En[n(2)] = n(z))]
< [i(z) = En[ii()]] + [En[7(2)] = n()],

where E,, [77(z)] is an expectation over the training points (X1, Y1), ..., (Xn, Yn).

The proof proceeds by showing that, with high probability, each of the
two right-hand side terms is upper-bounded by 5.
Let’s first show when, with high probability, |7(z) —E,[7(z)]| <

l\D\m

Lemma 3.6.2 (Chaudhuri and Dasgupta (2014), Lemma 10
slightly reworded). When ties happen with probability 0,
ke?

(ymax - ymin)2 ) )

P(|i(x) ~ Enli@)]| > £) < 2exp (5

ke ) we

In particular, with probability at least 1 — 2exp ( — g2 )

have [7)(z) — En[7(z)]] < 5.
Proof. The randomness in the problem can be described as follows:

1. Sample a feature vector X € X from the marginal distribution of
the (k 4 1)-st nearest neighbor of x.

2. Sample k feature vectors i.i.d. from Px conditioned on landing in

the ball B° ~..
z,p(z,X)
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3. Sample n — k — 1 feature vectors i.i.d. from Px conditioned on

L o
landing in X"\ Bx7p(x7)?).

4. Randomly permute the n feature vectors sampled.

5. For each feature vector X; generated, sample its label Y; based
on conditional distribution Py |x_x;.

Then the points sampled in step 2 are precisely the k nearest neigh-
bors of z, and their Y values are i.i.d. with expectation E,[7(z)] =
Eg[E[Y[XeB o

Finally, since the Y values for the £ nearest neighbors are i.i.d. and

are each bounded between ymin and ymax, Hoeffding’s inequality yields

- ~ ke?
B(Ii(@) - Eali(@)] 2 5) < 20 (- 5 ———5).

This finishes the proof. O

The description of randomness in Lemma 3.6.2’s proof is carefully
crafted. We briefly remark on ties and why the (k+1)-st nearest neighbor
matters:

o Why ties happening with probability 0 matters: since there are no
ties, the k nearest neighbors are unambiguous, and the conditional
distributions in steps 2 and 3 do indeed properly distinguish
between the distribution of the k nearest neighbors and the other
training data.

To see why ties are problematic, consider the case when some
of the k nearest neighbors are tied with the (k 4 1)-st nearest

neighbor. Then the ball B° (=.5) necessarily excludes training
Z,p\T,
data within the k nearest neighbors that are tied to the (k + 1)-st

nearest neighbor, even though the goal of constructing this ball is
to have it exactly contain the k nearest neighbors!

o Why we are using an open ball with radius to the (k+1)-st nearest
neighbor and not a closed ball to the k-th nearest neighbor: 1If
instead step 1 samples the k-th nearest neighbor, and step 2
samples k — 1 feature vectors from a closed ball with radius going
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to the k-th nearest neighbor, then we would only have control
over the k — 1 nearest neighbors’ feature vectors being i.i.d. and
not all k.

Next we show when, with high probability, |E,[n(z)] —n(z)] < §. As
discussed in the proof of Lemma 3.6.2, the expectation of 7j(z) is

E”[ﬁ(x)] EX(lc+1) [ [Y | X e B:Jc 02X (1) (T ))H
Suppose that we could show that there exists some A > 0 such that

BlY | X € B,] —n(x)| < for all r € (0, A). (3.15)

[Y ‘ X e Bm 0(2,X (1) (T ))” - 7](%)’

[Y | XebB T, (CC,X(k+1)(CC))] - 77(:6)”

(Jensen’s inequality) < Ex, @) [[E[Y | X € BF ;0 x, 10 ap) — 7(2)]]
—_——

5
Then provided that p(x, X(41)(2)) < h, then

Bn[((2)] = n(@)| = [Ex,,, @) E

E

= |EX(k+1)(3f

<h
g

3]
€
== 3.16
2 ? ( )
in which case we would be done.
Before establishing the existence of h, we first show that for any dis-

(inequality (3.15)) < EX(Hl)(x)[

tance r > 0, with high probability we can ensure that p(z, X441y (7)) < 7.

Thus, once we do show that h exists, we also know that we can ensure
that p(z, X(441)) < h with high probability.

Lemma 3.6.3 (Slight variant on Lemma 9 of Chaudhuri and
Dasgupta (2014)). Let » > 0 and v € (0,1). For positive integer
k< (1 —=7)nPx(Bzr),

V2nPx (By.r) )

P(p(w, Xge4n) (@) = 1) < exp ( - 2

Thus, we have p(x, X(4.1y(2)) < 7 with probability at least 1 — exp ( —

’72n]P)X (B:E,r

2

)).
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Proof. Fix r > 0 and v € (0,1). Let N, , be the number of training

points that land in the closed ball B, ;. Note that N, , ~ Binomial(n,Px (Bs,)).
Then by a Chernoff bound for the binomial distribution, for any positive
integer k < (1 — v)nPx (B, ), we have

2

(nPx (Byr) — k) )

P(Nx,r < k) < €xp ( -

2nPx (By.r)
(nPx (Bay) — (1= 7)nPx (Bay))’
< exp ( B 2nPx (Bz,r) >
2
=exp (- ”P);(Bm). (3.17)

Observe that if the number of training points IV, , that land in B, , is
at most k, then it means that the (k + 1)-st nearest-neighbor X 1)()
must be at least a distance r away from . Hence, the event {N,, < k}
is a superset of the event {p(x, X(;11)(7)) > 7} since the former event
happening implies the latter event happens. This superset relation
combined with inequality (3.17) yields

_ VQnPX(Bz,T))‘ =

P(p(, X (s1)(2)) > 1) < P(Ny < K) < exp ( :

Now we show which distance h ensures that inequality (3.15) holds.
When we only know that

limB[Y | X € B,) = (),

then the definition of a limit implies that there exists h* > 0 (that
depends on x and €) such that

E[Y | X € B2,] —n(x)] < % for all h € (0, %),

i.e., inequality (3.15) holds, and so indeed we have |E,[7(x)] —n(z)| <
as shown earlier in inequality (3.16).
If we know that n is Hoélder continuous with parameters C' and «,

D™
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then for h* = (%)l/a and h € (0, h*], we have
fresy, EIY | X = #]dPx(3)

ElY | X € B; —nlx)| = —nlx
[E[Y | = n(@)] Py (BZ,) n(x)
fEeBo n(7)dPx (T)
- [~ ~n(a)
PX(Bg,h)
e, (@) — n(x))dBx (&)
a Px (B3 )
emsents mequatty) < 1285 10 ~ O
ensen’s inequality) < P (B2
fen, , $WPwepe  In(2') — n(x)|dPx (Z)
< > s
B Px(Bg,)
Jzepe , dPx(T)
=( su ') —n(r)|) —2t
(x/eé;h na") =n@)l) =5 5y
1
(Holder continuity) < Ch®
€
<z .
<3 (3.18)

Thus, inequality (3.15) holds, and so |E,[7(z)] —n(z)| < §.

Putting together all the pieces and specifically also union-bounding
over the bad events of Lemmas 3.6.2 and 3.6.3 (plugging in r = h for
Lemma 3.6.3), we obtain Lemma 3.6.1.

Handling Ties

By how open (and closed) balls are defined for metric spaces, they cannot
separate out tied points. The resolution is to use a different definition
of an open ball that makes use of the random tie breaking procedure’s
generated priority random variables Z1, ..., 7, L Uniform|0, 1] (cf.,
Section 2.3.1). In particular, for center ¢ € X, radius r > 0, and priority
z € [0,1],

0
c,rz

£ {(«,7)) € X x [0,1] : either p(c,2") <7 or (p(c,2’) =r and 2’ < 2)}.
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The following modifications enable the proof above to carry through
with random tie breaking:

e Modifications to the description of randomness in Lemma 3.6.2:
In step 1 of the description of randomness above, we sample
(X,Z) € X x[0,1] from the marginal distribution of the (k+1)-st
nearest neighbor of x, where X is the feature vector and its random

priority is Z. In step 2 and step 3, we use the ball B° - -~
z,p(x,X),Z

instead of B%p(xj). Also, in steps 2, 3, and 5, we sample both

feature vectors and priorities. Lastly, the k-NN regression estimate
has expectation E,[7(z)] = Ezz [E[Y | X € Bg,p )?)72“ instead

of En[i@)] =Eg[E[Y | X e B 1],

(:E’

e Inforcing |Ey[7(x)] —n(x)| < §: Given the change in the descrip-
tion of randomness to account for random tie breaking, we now
have

En[ﬁ(w)] = EX(;ﬁLl)(x) [E [Y | X € B;,p(x,X<k+1)($),Z(k+1)(1:))}]’

where Z 1 1)() is the priority random variable of the (k + 1)-
st nearest neighbor to x. Thus, we modify the derivation of
inequality (3.16) accordingly by replacing B;:P(va(kJ,-l)(I)) with
Bg,p(w,X(kH)(x),Z(kH)(fr))' However, now the problem is that in-
equality (3.15) no longer implies the modified inequality (3.16).
The fix is to ask for inequality (3.15) to hold using closed balls

instead of open balls:

EY | X € Byr] —n(x)] < for all r € (0, h). (3.19)

N ™

In fact, this closed ball version implies the open ball version of in-
equality (3.15) (using a similar argument as in Lemma 25 of Chaudhuri
and Dasgupta (2014)). Then inequalities (3.15) and (3.19) both
holding implies that

EY [ X € B, ] —n(x)] <

T,r,2

for all z € [0,1],r € (0, A,

Do ™

which now does imply that the modified inequality (3.16) that

uses the ball Bg,p(:v,X(kH)(x),Z(kH)(z))‘ The reason why having both
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inequalities (3.15) and (3.19) holding (again, the latter implies the
former) resolves the issue is that E[Y" | X € B, ] is a convex com-
bination of E[Y | X € By, ] and E[Y | X € B,,] (¢f., Chaudhuri
and Dasgupta 2014, Lemma 24). Thus when E[Y | X € Bj ] and

ElY | X € B, ] are each within § of n(x), then any convex com-

bination of these two conditional expectations is also within §

of n(x).
As for ensuring that inequality (3.19) holds, we ask that

ling[Y | X € Byy] =n(2).

Then the definition of a limit implies that there exists h* > 0
(that depends on x and ¢) such that for all h € (0, h*), we have

&
E[Y | X € Bup ()] < 5.

Alternatively we could assume the stronger assumption of Holder
continuity (note that the derivation of inequality (3.18) works if
open ball B;h is replaced by closed ball B, ).

The above modifications lead to the following lemma, which is actually
a more general statement than Theorem 3.3.1. As with our exposition
of k-NN regression earlier, we implicitly assume random tie breaking
occurs if there are ties without explicitly stating it in the lemma.

Lemma 3.6.4. Under assumptions A5 and ABesicoviteh et
x € supp(Px) be a feature vector, and n(x) =E[Y | X = z] € R
be the expected label value for x. Let € > 0 be an error tolerance
in estimating n(z), and 6 € (0,1) be a probability tolerance.
Suppose that Y € [Ymin, Ymax| for some constants ymin and Ymax.
Let v € (0,1). Then there exists a threshold distance h* € (0, 00)
such that for any smaller distance h € (0,h*) and with the
number of nearest neighbors satisfying & < (1 — v)nPx (Bs),
then with probability at least

1—26xp(— ke? )2)—exp(—m>7

2 (ymax — Ymin 2
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we have

[7(z) = n(z)| <e.
Furthermore, if the function 7 satisfies assumption A;' 6Ider(c’a),
then we can take h* = (%)1/ @ and the above guarantee holds
for h = h* as well.

Theorem 3.3.1 follows as a corollary of Lemma 3.6.4, where we set
v = % and note that each of the two bad event probabilities can be
upper-bounded by g with conditions on n and k:

8 2 ’}/QH]P)((BJE ) 0
> —log — _ LT AV )«
"2, s = o ;S
2(ymax - ymin)2 4 ]CEQ )
k> log—- = 2 — <-. 0O
- c2 08 1) xp ( 2(ymax - ymin)Q) -2

3.6.2 Proof of Theorem 3.3.2

We use the same ideas as in the ending of the proof of Theorem 1
in Chaudhuri and Dasgupta, 2014. In this section, we abbreviate 7 to
mean 7. NN- We use Ex to denote the expectation over the test point X,
E, to denote the expectation over training data (X1, Y1),...,(Xn, Yn),
and P, to denote the probability distribution over the training data.
Also, throughout this proof, denote h* £ (%)1/ o,

By the law of total expectation,

E[[7(X) —n(X)]]
= E[|5(X) —n(X)| | H(X) —n(X)| <e] P(n(X) —n(X)| <e)
<e <1
FE[) — (O] | ) = (0] > <] BIACK) — n(X)] > ¢)

<Ymax—Ymin (WOrst case regression error)

< €+ (Ymax — Ymin)P(I7(X) = n(X)| =€), (3.20)

where we next upper-bound P(|7(X) — n(X)| > ).
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By the law of total probability,

P(In(X) = n(X)| > €)
= P(|I5(X) = n(X)| > € | X € Xoaa(Px; Pmin, d; b))
<1
X P(X € Xbad(PxX; Pmin, d, h"))
+P(I17(X) = n(X)| > € | X € Xgo0d(PxX; Prmin, ds h*))
X P(X € Xyood(Px; Pmin, d, h™))
<1
< P(X € Xpad(Px; Pmin, d, 1))
+P(IA(X) = (X)| > € | X € Xgood(Px;Pmin, d, B)).  (3.21)

v

Most of the proof is on upper-bounding the second term on the right-
hand side. To keep the notation from getting cluttered, henceforth,
we assume we are conditioning on X € Xgo0d(Px; Pmin, d, h*) without
writing it into every probability and expectation term, e.g., we write
the second term on the right-hand side above as P(|(X) — n(X)| > ¢).
Then with a specific choice of random variable = to be specified shortly:

<1

<E, [EX[H{W(X) —p(X)| =€} |E< é} +Pn(E > g) (3.22)

2

Let’s explain what = is. First, note that for any € Xgo0d(Px; Pmin, d, h*),

1{[fi(@) - n(w)| = }
< 1{](x) — Eli(@)]] > S} + Lple, v (@) 2 0}, (328)

EBAD(Z, 1,0 Y15 Yn)
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where (z1,y1),...,(Zn, yn) are a specific instantiation of training data
that determines 7), and z(j4)(x) is the (k + 1)-st nearest training
point to z. To see why this inequality is true, it suffices to show that
if the right-hand side is 0, then so is the left-hand side. Note that
BAD(z,1,...,Zn,¥Y1,...,yn) = 0 if and only if |(z) — E,[7(z)]| < §
and p(z, Z(r41) (7)) < h*, where the latter implies that |E, [(z)] — n(x)| <
5 as we have already discussed for the proof of Theorem 3.3.1. Hence,
by the triangle inequality |7)(z) —n(x)| < [7(z) — En[7(z)]] + [En[7(2)] -
n(z)| < §+ 5 =¢, i.e., the left-hand side of the above inequality is also
0.

Then we define random variable = as
E 2 Ex[BAD(X, X1,..., X0, Y1,..., Y],

which is a function of the random training data (X1, Y1),...,(Xn, Yn);
the expectation is only over X and not over the random training data.

We now show an upper bound for P, (2 > g), which is the second
term in the right-hand side of (3.22). Given our choice of training
data size n and number of nearest neighbors £, then by Lemmas 3.6.2

and 3.6.3, for z € X00d(Px; Pmin, d, h*),

2
E,[BAD(z, X1,...,X,,Y1,...,Y,)] < %, (3.24)
since:
e Using Lemma 3.6.2,
4(ymax - ymin)2 4 ~ ~ 3 62
bz =g < = P(li(e) -~ Eafi@)) 2 5) < %

e Using Lemma 3.6.3 (with »r = h* and v = 1/2) and noting that
]PX(B:B,T) > pmin(h*)d for x € Xgood(PX;pmim d, (%)1/Q)7
16 g ¥8s 16, V8
875 T Px(Bop) © 0

n>—
pmin(h*)d
2

6
= Plp(@, X(i1)(2)) 2 h7) < R

Note that Lemma 3.6.3 (with 7 = h* and v = 1/2) further requires
kE < %nIP)X(B%h*), which is satisfied since we ask for the more
stringent condition k < %npmin(h*)d.
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Then by Markov’s inequality,

5/2
_ E,[Ex[BAD(X, X1,...,Xp, Y1,...,Y,)]]
N 5/2
Ex[E,[BAD(X, X1,..., X, Y1,...,Y,)]]
N 5/2
2
(by inequality (3.24)) < Exl0°/4]
5/2
o
= (3.25)

Thus, combining inequalitie
P(In(X) —=n(X)| =€)

< By [Ex [ 1{[(X) = n(X)| > e} ]
<BAD(X,X1,....Xn,Y1,....,Yn)

n

(3.22), (3.23), and (3.25), we have

) )
:<§}+]P’n(:2§>

< ER[EX[BAD(X, X1, Xpu Vi, V)]

[

IN

_l’_

S ol
N>

(3.26)

Again, we are conditioning on the event X € Xgo0d(Px; Pmin, d, h*), i.e.,
we have P(|(X) — n(X)| > e | X € Xyo0d(Px; Pmin, d, h*)) < §, which
combined with inequalities (3.20) and (3.21) yields
E[[7(X) —n(X)]]
< €+ (Ymax — Ymin) (P(X € Xoad(Px; Pmin, d, h¥))
+P((X) = n(X)| = € | X € Xyood(Px; Pmin, d, 1))
< &+ (Ymax — Ymin) (P(X € Xad(Px; Pmin, d, B*)) +6). ]

3.6.3 Proof of Proposition 3.3.1

The proof is nearly identical to part of the proof presented of Propo-
sition 3.1 of Gadat et al. (2016) (which shows a setting in which the
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strong minimal mass assumption (Gadat et al., 2016) is equivalent to
the strong density assumption (Audibert and Tsybakov, 2007)).

Under the strong density region of set A C supp(Px), for x € A
and r € (0,r"],

Px(By,) = / px(B)dt > pLA(Bay (1 supp(Px)) = preo A(Ban),
——

o vgrd
where vy is the volume of a d-dimensional unit closed ball (such as B 1);
note that vy depends on the choice of metric p. The above inequality
implies that A C Xyo0d(Px; prcovy, d, 7).

3.6.4 Rephrasing of Theorem 2 of Kohler et al. (2006)

We reproduce Theorem 2 of Kohler et al. (2006) in its original form (ex-
cept using notation from this monograph) and explain how we rephrase
it to obtain the version we presented in Theorem 3.3.3.

Theorem 3.6.1 (Kohler et al. (2006), Theorem 2). Let ¢ > 0
be an estimation error tolerance. Suppose that:

e The regression function 7 is both bounded in absolute value
by some constant L > 1, and also Hélder continuous with
parameters C' > 1 and « € (0, 1].

e The feature space is in R? for some d > 2q, and the feature
distribution Py satisfies E[|| X||?] < oo for some constant

B> d2_a2da, where || - || is the Euclidean norm.

e The conditional variance of the label given a feature vector
is bounded: sup,cga Var(Y | X = x) < o2 for some o > 0.

Then there exists a constant ¢ that depends on d, o, 8, L, o2,
and E[|| X ||?] such that if the number of nearest neighbors is set
to
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then
E{(frann(X) — (X)) < - ot (3.27)

n2a+d

Converting a guarantee in terms of squared error to absolute value error
is straightforward with Jensen’s inequality:

E[(7e-nn(X) = n(X))?] = (B[|7k-nn (X) — n(X)[])?.
Thus, inequality (3.27) implies that

R — 2 C2a+d
E[[fixn (X) = n(X)] < VElfran(X) = n(X))?] < | ¢+~
n 2a+d
(3.28)
which is at most € when
C%+10g
n>-—
gat?

This yields the statement of Theorem 3.3.3.

3.6.5 Proof of Theorem 3.3.4

The proof will follow primarily from Theorem 3.3.1. Recall that we had
established that the critical distance in which we want the k nearest
neighbors to be found from a test point is h* = (%)1/0‘, using Holder
continuity of regression function 7. Under the assumption that X is a
compact Polish space, it follows that Px has a finite covering number
for any & € (0,1) and r > 0. For a given 6 € (0,1), let N = N(Px, -, 4)
be the (%, d)-covering number of Px. Let the corresponding N balls
be denoted as By,...,By with B; C X fori € {1,..., N}. By how the

covering number is defined,
N
]P’X(UBZ-) >1—34.
i=1

As stated in the theorem statement, we have
L — ’72(ymax - ymin)2 log 4—‘

g2 5l
N 2
n > Fmax {Zk, 8log S}
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We define the set of bad indices from 1,..., N as
BAD—{'E{I N} IP’X(B)<—1 max{Qk 8log}}
=41 e : i , .
Y n 0

This set is carefully constructed based on conditions (3.4) and (3.5) of
Theorem 3.3.1.
Next, we define sets E1, Fo, E3 C supp(Px) as follows:

El - U Bia
i€EBAD

N
FEy = Bi |\F1,
: (U1 )\
E3 = supp(Px)\(E£1 U Ey).

Since By U Ey = UY | B;, by the definition of a (%*, d)-covering number,
we have Px (FE3) < d. Using the definition of the set BAD and the fact
that |IBAD| < N, we have

Px(F;) = IPX< U BZ»)

1€BAD

< > Px(B)

1€BAD

|BAD|(£}133XD IP)X(B,-)>

IN

IN

N 2
- max {Qk:, 8log 5}
This gives us Px(F) < 4. Since supp(Px) = E; U Eo U Ej3, and since
Px(E1) < 0 and Px(F3) < §, we have that Px(F3) > 1 — 2§. Now for
any x € supp(Px), if x € E; U Ej3, then a trivial upper bound on the
regression error is Ymax — Ymin- On the other hand, if x € Fs, we will
argue that conditions (3.4) and (3.5) of Theorem 3.3.1 are satisfied with
h = h*. To see this, note that for any x € Eb, there existsi € {1,..., N}
such that i ¢ BAD and x € B;. Since B; is ball of radius h*/2 and is in
B;, it follows that B; C B, «. Therefore,

1 2
Px(Byn+) > Px(B;) > Emax {2k, 8log 5}
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This immediately implies inequality (3.4). The choice of k and the above

implies inequality (3.5). Therefore, Theorem 3.3.1 implies that for any

x € Es and using our choices of k and n, with probability at least 1 — 9,
|Tlkenn (z) — n(2)| < e.

When the above does not hold, we can bound the error by ymax — Ymin-

Putting everything together, we conclude that
EHﬁk—NN(X) - U(X)H S €+ 35(ymax - ymin)‘

3.6.6 Proof of Theorem 3.4.1

In this section, we abbreviate 7) to mean fjxn(p)- Let z € supp(Px),
h >0, and € > 0. As with how we prove the k-NN regression pointwise
error guarantee (Theorem 3.3.1), we begin by noting that the triangle
inequality yields

7(x) = n(@)| < [7(x) = Exl(@)]] + [En[7(2)] = n(2)],
where again we bound each of the right-hand terms by § with high

probability.
Note that
1 Nr,h
n(x) = A,
77( ) Nz,h ; 1

where N, j, ~ Binomial(n, Px (B, )) is the number of points that land
in the ball B, , and Ay, Ao, ... arei.i.d. with distribution given by that
of Y conditioned on X € B, 5.

We first establish that N, > (1 —v)nPx(B;,) with high probabil-
ity.

Lemma 3.6.5. For any v € (0,1), we have

2nPx (B
P(Ne < (1= 1Py (Byp) < exp (— LBl
Proof. As we have already shown in inequality (3.17), for any nonnega-
tive integer k < (1 —v)nPx (Byn),

2
P(Nypn < k) <exp ( — M)

2



3.6. Proofs 85

The event {N, ;, < k} is a superset of event {N, , < (1 —v)nPx(Byn)}
as the former implies the latter, so
P(Nyp < (1= 7)nPx(Bep))

V2nPx (By.p) )
.

<P(Npp < k) <exp (- O

Thus, with probability at least 1 —exp ( — %)
(1 —y)nPx (By,), which is strictly positive given that « € supp(Px)
(which implies Px (B ;) > 0). Henceforth we condition on this event
happening.

We now show that |7j(z) — E,[7j(z)]| < § with high probability.

, we have N 5, >

Lemma 3.6.6. If the number of training points landing in B,
satisfies Ny 5, > (1 — v)nPx (Bg,p), then

(1-— 'y)nIP’(B'x,h)E2 ) '

P(jie) = Bali@)] 2 5) < 2exp (= 50 2 e

Proof. Recall that conditioned on N, = k € {1,2,...,n}, we have
n(z) = %Zle A; with Ay, ..., Ay K Py|xes, ,, so Hoeffding’s in-

equality gives

P(|i(z) - Eafii(@)]| >

‘ Ny = k) < 2exp ( _ Q(ymaxkiQymin)Q).

| ™
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Then

P([ii@) — Eali(@)]| = 5 | Now > (1- >an<Bx,h>)

S k=10 -y Bo)] PWNVep = B)P(7(z) = En[fi(@)]] 2 § | Nop = F)
P(Ngp > (1 —y)nPx(Byn))

)

ke? )

o iy (8,01 PVen = B) 200 (= 55050

- P(Nx’h > (1 — ’y)nPX(BLh))

n (1—=y)nP(Bg,p)e>
< Zk:((lf‘/)npx(lgz,h)] P(Nx,h =k)-2exp ( - 2(3,,’,ym,rym:x)2 )

- P(Ngp > (1 —7)nPx (By.n))

_ (1 = y)nP(Byp)e?y 2k=[(1—)nPx (8,,)] F(Nen = k)
= 2exp ( 2 Yome — ymm)Q ) ]P’(Nm,h > (1 —v)nPx(Bs.n))
1
(1 — ")/)HIP)(BL )62
= 2exp ( N Q(ymax - ymii)Q > -

We now show that |E,[7(z)] —n(z)| < § with an appropriate choice
of threshold distance h.

Lemma 3.6.7. If the number of training points landing in B, j,
satisfies N, > (1 —v)nPx(B,,), then under the condition that

LmEY | X € B,,] = n(x),
10

there exists h* € (0,00) such that so long as our choice of
threshold distance satisfies h < h*, then

[En[7(z)] — n(z)| <

Furthermore, if the function 7 is Hélder continuous with param-
eters C' > 0 and a > 0, then we can take h* = (%)1/0‘ and the
above guarantee holds for h = h* as well.

DN | ™

Proof. Recall that conditioned on Ny, = k € {1,2,...,n}, we have
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n(z) =1 Sk A with Ay, ..., Ay Lig: Py|xes,,,- Then

k
En[f(z) | Nep = k] = .
Z

pwH

E[Y | X € B,

=

.
—

=E[Y

XGBIh]

Since we are conditioning on Ny, > (1 — v)nPx(B,p), then in this
case, indeed E,[7)(z)] = E[Y | X € B, 4).
First let’s look at the case when we only know that

ImEY | X € By ,| = n(x).
10
This implies that there exists h* > 0 (that depends on z and &) such

that -
EY | X € Byy] —n(z)| < 2 for all r € (0, ™).

Hence, provided that h € (0,h"),

[Enlii(x)] = ()| = [E[Y | X € Byp] —n(2)] <

[\3\(“‘)

If we know that 7 is Holder continuous with parameters C and «, then
by a similar argument as we used in showing inequality (3.18),

[En[7(2)] = n(x)] = [E[Y | X € Byu] —n()|
< sup [n(z) —n(z)|

I/EBx,h
< Ch<,
which is at most § when h < (%)1/0‘, i.e., in this case we can take
W= (55) 1 O

Putting together Lemmas 3.6.5, 3.6.6, and 3.6.7 (and union-bounding
over the bad events of Lemmas 3.6.5 and 3.6.6), we obtain the following
lemma that is more general than Theorem 3.4.1.
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Lemma 3.6.8. Under assumptions A5 and ABesicoviteh et
x € supp(Px) be a feature vector, € > 0 be an error tolerance
in estimating 7(z), and 6 € (0,1) be a probability tolerance.
Suppose that Y € [Ymin, Ymax| for some constants ymin and Ymax.
Then there exists a distance h* € (0, 00) such that if our choice
of threshold distance satisfies h € (0,h*), with probability at
least

B 72nIP’X(Bx7h)) — 9exp ( _ (1- 7)HPX(Bx7h)52),

1 —exp
( 2 2(yma,x - ymin)2
we have [7j(z) — n(x)| <e.

Furthermore, if the function 7 satisfies assumption A;'E"der(c’a)

then we can take h* = (%)1/ @ and the above guarantee holds

for h = h* as well.

)

We obtain Theorem 3.4.1 by setting v = % and noting that

P

Px (Bz,n) 8 =9
4(ymax - ymin)2 4 nPx (Ba: h)62 4]
> log — 2 — : < —. OJ
"= ]P)X (ng,h)a’f2 08 (S = xp ( 4(ymax - ymin>2) -2

3.6.7 Proof of Theorem 3.4.2

The proof is nearly identical to that of Theorem 3.3.2 (Section 3.6.2).
The main change is to replace inequality (3.23) with

T{fxnny (2) — n(x)| > €}
< 1{Nep < 5nx (Ba)} + 1{ o) (2) — Enlibnn ()] 2 S},

where random variable N, 5, is the number of training points that land in
the ball B, j,. We define the right-hand side of the above inequality as the
new function BAD that replaces the one in equation (3.23). For a fixed
test point x, the expectation (over randomness in training data) of BAD
can be upper-bounded by % by using Lemmas 3.6.5 and 3.6.6 (both

with v = 1/2), along with the fact that € Xy00d(Px; Pmin, d, (%)1/0‘)
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(the threshold distance h and the number of training data n to use
to ensure this % bound are in the theorem statement). The rest of
the proof is the same with the notable exception that the worst-case
regression error is max{|Ymin|, |Ymax|, Ymax — Ymin} instead of merely

Ymax — Ymin, Which was the case for k-NN regression.

3.6.8 Proof of Theorem 3.5.1

In this section, we abbreviate 7 to mean 7k (-; h) for the given bandwidth
h > 0. Fix z € X. Note that

n z, X
oy EELLCY
15 K(p(a:,Xi)) )

n £vi=1

h

=)

The numerator is the average of n i.i.d. terms each bounded between ymin
and Ymax, and with expectation A £ E[K (%)Y] The denominator
is the average of n i.i.d. terms each bounded between 0 and 1, and with
expectation B £ E[K (@)] Thus, as n grows large, 7(x) approaches
A _ EK(Z5Hy]
B EREEE)

We decompose the regression error using the triangle inequality:

N A

i)~ ()| < @) - 5|+ |5 —n)|  @29)

The rest of the proof is on upper-bounding each of the two right-hand
side terms by § with high probability.

Lemma 3.6.9. Let A £ E[K(2%X))y] and B £ E[K(22X))].
Let § € (0,1). With ¢ > 0 such that K(¢) > 0, and the number
of training points satisfies

2 log%
(K (¢)Px (Bzgn)]?’

8[max{ |Ymin|, [Ymax|} + (Ymax — ymin)]2 log %
e2[K (¢)Px (By,gn)]* '

anaX{

(3.30)
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then with probability at least 1 — 6,

Proof. By Hoeffding’s inequality,

ln M - o log% é
P(’n ;K( L )Yz A‘ > (ymax ymm) o ) < 5
1t (e Xi)y F) 5

(TSR = 5 <5

Thus, union bounding over these two bad events, we have, with proba-
bility at least 1 — 6,

n ) 4
‘:LZK(p(x}LXl))EA‘ < (ymaxfymin) 108;5 é51a
=1

2n

1o, Xi) log§
L E(5) B < G 2

With both of these bounds holding, then

—~ N Ate 1

) =55
As we show next, by our assumption that n is large enough, it turns
out that B — e9 > 0. To see this, note that we have ¢ > 0 such that
K(¢) > 0, and so B satisfies the lower bound

- [x(5)]

=s[r(253) [ 255 < et < o)

and

+E[K(p(x;LX>) ’ p(x}’LX) > 8| P(p(x, X) > oh)

Y

[ (75 ) | #57 < o] Pt ) <o

Px (Bg,¢n)

>K(¢) since K monotonically decreases
= K(o) X Px(Bggn) - (3.31)
M~ ———

>0 by assumption >0 since x€supp(Px)

V
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Meanwhile, using condition (3.30) on the training data size n, we have
2log 4

n < m, which means that
_ Jlogs < 1K(¢)[p> (Byon) < 1B
g = om — 9 X $7¢h—2 :
Hence,
1
B — €2 Z QBv

which, combined with the observations that |A| < max{|ymin|, |Ymax]|}
and B <1, gives

i) - 4

<max{‘A+€l _*’ ’A+51 _*‘ ‘ —! _é‘ ‘A_gl _é’}

= B+ &9 B —e Bte, BUB-e B

:max{‘—52A+51B ’ 62A+613’ ’ 5214—613’ 5214_513‘}

B(B + &3) B—e3)l'l B(B+ey) ' B(B—es)

e2|A| +e1B

= B(B-e)

<& max{|Ymin|, [Ymax|} + €1

= B-iB

- Q(maX{’ymin‘7|ymaX|}+ (ymax _ymin)) lOg% (3 32)

B2 2n .

Putting together inequalities (3.32) and (3.31) yields:

(@) - | 2(max{[ymin] [Yomax|} + (Yimax = Ymin)) /108 5
BI = [K(¢)Px (By,on)]? om

which is at most § by our assumption that

8[max{|Ymin; |[Ymax|} + (Ymax — Ymin)]> log% 0
a e2[K (¢)Px (Bygn)|* '

Now we show how to choose the bandwidth h to get ‘% - r](x)‘ <s.
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Lemma 3.6.10. Denote A 2 E[K(222))Y] and B = E[}(2&X))].
Under assumption Adecay( 7 if e (0, %(%)1/0‘], then

5 ) <

Proof. Note that

Let random variable S = @ be the distance between x and X

normalized by bandwidth h. We have
A K(P(%X) )
4 | = [e[£EED)

Il
&=
o)

(Jensen’s inequality) < Eg

(since K(s) >0 for all s > 0) = Eg

(Holder continuity) < ES[
= Ch*Eg|—5—

Since K (S) = 0 whenever S > 7, then K(S5)S* < K(S)7%, and so

K(S) K(S) K(S)} _ aEs[E(S)] _
B B

Es| $°| < Es[=27°] = rEs|
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where the last equality makes use of the fact that Eg[K(5)] = E[K (@
B. Combining inequalities (3.33) and (3.34),

‘E—n(:c)’ < Ch ES[?S | < cnere,
which is at most § when
1/ e\l
< —(— .
h = T (20) =
Combining Lemmas 3.6.9 and 3.6.10 yields Theorem 3.5.1. O

3.6.9 Proof of Theorem 3.5.2

As with the proof of Theorem 3.4.2; the proof here is nearly identical
to that of Theorem 3.3.2 (Section 3.6.2). The main change is to replace
inequality (3.23) with

Wik (w3 h) —n(z)| = e}

LS o pleX, - log 5
< ]l{ - ZK(P( I;’XZ))Y'Z —E[K(p( };X))Y]‘ > (Ymax — ymin)\/j}
i=1

+1 ‘1273]((0(“’7){1)) _E[K(P(%X))]‘ > \/@
niil h h - n 5

where we define the right-hand side of the above inequality as the new
function BAD that replaces the one in equation (3.23). For a fixed test

point z, the expectation (over randomness in training data) of BAD
can be upper-bounded by % by using Lemma 3.6.9, along with the
fact that z € Xgo0d(Px; Pmin, d, %(%)1/‘1) (the bandwidth h and the
number of training data n to use to ensure this % bound are in the
theorem statement). As with fixed-radius NN regression, the worst-case

regression error is max{|Ymin|, [Ymax|, Ymax — Ymin }-

3.6.10 How to Modify Theorems to Say What Error is Achievable

The main theorem statements in this chapter specify how we should
choose the training data set size n and the number of nearest neighbors &
(or the bandwidth A in the case of fixed-radius NN and kernel regression)

)]
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to achieve a user-specified error tolerance . In other words, ¢ is treated
as fixed, and we explain how to choose n and k. We can actually translate
the theorem statements to instead say what error € can be achieved,
with n and k treated as fixed, albeit still with some restrictions on how
n and k can be chosen up front. In this section, we show how to do
this translation for the guarantees on k-NN regression pointwise error
(Theorem 3.3.1) and expected error (Theorem 3.3.2). We do not do this
translation for other theorems, although from our steps below, it should
be clear that the translation can be done.
The translations rely on the following lemma involving the Lambert W

function.

Lemma 3.6.11. Let W be the Lambert W function. For any
z € (0,b),a>0,b>0,and c >0, if

z > bexp < — iW(Cabc)),

then

2¢>alog —.
z

cb®

Proof. Suppose that z > bexp ( — 1W(<")). By rearranging terms to
isolate W on one side, we get
b¢ b
W(=-) > clog -
a z

Note that W~1(s) = se® for s > 0 is a monotonically increasing function.
Hence, applying W~ to both sides of the above inequality,

cb® b b bye, b
o > (clog ;) exp (clog ;) = c(;) log -
Another rearrangement of terms yields the claim. O

Translating Theorem 3.3.1. We aim to write the theorem statement
to no longer use either ¢ or §. To simplify matters, we constrain

§ = c

Ymax — Ymin
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Since the theorem requires 6 € (0,1), we thus will require

€€ (07 Ymax — ymin)'

The theorem asks that we choose n and k so that
@ 8 1 2
n>———log-—,
= Px(Bop) 06

and 2 (i) (idd)
2(ymax - ymin) 4 i it 1
= log 5 <k < in]P’X(Bx’h).
Using our choice of § = £ , by rearranging inequality (i), we get

Ymax —Ymin

nlPx (B,
Xé h))‘

into inequality (i), and rearranging terms,

€2 2(ymax - ymin) exXp ( - (335)

Plugging in § = 7 £

max —Ymin

we get

2 2(ymax - ymin)2 log 4(ymax - ymin)

> 2 z :
Applying Lemma 3.6.11 (and recalling that we require € < Ymax — Ymin),
we enforce the inequality above to hold by asking that

g

1
£ > 4Yumae — Yomin) exp ( — 5W(wk)), (3.36)

where W is the Lambert W function. Then Theorem 2.1 of Hoorfar and
Hassani (2008) yields

W (16k) > log(16k) — log log(16k).
Thus, to ensure that inequality (3.36) is satisfied, it suffices to ask that

1
€ > 4(Ymax — Ymin) €XP ( — §(log(16k) —log 10g(16k)))
log(16k
- (ymax - ymin) (143)7 (337)

where the last line follows from a bit of algebra.
Putting together the two sufficient conditions on ¢ given by inequal-
ities (3.35) and (3.37), we see that we can set

nlPx (B,
Xé h))

log(16k
;(ymax_ymin> (k)}

£ = max {2(ymax_ymin) €Xp (_
(3.38)
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However, recalling that we must have € < ymax — Ymin, then we impose
some sufficient conditions on n and k (so that each of the two terms in
the maximization above is at most Ymax — Ymin):

8log 2

n>——— and k>5.
PX(Bx,h>

As a reminder, we still have to account for inequality (7i7). In summary,
we can ask that

8log 2 1
n>———— and 5<k<-nPx(B.n
]P)X (Bz7h) 2 ( x, )
to ensure that the conditions in Theorem 3.3.1 hold. Then with prob-
ability at least 1 — § = 1 — ——=—— over randomness in the training

Ymax —Ymin

data,
|7k-nn () — ()| <€,
where ¢ is given in equation (3.38). In other words, treating test point x

as fixed and taking the expectation E,, over randomness in the training
data,

En”ﬁk-NN(x) - 77(-7;)‘] <e+ 0 x (ymax - ymin)
N —
w.p. § we assume a worst-case error

g
=&+ — (yrnax - ymin)

Ymax — Ymin

= 2¢.

Thus, the translated theorem is as follows.

Theorem 3.6.2 (k-NN regression pointwise error, alternative
form). Under assumptions AES?:"I’PE?' and A5e5ic°"itc", let = €
supp(Px) be a feature vector. Suppose that Y € [ymin, Ymax| for
some constants ymin and ymax. There exists a threshold distance
h* € (0,00) such that for any smaller distance h € (0, h*), if the
number of training points and the number of nearest neighbors

satisfy

8log 2

1
0982 and 5<k< =nPx(Bya),
>]P’X(Bx,h)’ an < 7211 x (Bz.h)
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Ek,n

max —Ymin

then with probability at least 1 — 7 , k-NN regression at

point x has error

[Te-nN (2) — ()| < €rn,

where

TLPX B h log(16k
€kn = (ymax - ymin) max {QGXP < - ( = )>7 g( ) }
8 k
Put another way, the expected regression error over randomness

in the training data at point z is

Ep[|e-nn(z) — n(@)]] < 26k,

Furthermore, if the function 7 satisfies assumption AHOIder(C a),

then we can take h* = (250)1/ @ and the above guarantee holds
for h = h* as well.

Translating Theorem 3.3.2. The translation strategy is the same
as what we did above for Theorem 3.3.1. Theorem 3.3.2 asks that we
choose n and k so that

@ 2C0\d/e 16 . /3
= <?> Pmin logT’

and

4 — Ymi 4 (id) — (ii) | g \d/a

(ymaX62 ymm) log 3 <k < 5 %) .

Again, we choose § = maxeymm so the theorem requires ¢ € (0, Ymax —

Ymin)- To handle inequality (i), we plug in § = ymaxiymin and rearrange
terms to get

5 WPmin (

16(2 d/a max — Ymin
o 16O B = Yuin).
NPmin £

Applying Lemma 3.6.11 (and noting that we require € < Ymax — Ymin),
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the above inequality holds if

€ > V8(Ymax — Ymin) €XP { — aw( NPmind {\/g(ymax — ymin)]d/a ) }

d 16 2C
2¢
(3.39)
If £ > e, which we can get by asking that
16 2C d/a
n> - : (3.40)
Pmind \/g(ymax - ymin)

then Theorem 2.1 of Hoorfar and Hassani (2008) implies that

W (€) > log¢ — loglogé.

In other words, to ensure that inequality (3.39) holds, we can ask that
a
— - (log& —loglog 9)
log &\ a/d
= \/g(ymax - ymin> (ig)

£
nprnind \/g(ymax*ymin)} d/a) > Oé/d

€2 \/g(ymax - ymin) exp (

log ("2 [ 2C

NPmind \/g(ymax —ymm) d/a
16« 2C

= \/g(ymax - ymin) <

=2C

yqd/a
16 log (npmé:.d V8(Ymax —Ymin) ) a/d
(Lt TV

npmind
Next, by the same reasoning as how we translated Theorem 3.3.1,

inequality (i¢) can be satisfied by asking that

log(16k)

€ > (ymax - ymin) T (342)

Finally, rearranging inequality (iii), we get
2k )a/ d

NPmin

e >20( (3.43)
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Thus, by combining inequalities (3.41), (3.42), and (3.43), we see that
we can set

)

Do . d/a o
(16alog( Zilgg]d{\/g(ym;)é ymm)i| )> /d

¢ = max < 2C
npmind

log(16k) 2k \o/d
(ymax - ymin) k s 20( ) .

NPmin

Remembering that we require € < Ymax — Ymin, We secure sufficient
conditions to guarantee each argument in the maximization is at most

Ymax — Ymin*

n mjnd \/g max —Ymin d/a
20 )d/a16alog( o [ w Toms )} )

Ymax — Ymin

i

" ( Pmind

k > ‘;
. — . d/()[
npllll (ylnax Cy I )

We can combine these requirements with requirement (3.40) to get the
final translated theorem statement.

k<

Theorem 3.6.3 (k-NN regression expected error, alternative
form). Under assumptions At)‘éfgfﬁ]i;f' and A;Io'der(c’a), suppose
that Y € [Ymin, Ymax) fOr some constants ymin and yYmax. Let

Pmin > 0 and d > 0. If the number of training points satisfies
2C )d/a 16«
pmind

mind [ V8(Ymax — Ymin) 14/
e —

n

Ymax — Ymin

X max { log (
and the number of nearest neighbors satisfies

h<k<
- 2

min (Ymax — Ymin \ %/
np (y aQC’y ) 0‘7
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then k-NN regression has expected error

E[|7k-nn (X) = n(X)]]

NP . d/a N
16« log ( Iirg,o?d |:\/§(ym§)é ymm):| ) /d
< max | 2C 7
npmind
log(16k) 2k \o/d
max — Ymin , 2 )
(y ! ) k C’(npmin)

3.7 Automatically Selecting the Number of Nearest Neighbors and
Kernel Bandwidth

In practice, the number of nearest neighbors k£ and the kernel band-
width A (which corresponds to the threshold distance for fixed-radius
NN regression) are usually selected via cross-validation or more simply
data splitting. For k-NN regression, theoretical results are available
for these two ways of choosing k (Gyorfi et al., 2002, Theorem 8.2 for
cross-validation, Corollary 7.3 for data splitting). Similar results are
available for choosing threshold distance h in fixed-radius NN regression
(Gyorfi et al., 2002, Theorem 8.1 for cross-validation, Corollary 7.1 for
data splitting).

A promising direction is to adaptively choose the number of nearest
neighbors k or the kernel bandwidth h depending on the test feature
vector x € X. In this case, we write k as k(x) and h as h(z) to emphasize
their dependence on x. For weighted k-NN regression, Kpotufe (2011)
provides a simple way to choose k(x) that achieves a near-optimal error
rate. For a given x, the method finds the value of k that balances
variance and squared bias of the regression estimate at x. Meanwhile, a
similar strategy turns out to be possible for kernel regression. Kpotufe
and Garg (2013) show how to select bandwidth h(x) by controlling local
surrogates of bias and variance of the regression estimate at x. Their
resulting adaptive kernel regression method adapts to both unknown
local dimension and unknown local Holder continuity parameters. Im-
portantly, these results for adaptively choosing k(x) and h(x) are quite
general and handle when feature space A and distance function p form
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a general metric space. As a preview, toward the end of this monograph
in Section 7.1, we show how decision trees and various ensemble learning
methods can be viewed as adaptively choosing k(z) for a test feature
vector x.

Kpotufe and Garg’s adaptive kernel regression result actually falls
under a bigger umbrella of automatic bandwidth selection methods
based on the seminal line of work by Lepski et al. (Lepski et al., 1997;
Lepski and Spokoiny, 1997; Lepski and Levit, 1998). A key idea in this
line of work is to monitor how the regression estimate at a point x
changes as we vary the bandwidth h. A good choice of bandwidth h(x)
should satisfy some stability criterion. We point out that specifically for
Euclidean feature spaces X', Goldenschluger and Lepski have also worked
on adaptive bandwidth selection for regression, density estimation, and
other problems (e.g., Goldenshluger and Lepski 2008; Goldenshluger
and Lepski 2009; Goldenshluger and Lepski 2011; Goldenshluger and
Lepski 2013; Goldenshluger and Lepski 2014).

More recently, Anava and Levy (2016) propose solving an optimiza-
tion problem to adaptively choose what k to use for x in an approach
called £*-NN. This optimization problem makes the bias-variance trade-
off explicit and is efficient to solve. We provide a brief overview of
the algorithm and show that in a simple scenario, k*-NN agrees with
the regression theory we have established in this chapter. In particular,
k*-NN finds a number of nearest neighbors k* that satisfies the sandwich
inequality for k£ in Theorem 3.3.1. Thus, this algorithm does what the
theory suggests in terms of choosing k, but in an entirely data driven
manner!

kE*-NN

Recall that for a given test feature vector x € X', we aim to estimate
n(x). We denote (X(;)(),Y;) (7)) to be the i-th closest training data
point to x among the training data (Xi,Y7),...,(X,,Ys), The k-NN
regression estimate is the average label of the k nearest neighbors found
for x:

_ 1 &
Mr-NN(T) = z > V().
im1
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In general, we could instead think of finding what weight a; € [0, 1] we
should assign to the label of the i-th point to produce an estimate 7(x).
That is,

n n
n(z) = ZaiY(,-)(x), Zai =1, a;>0 forallie{1,2,...,n}.
i=1 i=1

To minimize noise or variance, we would like to involve more neighbors
so as to average across more labels. This can be captured by choosing
a = [a;] € [0,1]™ so that ||c||2 is small, where we still have the constraint
that the nonnegative weights sum to 1, i.e., |||l = 1. On the other
hand, to reduce error induced by using far away points, we would like
only nearby neighbors to have larger weight (recall from our discussion
in Section 3.1.1 that using neighbors closer to x aims to reduce bias of
the k-NN regression estimate at ). This can be captured by minimizing
aTB =" a;Bi, where f; = p(z, X(;)(x)). Combining these two pieces,
Anava and Levy (2016) proposed selecting « to be the solution of the
following optimization problem:

n
minimize ||o|ls + a8, such that =1, acl0,1]".

i=1
We now provide an illustrative toy example in which we can roughly
compute k*. We can then compare k* with the condition on what k
should be according to Theorem 3.3.1. Specifically, consider when the
feature space is simply the real line X = R, the test feature is at the
origin x = 0, and the n training points are laid out regularly away from
x so that g; = % for i € {1,...,n}. This is an idealized version of the
scenario where Px ~ Uniform|0, 1]. This setup is depicted in Figure 3.7,
where the black point is the test point x and the blue points are the
training data. Meanwhile, we suppose that the regression function 7
satisfies assumption A;' older(®2) with constants C' = 1 and a = 1 (son
is Lipschitz), and ymax — Ymin = 1.

We compute what £* roughly equals. Let a® be a solution of the
above optimization problem. By looking at its Lagrangian dual formu-
lation, Anava and Levy (2016, Theorem 3.1) argue that there exists
k* € {1,...,n} for which the k£* nearest neighbors have positive weights
and all the other training data have 0 weight. Formally, o > 0 for ¢ < k¥,
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Figure 3.7: Illustration of where the data are in the £*-NN toy example we analyze.

and o = 0 for i > k*. Furthermore, for some A € [Bg+, Sx++1), we have
af < (A= B;) for all i < k*. To determine k* and the weights o*, using
equation (3) of Anava and Levy (2016), we have that S-¥ (A —8;)2 = 1.
Given that A € [Bg+, Br=+1), it follows that

k* (i1) **

> (Bres1 — ? Z (A= B)? > Z B — Bi)%. (3.44)

i=1

=1
Recalling that 8; = p(z, X(;)()), inequality (i) of (3.44) can be written
as

k* .
41 N2 11 )
1< ——) == =k"(2(k" 3k*+1).
<X () =g ew Y s Y
Considering when n and k* are sufficiently large, then this inequality
implies that k* > n?/3. Similarly, inequality (i4) of (3.44) can be written
as
1> M i2—1k*k* ) = = Ik ) — 3kt + 1
Z(*_;) —ﬁ;( —Z)—p'g (2(k")" = 3k™ +1).
For large enough n and k*, then this inequality implies that £* < n2/3.
We conclude that for sufficiently large k* and n, we have k* ~ n2/3.
Next, we compute what the number of nearest neighbors k£ should
be according to Theorem 3.3.1. Since regression function 7 is Holder



104 Theory on Regression

continuous with parameters C = 1 and a = 1, then to achieve € error
in regression estimation, we want the nearest neighbors whose labels
we average over to be within critical distance h* ~ . Next, suppose
that both inequalities in sandwich inequality (3.5) actually hold with
equality, which along with our assumption that max — Ymin = 1 means
that E% ~ nPx (Bg ). Since Px ~ Uniform|0, 1], and h* ~ &, we get
that E% ~n x e. That is, e ~ n~/3. Thus, by looking at the right-hand
side of sandwich inequality (3.5) that we have turned into an equality,
we see that k ~ nh* which is n?/3—just like what k*-NN algorithm
chooses for k*. In this case, Theorem 3.3.1 says that the regression error
is bounded above by & ~ n~1/3,

That the £*-NN algorithm chooses the number of nearest neighbors
to match the requirement of Theorem 3.3.1 in this toy example is
reassuring. We remark that the £*-NN algorithm should be modified
so that f; = p(z, X(;)(z))® if we believe that the regression function
is Holder continuous with parameter o that may not be 1, i.e., not

Lipschitz as considered by Anava and Levy (2016).
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Theory on Classification

We now turn to binary classification. As a reminder, the setup here is
that we have i.i.d. training data (X1,Y7), (X2, Y2),..., (Xn, Ys), where
as with the regression setup, the feature vectors X;’s reside in feature
space X, and distances between feature vectors are computed via a
user-specified function p. However, now the labels Y;’s are either 0 or 1
(and if not, we can always map the two outcomes to being 0 or 1). Given
a new feature vector X = x € X, we want to predict its associated
label Y. As before, we can think of the data generation process as first
sampling feature vector x from the feature distribution Py, and then
sampling the label from a conditional distribution Py |x—,.

Then the Bayes classifier, which is optimal in terms of minimiz-
ing probability of error (Proposition 2.2.1), predicts the label of z
to be 1 precisely if the regression estimate n(z) = E[Y | X = z] =
P(Y =1| X =) exceeds 1/2:

1 ifp(z) > 3,

(equation (2.3), reproduced)
0 otherwise.

?Bayes ($) = {

We break the tie at n(z) = 1 in favor of label 1.
Recall that k-NN, fixed-radius NN, and kernel classification are

105
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plug-in classifiers in that they each produce an estimate 7 that plugs
into the above equation, replacing the unknown 7. Thus, in analyzing
the performance of these three methods, we primarily examine when
the estimate 7(x) “agrees” with n(x) in that they are both greater than
1/2, or they are both less than 1/2. If there is agreement, then it means
that a plug-in classifier using 7 in place of n classifies the point = the
same way as the optimal Bayes classifier.

That classification only cares about whether 7 is above or below
threshold 1/2 suggests it to be an easier problem than regression. For
example, within a region of the feature space X for which 7 consistently
is above 1/2, we can even have 1 not be smooth, which can make
regression difficult whereas classification can be easy. In this chapter,
we first show in Section 4.1 how to convert the regression guarantees
from Chapter 3 into classification guarantees, which rely on regres-
sion having low error as a first step. This requirement is, of course,
overly conservative. We then explain in Section 4.2 how Chaudhuri and
Dasgupta (2014) prove a general nonasymptotic guarantee for k-NN
classification under weaker assumptions. We show how their proof ideas
readily extend to establishing analogous guarantees for fixed-radius NN
and kernel classification. We remark that Chaudhuri and Dasgupta’s
nonasymptotic k-NN classification guarantee readily recovers various
existing asymptotic k-NN classification consistency results (Fix and
Hodges, 1951; Stone, 1977; Devroye et al., 1994; Cérou and Guyader,
2006).

All guarantees we present for k-NN, fixed-radius NN, and kernel
classification say how to choose algorithm parameters to ensure low
probability of disagreeing with the optimal Bayes classifier. A major
component of this disagreement probability (and in fact, the single
dominant component in the case of k-NN classification without requiring
regression to have low error first) is the probability of feature vector X
landing near the decision boundary {z : n(x) = 1/2}. The intuition
here is that when a feature vector x is near the decision boundary, the
conditional probabilities n(z) =P(Y =1 | X =z) and P(Y =0 | X =
x) are both close to 1/2. As both labels have almost equal probability,
predicting the correct label becomes challenging.

To address the difficulty of classification near the decision boundary,
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an earlier approach to establishing classification guarantees is to assume
so-called margin bounds, which ask that the probability of landing near
the decision boundary decays in a particular fashion (Mammen and
Tsybakov, 1999; Tsybakov, 2004; Audibert and Tsybakov, 2007).! The
k-NN classification guarantee by Chaudhuri and Dasgupta (2014) turns
out to be tight in that by adding both a smoothness condition (Holder
continuity, i.e., assumption Ag older(C2) f.5m Section 3.2) and a margin
bound condition, k-NN classification has an error upper bound that
matches an existing lower bound established by Audibert and Tsybakov
(2007). In the final secton of this chapter, we discuss this tightness result,
which is established by Chaudhuri and Dasgupta (2014, Theorem 7).
We also mention a key result by Gadat et al. (2016, Theorem 4.1) that
cleanly delineates regimes in which even if we assume smoothness and
a margin bound condition, it is impossible for k-NN classification to be
uniformly consistent.

We briefly point out some results regarding automatically choosing
the number of nearest neighbors k that we do not discuss later in the
chapter. Hall et al. (2008) looked at how to select k through analyzing
two concrete models of data generation, and they suggest a practical
approach that uses bootstrap sampling and computing some empirical
error rates on training data to choose k. This choice of k is non-adaptive
in that it is not a function of the test feature vector x € X. Gadat
et al. (2016) suggest adaptively choosing k = k(x) depending on the test
feature vector z. The idea here is similar to adaptively choosing k(x) for
k-NN regression (see Section 3.7). As a reminder, we show in Section 7.1
how decision trees and various ensemble learning methods are nearest
neighbor methods that adaptively choose k(z); these methods readily
handle classification.

!Being near the decision boundary is also called being in the “margin” between
the two label classes 0 and 1. A “large margin” refers to the probability of landing
near the decision boundary being small, effectively making the classification problem
easier. One way to parse this terminology is to think of two Gaussians with the same
variance, corresponding to the two label classes 0 and 1. The decision boundary is
precisely at the average of their means. If they are farther apart, then the “margin”
between them is larger, and also the probability of landing near (e.g., up to distance &
away) the decision boundary drops.
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4.1 Converting Guarantees from Regression to Classification

For any plug-in classifer that uses 7] in place of 7, the classifier agrees with
the optimal Bayes classifier on the label for x if 7(x) and n(x) are both
at least 1/2, or both less than 1/2. For example, if n(z) = 0.7, then to
get agreement between the two classifiers, we want 7j(z) > 1/2. One way
to get this is to have the regression error at x satisfy |7(z) — n(z)| < 0.2.
In particular, we do not need the regression error at x to be arbitrarily
small; it suffices to have it be small enough to ensure that 7j(z) and n(x)
are on the same side of threshold 1/2. We formalize this observation
in the lemma below, which provides a turnkey solution for converting
theoretical guarantees for regression into guarantees for classification.

Lemma 4.1.1. Let z € supp(Px), 7(z) be any estimate for
n(x), and € € (0, %) be a user-specified error tolerance. If one can
ensure that the regression error at x is low enough, namely

7(z) —n(x)| <e,

and the conditional probability of label Y = 1 given X = z is
sufficiently far away from the decision boundary 1/2, namely
In(z) — 3| > €, then a plug-in classifier using 7 in place of 7 is
guaranteed to make the same classification as the Bayes classifier.

Of course, we can ensure that the regression error at z is at most ¢ using
the earlier nearest neighbor and kernel regression guarantees. Thus, on
top of the conditions each regression guarantee already assumes, to
turn it into a classification guarantee, we now further ask that the test
point z be in the region

1
Xfar—from—boundary(g) = {-T € Supp(PX) : ‘77(55) - 5’ > 5}-

We denote the complement of Xpar_from-boundary as

= [Xfar—from—boundary(g)]c

= {CL‘ € X :z ¢ supp(Px) or ‘n(:r) — 5’ < 5}.

Xclose—to—boundary (5)
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Immediately, we can produce the following results on k-NN, fixed-
radius NN, and kernel classification from their corresponding regression

results. As a reminder, the recurring key assumptions made (A%

chnical
7P7PX ’

AEESiCO"itCh, Ay 6lder(c’a)) are precisely stated in Section 3.2.

Theorem 4.1.1 (k-NN classification guarantees based on cor-

responding regression guarantees (Theorems 3.3.1 and 3.3.2)).
Under assumptions AB??;‘"I‘PE?' and A5e5ic°"it°h, let € € (0, %) be an
error tolerance in estimating 7, and ¢ € (0,1) be a probability

tolerance.

(a)

(Pointwise agreement with the Bayes classifier) For any fea-
ture vector & € Xfar-from-boundary (€), there exists a threshold
distance h* € (0,00) such that for any smaller distance
h € (0, h*), if the number of training points satisfies

n > Llo g
_ ]PX(Bz,h) & 5’

and the number of nearest neighbors satisfies
2 4 1
67103 5 <k< §nPX(Bx7h>a

then with probability at least 1 — 0 over randomness in
samping the training data, k-NN classification at point x
agrees with the Bayes classifier, i.e., Yi.nn(2) = YBayes(T).
Furthermore, if the function n satisfies assumption A;' 6Ider(c’a),
then we can take h* = (%)1/0‘ and the above guarantee

holds for h = h* as well.

(Probability of agreement with the Bayes classifier) Suppose
that 7 satisfies assumption A;' °Ider(c’a). Let pmin > 0 and
d > 0. If the number of training points satisfies
2C\d/a 16 8
nx (20)7 16 1o, V8

O —_—
€ Pmin & o ’
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and the number of nearest neighbors satisfies

4 1 g \d/a
710g5 Sk anmm(2c) )
then £-NN classification has probability of disagreeing with
the Bayes classifier

P(?k-NN (X) 75 ?Bayes(X))
< P(X S Xclose—to—boundary(s) U Xbad (pmin’ d’ (%)1/(1)) + 0.

Theorem 4.1.2 (Fixed-radius NN classification based on cor-
responding regression guarantees (Theorems 3.4.1 and 3.4.2)).
Under assumptions Atec'”“'caII and ABeS'C°"'tCh let € € (0,3) be an
error tolerance in estlmatlng 7, and 5 €(0,1) bea probablhty
tolerance.

(a) (Pointwise agreement with the Bayes classifier) For any fea-
ture vector & € Xfar_from-boundary (€), there exists a distance
h* € (0,00) such that if our choice of threshold distance
satisfies h € (0,h*), and the number of training points

satisfi
atisfies 4 4
n >

~ Px(Byn)e? log 5

then with probability at least 1 — 0 over randomness in
sampling the training data, fixed-radius NN classification
with threshold distance h agrees with the Bayes classifier,
ie., ?NN(h) (z) = Yiayes(@)-

Furthermore, if the function 7 satisfies assumption AHOIder(C 0‘)

then we can take h* = (250)1/ @ and the above guarantee

holds for h = h* as well.

(b) (Probability of agreement with the Bayes classifier) Suppose
that 7 satisfies assumption AHOIder(C ) . Let pmin > 0 and
d > 0. If the threshold distance satisfies h € (0, (55 )1/0‘],
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and the number of training points satisfies

. 8 1 4

n>———=log—

- pminhdg2 4 5’

then fixed-radius NN classification with threshold distance A
has probability of disagreeing with the Bayes classifier

P(YNN h)( ) 7'é YBayes(X))
S P<X S Xclose-to-boundary(g) U Xbad <pmin7 d’ (%)1/0{)) + 5

Theorem 4.1.3 (Kernel classification guarantees based on cor-
responding regression guarantees (Theorems 3.5.1 and 3.5.2)).
Under assumptions Atecz‘"";"', AdecaY( ) and AHélder(C ) ,let € €
(0,1) be an error tolerance in estlmatlng n, and § € (0 1) be
a probablhty tolerance. Let ¢ > 0 be any constant for which
K(¢) > 0. In what follows, suppose the bandwidth satisfies

h € (0,1(55)Y].

(a) (Pointwise agreement with the Bayes classifier) For any
feature vector £ € Xgar-from-boundary(€), if the number of
training data satisfies

4
32log 5
~ 2 [K(¢)Px(Bygn)]t

then with probability at least 1 — d over randomness in the

n

training data, kernel classification with kernel K and band-
width h agrees with the Bayes classifier, i.e., Yi(x;h) =
YBayes(x)-

(b) (Probability of agreement with the Bayes classifier) Let
Pmin > 0 and d > 0. If the number of training data satisfies

4
64 log 5
€2[K (¢)pminp?h]*’
then kernel classification with kernel K and bandwidth h

n >
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has probability of disagreeing with the Bayes classifier

]P)(?K(X; h) 7é ?Bayes(X))
< P(X € Xclose—to—boundary(g) U Xbad (pmim d’ (%)1/(1)) + 0.

4.2 Guarantees Under Weaker Assumptions

We now establish guarantees for k-NN, fixed-radius NN, and kernel
classification under weaker assumptions than their regression counter-
parts. Our exposition focuses on the k-NN case as the proof ideas for
the latter two methods are nearly the same. All the guarantees to
follow will still depend on assumption Af{?f;‘fﬁi;a' (defined in Section 3.2).
The crux of the analysis looks at where smoothness of the regression
function n mattered for regression and why we can drop this condition.
The resulting guarantees will, however, require partitioning the feature
space X differently in terms of what the “good” and “bad” regions are.
This partitioning differs between the three methods. Per method, its
“good” region reflects where the method works well.

Importantly, the “good” region for k-NN classification accounts
for the method being “adaptive”: if a feature vector z lands in an
extremely low probability region of the feature space X', then the k
nearest neighbors found will tend to be far away from z, whereas if x
lands in an high probability region of the feature space, then the k
nearest neighbors found will tend to be close to . Put another way, how
far the k nearest training points to x are depends on the probability
mass around x according to feature distribution Px.

In sharp contrast, fixed-radius NN classification, and thus also
kernel classification (which includes fixed-radius NN classification as a
special case), lack the adaptivity of k-NN classification to the feature
distribution Px. For example, if a feature vector x lands in an extremely
low probability region of the feature space X, then quite possibly no
training points are within threshold distance h of point . When this
happens, fixed-radius NN classification effectively just guesses a label
without using label information from any of the training data. As a
result, fixed-radius NN and kernel classification are more brittle than
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k-NN classification, and their “good” regions consist of points that not
only are far away enough from the decision boundary but also in parts
of the feature space with high enough probability (so that we are likely
to see enough training data within distance h away). Furthermore, the
good region for kernel classification also depends critically on what the
kernel function K is, using fewer assumptions on K than earlier kernel
regression results (Theorems 3.5.1 and 3.5.2).

4.2.1 k-NN Classification

Before diving into the analysis, we give an overview of the main k-NN
classification result proved in this section. As previewed in this chapter’s
introduction, there is a region near (and that contains) the true decision
boundary {z : n(x) = 1/2} for which classification is difficult. We
call this this region Xhad for-k-NN(Pmin-mass, A) (formally defined via
equations (4.2) and (4.5) later), where pmin-mass € (0, 1] is a parameter
that specifies how closeby we want the k nearest neighbors found
to be to a test point (higher means we can look farther away), and
A € (0,1/2] is a parameter saying how confident we want a prediction to
be (higher means more confident). Note that decreasing either pmin-mass
or A shrinks the size of X aq-for-k-NN. In particular, with pmin-mass — 0
and A — 0, then P(X S Xbad—for-k-NN(pmin—mass,A)) — 0. Then the
probability that the k-NN and Bayes classifiers disagree can be controlled
to be arbitrarily small.

Theorem 4.2.1 (Informal statement of Corollary 4.2.1, which
is a minor variation on Theorem 1 of Chaudhuri and Dasgupta
(2014)). Let § € (0,1) be a user-specified error tolerance. If the
number of nearest neighbors satisfies

1 1 1
@(6)<k§n-(1—@< k10g6>>’
then

]P)(i}k—NN (X) 7& }/}Bayes (X)) S 5+P (X S Xbad—for—k—NN (pmin—ma557 A)) )



114 Theory on Classification
where

k 1 /1 1
pmln—mass—g'l_@( ] ] )7 A—@( %logg)

In particular, by having 6 — 0, n — oo, k — oo, and % — 0, we can
have both pmin-mass — 0 and A — 0, meaning that

]P)(X S Xbad-for-k-NN (pmin—maSSa A)) — 0.

Hence, the probability that the k-NN and Bayes classifiers disagree
goes to 0, and so the probability of misclassification becomes the same
for the two classifiers, i.e., IP’()A/k_NN(X) #Y) — P(?BayeS(X) #Y). In
fact, by using a refinement of this argument that assumes that the
Besicovitch condition ASeSicm’itCh from Section 3.2 holds, Chaudhuri and
Dasgupta (2014, Theorem 2) establish weak and strong consistency of
k-NN classification under a more general setting than previously done
by Fix and Hodges (1951), Stone (1977), and Devroye et al. (1994).
We remark that weak but not strong consistency of nearest neighbor
classification under similarly general conditions (specifically assumption
AE{?Chrﬁica' and a version of assumption AEeSim"itCh) has previously been

P X

established by Cérou and Guyader (2006).

Establishing Chaudhuri and Dasgupta’s k-NN Classification Result

The main source of where smoothness of 77 mattered for regression and
where it is no longer needed in classification is as follows. For k-NN,
fixed-radius NN, and kernel regression, a recurring step in deriving their
pointwise guarantees is to control the regression error |7(z) — n(x)|
via the triangle inequality. For example, for k-NN regression, we used
inequality (3.2), observing that

Tk (@) = ()| < |7e-nn (@) = En [fe-nn (2)]] + [En[Trnn (@)] = n(2)],

(4.1)
where E,, is the expectation over the training data (X1, Y1),..., (Xp, Yn).
The right-hand side features a decomposition similar to but not the
same as the bias-variance decomposition (which would examine expected
squared error instead of absolute error), where the first term gauges
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variability in the k samples from their expected mean, and the latter
term is precisely the absolute value of the bias of estimator . nn. With k
large enough, the “variability” term can be controlled to be small with
high probability. Meanwhile, controlling the “bias” term can be done
by asking that enough training data are close to test point x within a
critical distance that depends on the smoothness of 7 (e.g., smoother
means that the nearest neighbors found can be farther from z).

For classification, we do not actually need to control the “bias”
term |E,[7x.nn(2)] — n(z)| to be smalll In particular, we still want
E, [k (2)] and n(z) to “agree”, but now agreement just means that
they are either both greater than 1/2, or both less than 1/2. For example,
if n(x) > 1/2, then it suffices to ask that E,[frnn(z)] > 1/2. In fact,
if E,[fe-nn(z)] > 3 4+ A for some A € (0,1/2], then so long as the
“variability” term satisfies |r-nn(2) — Ep[fknn(2)]| < A (which ensures
that 7k Nn(2) > 1/2), we have k-NN and the optimal Bayes classifiers
agreeing on the label for test point x. A similar statement holds when
n(z) < 1/2. We summarize this observation as follows.

Lemma 4.2.1. Let A € (0,1/2]. For a test feature vector z € X,
we have Y nn(2) = Ypayes(2) if the following two sufficient
conditions hold:

o |Hnn(z) — Ep[Menn(2)]] < A.

e Test point z lands in the region

Xgood—for—k—NN (A)

£ {aj € supp(PX) : T](.Z') > % and En[ﬁk—NN(x)] >

U {x € supp(Px) : n(z) < % and E, [fr.nn(2)]

We now look at when these two conditions hold with high probability,
which involves reusing lemmas encountered for regression. In fact, very
little additional work is needed.

To begin, note that in proving k-NN regression’s pointwise perfor-
mance guarantee, we actually already saw how to ensure that the first
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condition holds with high probability for large enough k.

Lemma 4.2.2 (Lemma 3.6.2 with choice ¢ = 2A and accounting
for tie breaking as discussed at the end of Section 3.6.1, which
actually then becomes Lemma 10 of Chaudhuri and Dasgupta
(2014)). Let A € (0,1/2]. Under assumption AFTH!, we have

P([fie-xn (@) — Enlfienn(@)]] > A) < 2exp(~2kA2).

Thus, |Me.nN(z) — En[fknn(2)]] < A with probability at least 1 —
2 exp(—2kA?).

As our discussion above suggests, the second condition that z lands
in the region Xgood-for-k-NN(A) is about Ey, [7x-n~ ()] and () both being
on the same side of threshold 1/2. To ensure that this happens, recall
that for regression, to make E,[f.nn ()] close to n(z), we asked that the
(k 4 1)-st nearest training point to = be at most some critical distance
away from z that depended on the smoothness of n. For classification,
while we do not assume 7 to be smooth, in making E,, [7x.xN(2)] agree
with n(z), we again appeal to some notion of the k nearest neighbors
found being sufficiently close to . But how close?

As mentioned previously, the key observation is that k-NN classifica-
tion is adaptive in that how far the k nearest neighbors to = are depends
on the probability mass surrounding x in feature distribution Py . Higher
probability of landing near x corresponds to the k£ nearest neighbors
of x tending to be closer to z. Thus, Chaudhuri and Dasgupta (2014)
suggest using an adaptive distance where for a given test point x, we ask
that the k nearest training points to  be within the following distance
that depends on x and also a probability parameter pmyin-mass € (0, 1]:

Tpmin—mass (':r) = lnf{r Z O : ]P)X(Bmﬂ') Z pmil’l—n’laSS}‘

This is the smallest distance r we have to go from z before P(X € B, ) >
Pmin-mass- Later when we discuss fixed-radius NN classification, we
instead use a fixed threshold distance.

With the above intuition in mind, we follow Chaudhuri and Dasgupta’s
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derivation and define the following good region

Xgood-for-k-NN (pnﬁn—rnas& A)

£ {:L‘ € supp(Px) : n(x) > %
and E[Y | X € B, ,] > % + A for all r € [0, rpmin_mass(x)]}
o {ir € supp(Ex) s (@) < 5
and B[ | X € By < 5 — A for all 7 € 0,7 ()]}
(4.2)

which consists of two pieces: the part of the feature space where if a
test point x lands there, we can be reasonably confident (dependent
on A) that k-NN classification (with the & nearest neighbors found
being up to a distance rp_ . () away from z) agrees with the Bayes
classifier on x having label 1, and also the analogous part where we
can be reasonably confident that k-NN classification agrees with the
Bayes classifier on = having label 0. This interpretation of the above
good region results from the following observation that links region
Xeood-for-k-NN (Pmin-mass; ) to the earlier good region g*ood-for-k-NN(A)
from Lemma 4.2.1.

Lemma 4.2.3. Let pmin-mass € (0,1] and A € (0,1/2]. Under as-
sumption AE@‘?;‘"EPE‘;", let © € Xgood-for-k-NN (Pmin-mass, A). Suppose
that the distance between x and its (k + 1)-st nearest training
point is at most 7. ... () (notationally, p(z, X 11)(7)) <
T pminmass (£)), Meaning that the & nearest neighbors of = are
within distance 7p,;, .. (€) of z. Then @ € X3 4 ro, 1 NN (D).

Thus, so long as we can ensure that p(z, X(411)(%)) < Tpminmass (T)
then x being in Xgood-for-k-NN (Pmin-mass; A) means that the second con-
dition in Lemma 4.2.1 is satisfied. We have actually already previously
shown when p(z, X(141)(Z)) < Tppinmass () With high probability! We
recall this result after presenting the proof of Lemma 4.2.3.

Proof of Lemma 4.2.3. Suppose & € Xgood-for-k-NN (Pmin-mass, ) and its
(k + 1)-st nearest neighbor are at most a distance rp_,. .. () apart.
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This means that

E,[Mknn(2)] = E[Y | X € Bz,p(gg,X(Hl)(x)]'
—

S"qlﬂminfmass ()
If the right-hand side is at least % + A, then so is the left-hand side.

Similarly, if the right-hand side is at most % — A, then so is the left-hand
side. Hence, z is also inside Xg*ood_for_k_NN(A). O

Lemma 4.2.4 (Lemma 3.6.3 with choice r =7, (z), which
actually then becomes Lemma 9 of Chaudhuri and Dasgupta
(2014)). Let v € (0,1). For positive integer & < (1 —~)nPmin-mass»
2
YN Pmin-

P(p(:l:, X(k+1) (w)) Z 7ﬂpmin—mass (x)) S eXp ( - W)

2
M)

§exp(— 2

(The second inequality follows since & < (1 — ¥)nPmin-mass <

NPmin-mass- )

Hence, p(%, X(441)(7)) < Tppinmase (¥) With probability at least 1 —
exp(—7°k/2).

Putting together the pieces, for any @ € Xyood-for-k-NN (Pmin-mass: &),
by union bounding over the bad events of Lemmas 4.2.2 and 4.2.4,
then with probability at least 1 — 2 exp(—2kA?) — exp(—v2k/2), neither
bad event happens, which combined with Lemmas 4.2.1 and 4.2.3,
implies that k-NN classification agrees with the optimal Bayes classifier
in classifying test point x. As a corner case, note that if A = 1/2
(corresponding to no noise), then we actually do not have to worry about
the bad event of Lemma 4.2.2 since conditioned on the bad event of
Lemma 4.2.4 not happening, the k nearest neighbors are all close enough
to x and actually all have the same label. We thus obtain the following
nonasymptotic pointwise error guarantee for k-NN classification, which
we restate shortly to make consistent with both our presentation of
nearest neighbor and kernel regression guarantees (i.e., what algorithm
parameters ensure a user-specified probability of error §).
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Lemma 4.2.5 (k-NN classification pointwise agreement with
the Bayes classifier). Let pmin-mass € (0,1], A € (0,1/2], and
€ (0,1). Under assumption At)ﬁfg:ﬁiif', suppose that

HANS Xgood—for—k—NN (pmin—ma387 A) and k < (1 - 7)npmin—mass~
We Consider two cases:

e If A €(0,1/2), then with probability at least
2
k
1 — 2exp(—2kA2) —exp (- L) (4.3)
2
we have ?k_NN(x) = ?Bayes(x).

e If A =1/2, then with probability at least

1—exp (- 7;’“) (4.4)

we have }Afk_NN(x) = }/}Bayes(l’).

We reword this lemma in terms of controlling a probability of error

0 €(0,1).

Theorem 4.2.2 (k-NN classification pointwise agreement with
the Bayes classifier, slightly reworded). Let § € (0,1), pmin-mass €
(0,1], A € (0,1/2], and ~ € (0,1). Under assumption AES?;‘E;?',
suppose that € Xgood-for-k-NN(Pmin-mass, A), and either of the
following holds:

o A € (0,1/2) and the number of nearest neighbors satisfies
1 4 2 2
max {W 1Og 5’ ? 10g g} <k< (1 - '7)npmin-mass-

(Thus, each of the two bad events in success probability
(4.3) is controlled to have probability at most §/2.)
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e A =1/2 and the number of nearest neighbors satisfies
2 1
? log g <k< (1 - V)npmin—mass-

(Thus, the bad event in success probability (4.4) is con-
trolled to have probability at most d.)

Then with probability at least 1 —§ over randomness in sampling
the training data, we have Y, nn(2) = YBayes(2).

To go from a pointwise error guarantee to a guarantee accounting for
randomness in sampling X = x ~ Px, the idea is identical to what
was done for regression guarantees. For the same technical reason as in
proving the k-NN regression expected error guarantee (Section 3.6.2),
we replace § with §2/4; the proof to follow re-explains where this comes
from. Overall, we obtain the result below, where we define the “bad”
region as the complement of the good region:

Xbad—for—k—NN (pmin-maSSa A) = [Xgood—for—k—NN (pmin-maSSa A)]C (45)

This bad region corresponds to the decision boundary plus a band
around it of width dependent on ppin-mass (again, this relates to how
close we ask the k nearest neighbors to be to a test point) and A (how
confident we want k-NN classifier to be in agreeing with the Bayes
classifier).

Theorem 4.2.3 (k-NN classification probability of agreement
with the Bayes classifier). Let d € (0,1), pmin-mass € (0,1], A €
(0,1/2], and v € (0,1). Under assumption AE’?:::E;(;;‘I? suppose that
either of the following holds:

e A €(0,1/2) and the number of nearest neighbors satisfies

1. 4 4. B
maX{E log 5 ﬁlog 7} <k < (1 = ¥)"Pmin-mass-

(4.6)
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e A =1/2 and the number of nearest neighbors satisfies

4 2
? log g <k< (1 - 'Y)npmin—mass- (47)

Then with probability at least 1—0—Px (Xpad-for-k-NN (Pmin-mass; A))
over randomness in sampling the training data and in sampling
X ~ PX, we have Yk-NN(X) = YBayes(X)'

Concretely, to ensure that sandwich inequality (4.6) holds, we can choose
A, v, and Pmin-mass SO that the two inequalities within the sandwich
inequality become equalities, unless of course doing so would require any
of these to be outside its tolerated range of values. With this approach
in mind, a valid choice of parameters is as follows.

Corollary 4.2.1 (Minor variation on Theorem 1 of Chaudhuri
and Dasgupta (2014)). Let 0 € (0, 1). Under assumption At;?f;rfpiif',
suppose that the number of nearest neighbors satisfies

V8

4log7<k‘§n-(1—'y),

and we choose the following constants

A= -{1 1 4} _ A V8
= min 9’ k0g577— k0g57

. B k
pmln—maSS - n - (1 . ’_y) 0
Then with probability at least 1—0—Px (Xpad-for-k-NN (Pmin-mass; A))

over randomness in sampling the training data and in sampling
X ~ IP)X, we have Yk-NN(X) = YBayes(X)'

One can check that the above choices for A, v, and pmin-mass Work
regardless of whether A = 1/2 in Theorem 4.2.3, so both sandwich
inequalities (4.6) and (4.7) hold. Note that the constraint on the number
of nearest neighbors k ensures that v < 1 and pyin-mass < 1.

Proof of Theorem 4.2.3. The proof is similar to that of Theorem 3.3.2
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(Section 3.6.2). We consider when A € (0,1/2). First note that Lem-
mas 4.2.1 and 4.2.3 together imply that
]l{i}k-NN ((E) 7é ?Bayes (.7})} S ]1{.21:‘ §é Xgood-for-k-NN (pmin—massa A)}
+ 1{p(#, X(641) (7)) > Tprminmass (2)}

+ L{|fk-nn(z) — En[f-nn (2)]| = A}
(4.8)

In particular, the right-hand side being 0 means that the conditions
for Lemma 4.2.1 are met (with the help of Lemma 4.2.3) and thus
YN (2) = YBayes(), 4.e., the left-hand side is also 0.

Next, taking the expectation of both sides with respect to the random
training data (denoted E,) and the test feature vector X (denoted Ey),
we get

P(Vinn (X) # Viayes (X))
Ep [Ex[1{Vinn(X) # VBayes(X)}]]
E, [EX []l {X ¢ Xgood—for—kz—NN (pmin-mass, A)}
+ ]]‘{p(X7 X(k+1) (X) > rpmin-mass (X)}
+ L{|-nn (X) = B [fle-nn (X)]| = AY]
= P(X §? Xgood—for-k—NN (pmin—ma557 A)) +E, [E’]a (49)

where for a specific test point = and choice of training data (z1,41), ..., (Tn, Yn),

<

BAD(z,21,...,Zn,Y1,---,Yn)
2 1{p(x, 2 (41) () > Tppinsmaee () }
+ L{|7e-nn (@) — En[fe-nn (2)]] 2 A},
and
E 2 Ex[BAD(X, X1,..., X, Y1,...,Y,)].

Note that = is a function of the random training data (X1,Y7),...,(X,, Yy)
as it only uses an expectation over the test point X.

We finish the proof by showing that E,[Z] < ¢ in inequality (4.9).
Specifically, by controlling each of the bad events of Lemmas 4.2.2
and 4.2.4 to have probability at most §2/8, we ensure that

52 52 (52

En[BAD(X, X1, X Vi, o, Ya)] € 5+ % =
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and so
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Finally, we remark that if A = 1/2, then we do not have to worry about
the condition |f(x) — E,[fk-nn(2)]| < A holding. This means that the
function BAD can be defined to only have its first term, and so we only
have to control the probability of the bad event in Lemma 4.2.4 to be
at most 62/4. O

4.2.2 Fixed-Radius NN Classification

We state an analogous result for fixed-radius NN classification with
threshold distance h. The proof ideas are nearly identical to the k-NN
classification case and begin with the observation that inequality (4.1)
and Lemma 4.2.1 both hold with 7j;_xn replaced with 7). In partic-
ular, we have the following lemma.

Lemma 4.2.6. Let A € (0,1/2]. For a test feature vector x € X,
we have Ynnn)(2) = YBayes(z) if the following two sufficient
conditions hold:
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o [iinn) (T) — Enlinnew) (2)]] < A.

e Test point x lands in the region

Xgood—for—NN(h) (A)
1 1
= {$ € supp(Px) : n(x) > 5 and Ey[finnn) (2)] 2 5t A}
1 1
U {z € supp(Px) : () < 5 and Eq[iwngy (@)] < 5 — Al.

Once again, we ensure that these two conditions hold with high prob-
ability. However, the main change is that instead of using the good
region Xgood-for-k-NN(Pmin-mass, ), we now use the following:

Xgood—for—NN(h) (pmin—mass 3 A)

= {z € supp(Px) :
1 1
77(90) > 5; E[Y ’ X e Bm,h] Z 5 + A, PX(Bx,h) Z pmin—mass}
U {z € supp(Px) :

7)(55) < 57 E[Y | X € Bw,h] < % - A, ]PX(BJ?,}Z) > pmin-mass}-
The crucial difference between this region and the one used for k-NN
classification is that here we only look at regions of the feature space for
which a ball of radius A has sufficiently high probability pmin-mass- This
constraint ensures that if z lands in region Xyooq-for-NN(h) (Pmin-mass, &),
then enough nearest neighbors will likely be found within threshold
distance h, where the average label of these nearest neighbors is on the
correct side of threshold 1/2.

Thus, the high-level idea is that if € Xyq0d-for-NN(h) (Pmin-mass, A),

then ?NN(;L) () = YBayes(2) when:

e There are enough nearest neighbors within distance h of x. (We
use Lemma 3.6.5, noting that IP’X(Bx,h) > Pmin-mass when x €

Xgood—for—NN(h) (pmin-ma557 A) )

e The average label of the nearest neighbors found is close enough
to the expected mean: |finn(s) (%) — Enlfinn (7)]] < A. (We use
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Lemma 3.6.6 with e = 2A and noting that Px (B, 4) > Pmin-mass

when = € Xyo0d-for-NN(h) (Pmin-mass, A).) As before, we can drop
this condition when A =1/2.

We can readily turn this reasoning into a pointwise guarantee as well
as one accounting for randomness in sampling X = x ~ Px.

Theorem 4.2.4 (Fixed-radius NN classification pointwise agree-
ment with the Bayes classifier). Let § € (0,1), pmin-mass € (0, 1],
A €(0,1/2], and vy € (0,1). Under assumption AS??;"'[‘PE?', suppose
that © € Xgood-for-NN(h) (Pmin-mass, ), and either of the following
holds:

e A €(0,1/2) and the number of training data satisfies

nzmax{ 1 4 # 2}.

og —, log —
2(1 - ’Y)pmin-massAZ o ’szmin-mass 0

e A =1/2 and the number of training data satisfies

2 1
n>—————1log-.
7Y~ Pmin-mass 4]
Then with probability at least 1 —§ over randomness in sampling
the training data, we have Yy (i) (%) = YBayes(2).

Theorem 4.2.5 (Fixed-radius NN classification probability of
agreement with the Bayes classifier). Let 6 € (0,1), pmin-mass €
(0,1], A € (0,1/2], and v € (0,1). Under assumption AE@?L‘EPE?',
suppose that either of the following holds:

e A € (0,1/2) and the number of training data satisfies

1 4 4 \/§}

anaX{

o= log L2
(1_7)pmin—massA2 g(s 72pmin—mass 4 o
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e A =1/2 and the number of training data satisfies

>L102
n > g(;.

Y Pmin-mass

Then with probability at least

1-46- PX([Xgood-for-NN(h) (Pmin-mass, A)])

over randomness in sampling the training data and in sampling
X ~ Px, we have Ynn(u) (X) = YBayes(X).

4.2.3 Kernel Classification

Lastly, we provide a guarantee for kernel classification, which ends up
dropping not only the smoothness requirement on 7 but also some of
the decay assumptions on the kernel function K that appeared in kernel
regression guarantees (Theorems 3.5.1 and 3.5.2). The proof idea is once
again nearly the same as before. Note that the triangle inequality we
worked off of for kernel regression is slightly different from the ones for
k-NN and fixed-radius NN regression:

Bl ’% — (@)
(inequality (3.29), reproduced)

e (3 1) = ()| < i (w3 ) -

)

where A £ E[K (22 X)) Y], and B 2 E[K (22 X))]. However, the ob-
servation we made for k-NN classification to obtain Lemma 4.2.1 still
works.

Lemma 4.2.7. Let A € (0,1/2]. Denote A £ E[K(2%X))y],
and B = E[K(@)] For a test feature vector x € X', we have

}A/K(m; h) = }A’Bayes(a:) if the following two sufficient conditions
hold:

o |fix(z;h) — 5| < A.
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e Test point z lands in the region

Xg*ood—for-kernel(A; K; h)
» . 1 A_1
2 {x e supp(Bx) : (@) > 5, 5 > 5 +A]
1 A 1
U {a: € supp(Px) : n(x) < > = < = A}_

Lemma 3.6.9 with choice ¢ = 2A shows when the first condition holds
with high probability. To ask that the second condition holds, we
assume x lands in the following good region that clearly is a subset of
X (A; K, h):

good-for-kernel

Xgood—for—kernel (pmin-maSSa A, ¢; K, h)

A7 IEDX (B:c,th) > pmin—mass}

- A, ]P)X (Bx,¢h) Z pmin—mass}a

where ¢ > 0 is any constant for which K(¢) > 0. Similar to the
good region Xyqod-for-NN(n) for fixed-radius NN classification, here we
also ask that points inside the good region will likely have enough
nearest neighbors found within distance h via the constraint Px (B ) >
Pmin-mass-

We can once again produce a pointwise guarantee and a guarantee
accounting for randomness in sampling X = x ~ Px.

Theorem 4.2.6 (Kernel classification pointwise agreement with
the Bayes classifier). Let ¢ > 0 be any constant such that K(¢) > 0.

chnical

Py > Suppose that

Under assumption A%
WS Xgood—for—kernel (pmin—massa A, ¢ K, h)

Let the number of training data satisfies

2log % 8log % }
[I((d’)pmin-mass]2 T A2 [K(¢)pmin-mass]4

Then with probability at least 1 —§ over randomness in sampling

anaX{
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the training data, we have Y (z; h) = ?Bayes(:v).

Theorem 4.2.7 (Kernel classification probability of agreement
with the Bayes classifier). Let ¢ > 0 be any constant such
that K(¢) > 0. Under assumption At/f}fg,’l}ﬁ?', suppose that the
number of training data satisfies

4log 3 16log 4 }
[K (¢)Pmin-mass]?” A2[K (¢)Pmin-mass]*

Then with probability at least 1 —§ over randomness El sampling
the training data and the test point X ~ Px, we have Y (X;h) =
VBayes(X)-

anaX{

4.3 Guarantees Under a Margin Bound Condition

In all our guarantees for classification, the probability of a classifier
disagreeing with the optimal Bayes classifier depended on the probability
of landing near the decision boundary. An alternative to procuring
classification guarantees is to assume that this probability is small.
A series of papers develop theory for what is called a margin bound
(Mammen and Tsybakov, 1999; Tsybakov, 2004; Audibert and Tsybakov,
2007). Formally, these authors assume the following condition

P(|n(x) - %] < 5) < Cnargins?, (4.10)

for some finite Cinargin > 0, ¢ > 0, and all 0 < s < s* for some s* < 1/2.
In other words, the probability that feature vector X lands within
distance s of the decision boundary decays as a polynomial in s with
degree ¢. In particular, faster decay (i.e., smaller Cipargin and higher
degree ) means that landing near the decision boundary (i.e., in the
margin) has lower probability, so the classification problem should be
easier.

Chaudhuri and Dasgupta (2014, Theorem 7) show that if the feature
space X = R? the metric p is the Euclidean norm, the regression
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function 7 satisfies assumption A;‘ slder(®2) and margin condition (4.10)

with s* = 1/2, and that feature space X satisfies a technical condition
of containing a fraction of every ball centered in it, then

P(Vinn(X) £ V) — P(Viayes(X) # Y) < O(n~ et/ CGatd)y

which matches the lower bound of Audibert and Tsybakov (2007, Theo-
rem 3.5). That this result follows from the general k-NN classification
guarantee (Theorem 4.2.3) suggests the general k-NN classification
guarantee to be reasonably tight.

In fact, more is true if we assume both Hélder continuity and a
margin condition to hold for regression function 7. If we further assume
feature distribution Px to satisfy the strong minimal mass assumption
by Gadat et al. (2016) (this assumption is discussed in Section 3.3.1),
then for k-NN classification to be uniformly consistent, it must be
that the probability of landing in low probability regions of the feature
space X must decay sufficiently fast (precisely what this means is given
by Gadat et al. 2016, Assumption A4). Moreover, with 7 satisfying both
Holder continuity and a margin condition, even if the probability of
landing in low probability regions of the feature space decays fast, Px
must satisfy the strong minimal mass assumption for k-NN classification
to be uniformly consistent. This pair of results is provided by Gadat
et al. (2016, Theorem 4.1).2

While asking that the probability of landing near the decision bound-
ary be small intuitively makes sense, for a variety of problems, determin-
ing the constants Cmargin, , and s* in margin condition (4.10) is not
straightforward. To sidestep this task of determining these constants, in
the next chapter, we explore how clustering structure enables nearest
neighbor prediction to succeed in three contemporary applications. Nat-
urally, clustering structure essentially implies a sufficiently large margin
between clusters, i.e., the probability of landing in a boundary region
between two clusters is small.

We shall see that indeed clustering structure does relate to the
margin condition (4.10). In Section 5.1.7, we compute the constants

2As a technical remark, Gadat et al. (2016) use a slightly different version of
margin condition (4.10) that requires the bound in (4.10) to hold for all s > 0, and
not just for small enough s.
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Chargin, ®, and s* in a toy example in which the two label classes
Y = 0 and Y = 1 correspond precisely to two different univariate
Gaussian distributions. Specifically, suppose data are generated from
classes Y = 0 and Y = 1 with equal probability. If ¥ = 1, then
we assume feature vector X to be sampled from univariate Gaussian
distribution N (i, 02). Otherwise, X is assumed to be sampled from
N (—p,c?). In this toy ex2ample, the margin cond21tion holds with ¢ =1,
Crmargin = 301\6/’;—” exp(—sz?), and s* = min{%, 136%} We suspect though
that computing these constants in general even under a clustering

assumption cannot easily be done analytically.



5

Prediction Guarantees in Three Contemporary
Applications

Our coverage of general results in regression and classification shows a
seemingly complete picture of the theory. However, a variety of assump-
tions are made along the way that are not easy to check in practice.
For example, given a real dataset, how would we check whether the
regression function 7 is Holder continuous, or to measure the probability
of landing in an “effective boundary”? These are not straightforward
questions to answer. In the classification setting, for instance, it seems
unrealistic to know where the effective boundary would even be—it is
precisely a region around the true boundary, which is what training a
classifier aims to find.

Instead of trying to estimate Holder continuity parameters of the
regression function or trying to find the effective boundary or even
characterize how, in the classification setting, the regression function
behaves around the boundary, perhaps a more realistic question to
ask is whether we can come up with other sufficient conditions on
the distribution between feature vector X and label Y that enable us
to procure theoretical performance guarantees—conditions that more
readily relate to structural properties present in different applications.

Toward this goal, we examine how clustering structure enables near-
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est neighbor prediction to succeed in three contemporary applications
with rather different structure, not only in what the data look like but
also what the prediction task at hand is. These illustrative examples
also showcase how nearest neighbor classification appears as part of
more elaborate prediction systems. The applications we cover are as
follows, where we begin with the one most closely resembling the vanilla
binary classification setup described in Section 2.2:

e Time series forecasting (Section 5.1). To forecast whether
a news topic will go viral, we can compare its Tweet activity to
those of past news topics that we know to have gone viral as
well as those that did not. Each news topic is represented by a
discrete time series (tracking Tweet activity) with a single label
for whether the topic ever goes viral or not, i.e., the “feature
vector” of the news topic is a time series. The training data are n
news topics for which we know their time series X, ..., X, and
labels Y1, ..., Yy; the pairs (X1,Y7),...,(X,,Y,) are modeled as
i.i.d. In particular, time is indexed by integer indices so that X;(t)
is the value of the i-th training time series at integer time t € Z.
For a test news topic, the goal is to predict its label Y (i.e.,
forecast whether it will ever go viral) given only the values of its
time series X observed at time steps 1,2,...,7T (so we observe
X(1),X(2),...,X(T) but no other values of X; in contrast, for
training time series we assume we have access to their values
for all time indices). Ideally we want to have high classification
accuracy when T is small, corresponding to making an accurate
forecast as early as possible.

This time series forecasting setup differs from the vanilla binary
classification setup in two key ways. First, for the test time series,
we only observe up to T values rather than the full time series
(note that we still assume access to complete time series in the
training data). Next, there is temporal structure that we can take
advantage of. Specifically, in comparing two time series to see how
well they match up, we first align them, which for simplicity we
do by shifting one of them in time. In practice, mechanisms more
elaborate than time shifts are used to align time series, such as
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activity
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time

Figure 5.1: How news topics go viral on Twitter (figure source: Chen et al. 2013).
The top left shows some time series of activity leading up to a news topic going
viral. These time series superimposed look like clutter, but we can separate them
into different clusters, as shown in the next five plots. Each cluster represents a “way”
that a news topic becomes viral.

dynamic time warping (Sakoe and Chiba, 1978).

Clustering structure appears since it turns out that there are
only a few ways in which a news topic goes viral (Figure 5.1).
This motivates a probabilistic model in which different time series
appear as noisy versions of r canonical time series that act as
cluster centers, where each canonical time series (and thus each
cluster) shares the same label. We present theoretical guarantees
for 1-NN and kernel time series classifiers under this probabilistic
model.

e Online collaborative filtering (Section 5.2). In a recommen-
dation system that has both massive numbers of users and of
items such as Netflix, we can recommend to each user an item
that the user has not already consumed by looking at what similar
users like, e.g., if Alice is similar to Bob, and Bob likes oranges,
then perhaps Alice likes oranges too. The goal is to recommend,
over time, as many items to users that they find likable. To come
up with recommendations, at each time step we predict what users
will find likable. This setup is called collaborative filtering since
we filter the vast amount of items in finding recommendations
for a user, and we do so by looking at which users are similar,
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which can be thought of as collaboration.! The setup is online in
that we continuously recommend items and receive revealed user
ratings as feedback.

Online collaborative filtering has a component of forecasting over
time but is in some ways considerably more complex than the
earlier time series forecasting setup. Previously, each news topic
was associated with a single label of whether it ever goes viral
or not. Here, there are many more labels to classify. Specifically,
each user-item pair has a label corresponding to whether the
user likes the item or not. In addition to there being more labels,
the recommendation system is choosing the training data. In
particular, at any time step, the training data comprise of the
ratings that users have revealed for items so far. What the system
recommends to users now affects what ratings users reveal, which
make up the training data at the next time step! Moreover, what
the system learns about the users from their revealed ratings
affect its future recommendations, so an exploration-exploitation
tradeoff naturally arises.

Once again, clustering structure appears, this time in real movie
ratings data. In particular, similar users form clusters and similar
items form clusters as well, such that for a ratings matrix where
rows index users and columns index items, we can reorder the
rows and columns to make it apparent that user and item clusters
appear (Figure 5.2). For simplicity, we focus our exposition on
the situation where there are r user clusters, and we do not
model the item clusters. The theoretical analysis is for an online
recommendation algorithm that uses fixed-radius NN classification
to identify likable items.

e Patch-based image segmentation (Section 5.3). Given a
medical image such as a CT scan of a patient’s abdomen, to

! As a terminological remark, this setup uses what is called user-user collaborative
filtering to emphasize that we look at which users are similar. There is also item-item
collaborative filtering that instead makes recommendations based on which items
are similar, e.g., if apples are similar to pears, and Alice likes apples, then perhaps
Alice likes pears too.
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Figure 5.2: Top users by top movies ratings matrix with rows and columns reordered
to show clustering (block structure) of users and items for the MovieLens 10M dataset
(figure source: Bresler et al. 2014).

delineate where an organ is in an image, we can compare patches
of the image to patches in a training database of images for which
we know where the organ is. The goal is to classify, for every pixel
in the test image, whether it is part of the organ of interest or
not.

In a departure from the previous two applications, patch-based
image segmentation looks at prediction over space rather than
over time. Here, image structure is key: nearby pixels and patches
are similar. That there is local smoothness in an image also means
that the training data are not independent as image patches
centered at nearby pixels overlap.

Clustering structure appears once more. As it turns out, image
patches for naturally occurring images can be very accurately
modeled by Gaussian mixture models (Zoran and Weiss, 2011;
Zoran and Weiss, 2012)! In particular, plausible image patches
appear to, for example, have a single homogeneous texture or
be around where an edge appears. We can model image patches
as being generated from (up to) r canonical image patches. We
present theoretical guarantees for for 1-NN and kernel classifiers
that figure out whether each pixel is part of the organ of interest
or not.

Despite the structural differences between these three applications,
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Figure 5.3: An illustrative example highlighting one of the recurring themes of this
chapter: separation between clusters should be large enough to overcome noise. In
this toy example, the feature distribution Px is a univariate Gaussian mixture model
with 7 = 2 equiprobable clusters corresponding to the two label classes Y = 0 (blue)
and Y =1 (red). The probability density functions are overlaid for each of the two
clusters. In this example, the two Gaussians both have standard deviation o, and
their means are separated by a distance S. The larger the separation S is compared
to the noise level o, the easier the classification problem becomes.

the theory developed for each is of the same flavor: nearest neighbor
classification can achieve arbitrarily high accuracy so long as the clusters
are sufficiently separated and the training data include examples from
all the clusters. Let’s illustrate these two ideas with a simple toy example
using 1-NN classification.

Consider when the feature distribution is a univariate Gaussian
mixture model with r = 2 clusters as shown in Figure 5.3. One cluster
corresponds to label Y = 0 (blue) and the other to label Y =1 (red).
The separation between the two cluster centers is .S, and the noise level
is given by the standard deviation o of the two Gaussians. First off, if
we do not have at least one training example for every cluster, then this
means that all the training data have the same label. A test feature
vector with the other label will get misclassified by a 1-NN classifier.
Next, supposing that there is at least one training example per cluster,
1-NN classification has a better chance of succeeding when separation S
is large compared to the noise level o. With S > o, a test feature vector
x ~ Px will have a nearest neighbor training example that highly likely
originates from the same cluster as x. As a result, 1-NN classification
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is likely to be correct. However, if S is much smaller than o, then the
training example closest to x could easily be generated from a different
cluster than x, resulting in a misclassification by 1-NN classification.

We can extend this basic intuition to the case when there are r > 2
clusters, and where the noise models are not just Gaussian. The basic
strategy to establishing the theoretical guarantees of this chapter is as
follows. We model the data to originate from r clusters, where within
each cluster, the data have the same label (note that even for r > 2
we constrain the number of labels to still be 2, so multiple clusters
can share the same label). Despite not knowing what the clusters are,
1-NN classification can succeed if the following two sufficient conditions
happen:

1. If the number of training data n is large enough, then there
will with high probability be a training example from each of
the r clusters. In particular, across all three applications, having
n = O(r) is sufficient.

2. For a given test data point X, we want its nearest neighbor within
the training data to originate from the same cluster as X (which
would mean that they have the same label, so 1-NN classification
would correctly label ). We can ensure this if the clusters are well-
separated, enough so that noise does not easily make a training
data point from one cluster appear to come from another.

Some tweaks on this general idea are needed to extend the analysis
to online collaborative filtering and patch-based image segmentation.
In filling in the details for all three applications, application-specific
structure appears. In time series forecasting, how much of the test
time series is observed and time shifts matter. In online collaborative
filtering, the numbers of users and of items matter. In patch-based
image segmentation, image structure matters in the form of a local
“jigsaw condition” that pieces together nearby patches. The dependence
of the theoretical results on these structural elements is appealing due
to their ease of interpretability within their respective applications. Of
course, the clusters also readily lend themselves to interpretation.

Connection to classification results of Chapter 4. The guarantees
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presented in the previous chapter on k-NN, fixed-radius NN, and kernel
classification were stated in terms of the decision boundary, where
classification is difficult. One of the conditions we saw was a margin
bound condition (4.10) that says how fast the probability of landing
near the decision boundary decays. In many problem setups, coming
up with an analytical expression that characterizes the probability of
landing near the decision boundary is not straightforward.

In this chapter, we instead assume that data are generated as
perturbed versions of cluster centers, and there is some upper bound on
the noise level . In particular, the noise level o controls how fast the
probability of a data point being far from its cluster center decays. We
will typically not know exactly where the decision boundary is, aside
from it being somewhere between clusters of opposite labels. However,
if the cluster centers are sufficiently far from each other, then the
probability of landing near the decision boundary will be low since it
means being far away from the cluster centers. In this way, clustering
structure can be viewed as a sufficient condition that implicitly ensures
that the probability of landing near the decision boundary has fast decay.
In Section 5.1.7, for a specific case of the Gaussian mixture model with
r = 2 clusters in Figure 5.3 (namely when the two cluster centers are
at —p and p for g > 0), we directly relate clustering structure to margin
bound condition (4.10).

Relaxing some assumptions on the distance function used. As
an important technical remark, clustering structure also enables us to
surmount distance-related technical hurdles absent in our coverage of
regression and classification results in Chapters 3 and 4. In time series
forecasting, the distance we examine for comparing time series that
allows for time shifts is not a metric, which was assumed for all the
results in Chapters 3 and 4. In online collaborative filtering, the distance
between users can be viewed as being noisy rather than deterministic,
which also deviates from our previous coverage. Despite these challenges,
clustering structure enables us to establish nonasymptotic theoretical
guarantees for nearest neighbor prediction. Thus, while the presence of
clusters is a strong (and, for a variety of datasets, realistic) assumption,
it enables us to relax other requirements in our earlier theoretical
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analysis.

Chapter outline. In the next sections (Sections 5.1, 5.2, 5.3), we
provide an overview of the theoretical and empirical results for these
contemporary three applications, closely following the thesis by Chen
(2015) that subsumes and extends prior work by Chen et al. (2013),
Bresler et al. (2014), and Chen et al. (2015). Full proofs are omitted but
we point out where they can be found in Chen’s thesis (Chen, 2015).
Each of these three sections begins with a rather informal overview
before doing a deeper dive.

The theory presented in this chapter has a key limitation: the proof
techniques use a worst-case analysis that make them unable to readily
extend to k-NN classification for k£ > 1. This turns out to be related to
dealing with training examples that are outliers or adversarial. The basic
idea is that when the number of training data n approaches co, we are
going to see more and more outliers: points from a cluster that appear
like they are from another. A 1-NN approach is not robust to such
outliers. The clunky theoretical workaround is to randomly subsample
the training data to be of size (:)(r), where r is the number of clusters.
We discuss this theoretical limitation in Section 5.4 and mention how
recent work on making 1-NN classifiers more robust (Wang et al., 2017)
can potentially resolve the issue.

Note that we reuse variable names across the applications, with
the same variable name meaning something similar each time. We
have already previewed some key recurring variables: r is the number
of clusters, S (possibly with a superscript) is going to represent a
separation between clusters of different labels, and o is a noise level
(not always the standard deviation of a Gaussian).

5.1 Time Series Forecasting

In time series analysis, a recurring task is detecting anomalous events.
Our running example throughout this section is forecasting which news
topics will go viral on Twitter before Twitter declares the topic to go
viral or not. To do so, we compare different news topics’ time series
of Tweet activity. We assume we can collect such time series data for
different historical news topics, where Twitter supplies ground truth
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labels for whether the news topics ever went viral or not (by whether
they ever end up within the top 3 list of what Twitter calls “trending
topics”). For this problem, Nikolov and Shah (2012) have shown that a
kernel classifier can predict whether a news topic will go viral in advance
of Twitter 79% of the time, with a mean early advantage of 1 hour and
26 minutes, a true positive rate of 95%, and a false positive rate of 4%.
We summarize this result later in this section.

The success of nearest neighbor methods in time series classification
is hardly limited to forecasting which news topics will go viral. Such
methods have also been used, for example, to detect abnormal brain
activity in EEG recordings (Chaovalitwongse et al., 2007), classify
protein sequences (Kajan et al., 2006), and predict whether a cell
phone subscriber will switch providers (Lee et al., 2012). In fact, while
numerous standard classification methods have been tailored to classify
time series, a simple nearest-neighbor approach has been found to
be hard to beat in terms of classification performance on a variety
of datasets (Xi et al., 2006), with results competitive to or better
than various other more elaborate methods such as neural networks
(Nanopoulos et al., 2001), decision trees (Rodriguez and Alonso, 2004),
and support vector machines (Wu and Chang, 2004). More recently,
researchers have examined which feature space or distance to use with
nearest-neighbor classification (e.g., Bagnall et al. 2012; Batista et al.
2011; Devlin et al. 2015; Ding et al. 2008; Weinberger and Saul 2009).

Despite the plethora of empirical work showing that nearest neighbor
methods work well in a variety of contexts for time series classification,
nonasymptotic theoretical guarantees for such methods were not estab-
lished until recently by Chen et al. (2013), specifically for 1-NN and
kernel classifiers. In this section, we walk through their results and some
follow-up work by Chen (2015, Chapter 3). We begin in Section 5.1.1
by stating the 1-NN and kernel time series classifiers to be analyzed.
The theoretical guarantees rely on an underlying probabilistic model
for time series that Chen et al. call a latent source model for time series
classification, presented in Section 5.1.2. This model is guided by the
hypothesis that there are r canonical time series patterns that explain
all plausible time series. These are precisely the r clusters. The main
result of this section is as follows.
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Theorem 5.1.1 (Informal statement of Theorem 5.1.2). Let
d € (0,1) be a probability tolerance. Under the latent source
model for time series classification, if the training time series with
opposite labels “viral” and “not viral” are sufficiently different
(depends on §), and if we have n = ©(rlog §) labeled training
time series, then 1-NN and kernel classification each correctly
classify a time series with probability at least 1 —9 after observing
its first 7' = Q(log §) time steps.

As the analysis accounts for how much of the test time series we observe,
this result readily applies to the “online” setting in which a time series
is to be classified while it streams in, as is the case for forecasting which
ongoing news topics go viral, along with the “offline” setting where we
have access to the entire time series.

Given that this result assumes there to be clusters, one could ask
why not just estimate the cluster centers, which could more directly
help us with prediction? In fact, if we knew what the true cluster centers
were, then the optimal classifier is an “oracle” maximum a posteriori
(MAP) classifier, which we present in Section 5.1.3. This classifier is an
oracle since it can access the true cluster centers, which we of course do
not know in practice. If we had accurate estimates for the cluster centers,
then we could just plug in these estimates in place of the unknown
true cluster centers in the oracle MAP classifier to obtain an accurate
classifier. It turns out though that accurately estimating the cluster
centers is in some sense a harder problem than the classification task at
hand. In Section 5.1.5, we show that existing approaches for estimating
cluster centers either require more stringent conditions on the data
or require more training data than what is sufficient for time series
classification.

While 1-NN and kernel classifiers do not perform explicit clustering,
they actually approximate the oracle MAP classifier that knows the
r true cluster centers. We discuss this approximation in Section 5.1.3.
Naturally, we can’t hope to outperform this oracle MAP classifier.
However, if the number of training data grows sufficiently large, then
we would expect 1-NN and kernel classifiers to better approximate
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this oracle MAP classifer and thus become closer to optimal. To gauge
how far 1-NN and kernel classifiers are from being optimal, in Section
5.1.5, we present a lower bound on the misclassification probability for
any classifier and compare this bound with the upper bounds on the
misclassification probabilities of 1-NN and kernel classification.

We relate clustering structure to existing margin conditions that
have been developed for classification in Section 5.1.7. This provides a
bridge to our earlier discussion of margin conditions for classification in
Section 4.3.

Finally, we share some experimental results in Section 5.1.8. Using
synthetic data, kernel classification outperforms 1-NN classification
early on when we observe very little of the time series to be classified.
This suggests kernel classification to be better suited for forecasting
anomalous events than 1-NN classification. Returning to our running
example of forecasting viral news on Twitter, we summarize the kernel
classification results by Nikolov and Shah (2012).

5.1.1 Nearest Neighbor Time Series Classifiers

We represent each time series as a function mapping Z (time indices)
to R (observed values, e.g., Tweet rate). Given time series X observed
at time steps 1,2,...,T, we want to classify it as having either label 1
(will at some point go viral) or 0 (will never go viral). To do so, we have
access to labeled training data consisting of time series X1, ..., X, with
corresponding labels Y7,...,Y, € {0,1}. We denote the value of time
series X at time t as X (t).

To come up with nearest neighbor and kernel classifiers, we specify
distance and kernel functions. For the latter, we use a Gaussian kernel
K (s) = exp(—1s®). As for the distance function, the basic idea is that
to measure how far apart two time series are, we first align them as
well as possible, for simplicity by shifting one of them in time. We
denote the distance function between two time series X and X’ by
P (X, X" @ Apax), which has two parameters: T' is the number of
time steps of X that we observe, and Apax is the maximum number of
time steps we advance or delay X’ by to align it with X (we assume we
can access any time step of X’). In particular, p(™) (X, X’ @ Apay) is
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defined as follows. We compute the Euclidean distance (looking only at
time steps 1,2,...,T) between X and time-shifted versions of X', and
use whichever Euclidean distance is smallest across the different time
shifts:

(T) ! — - X/ (T)
p (X,X @AmaX) AE{_Ama:)[(I}%-rlev--wAmax} HX X ©AH

where X' © A denotes time series X’ advanced by A time steps (i.e.,
(X' ©A)(t) = X'(t + A) for all t € Z), and | - [|7) denotes Eu-
clidean norm looking only at time steps 1,2,...,T (i.e., || Z|T) =
S L (Z(t))? for any time series Z). Note that p(T) (-, @Amax) is not
a metric as it is not symmetric. With the above choices for the distance
and kernel functions, we obtain the following classifiers.
1-NN time series classifier. Letting Y(;)(z) be the label of the nearest
training data point to x according to distance p ( @ Anax), the
1-NN classifier is given by

VR (@ Amnax) = Y1)(2). (5.1)

Kernel time series classifier. The kernel time series classifier using
the Gaussian kernel with bandwidth h is given by

o v (T) (T)(x
T 1 if V7 (X5 Amax, h) > V(X Amaxs B),
YG(al)ISS(X; Amax’ h’) = ' . * *
0 otherwise,
(5.2)
where VO(T) (X; Amax, h) and V(T)( X; Apax, h) are the sum of weighted

votes for labels 0 and 1:

< ) X7 Xz Amax 2

%(T)<X5 Amax, h) = Zexp ( B b Qh? J )]I{K’ =0},
( ) X? X @Amax 2

VI(T)( Amax, h Zexp ( ( oh2 ) )]I{Yz =1}

When h — 0, we obtain 1-NN classification. We remark that in practice,
to account for either label class imbalance issues or to tune true and
false positive classification rates, we may bias the weighted votes by,
for instance, only declaring the label to be 1 if Vl(T) (X; Amax, h) >
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TVO(T) (X; Apmax, h) for some factor 7 > 0 that need not be 1. Chen
(2015) refers to this as generalized weighted majority voting. The theory
to follow for kernel classification actually easily extends to generalized
weighted majority voting (and is done so by Chen (2015)), but for ease
of exposition we stick to the “non-generalized” case where 7 = 1.

For both the 1-NN and kernel classifiers, using a larger time window
size T corresponds to waiting longer before we make a prediction. We
trade off how long we wait and how accurate we want our prediction.
Note that the theory to follow does critically make use of the kernel
being Gaussian and the distance (modulo time series alignment issues)
being FEuclidean.

5.1.2 A Probabilistic Model of Time Series Classification

We assume there to be r distinct canonical time series pq, ..., g, with
corresponding labels A1, ..., A, € {0,1} that are not all the same. These
labeled time series occur with strictly positive probabilities 71, ..., m,
and are the cluster centers. For prediction, we will not know what these
cluster centers are, how many of them there are, or what probabilities
they occur with. We model a new time series to be generated as follows:

1. Sample cluster index G € {1,...,r} so that G = g with probability
g

2. Sample integer time shift A uniformly from {0,1,..., Apax}.2

3. Output time series X to be cluster center ug advanced by A
time steps, followed by adding noise time series W, i.e., X (t) =
pua(t + A) + W(t). Entries of noise W are i.i.d. zero-mean sub-
Gaussian with parameter o. The true label for X is assigned to
be Y = A\q.

2For a technical reason, we restrict to nonnegative shifts here, whereas in the
distance function p<T>(-, - ® Amax) from before, we allow for negative shifts as well.
Chen (2015, Section 3.7.1) discusses how the generative model could indeed allow
for shifts from {—Amax, ..., Amax}, in which case for the proof techniques to work,
the distance function should instead look at shifts up to magnitude 2Aax.
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In their original paper, Chen et al. (2013) refer to the cluster centers as
latent sources and the above probabilistic model as the latent source
model for time series classification.

5.1.3 Approximating an Oracle Classifier

If we knew the cluster centers and if noise entries W (t) were i.i.d. N'(0, h?)
across time indices ¢, then the MAP estimate for label Y given the first
T time steps of time series X is

Y, 1if R(T) X; Apax, h) > 1,
YI\SII;A)P (Xv Amax, h) = ! MAP( ) - (53)

0 otherwise,

where

X— A2

(T) A 2g=1Tg d.AeD, exp(—[” qu% = JI{Ag =1}
Raiap (X5 Amax h) = r [IX—pg ©A[T]2 ’
Eg:l Ty ZA€D+ exp(— 252 )]1{)‘9 = 0}

(5.4)

and Dy = {0,..., Apnax}. Note that in the ratio above, the numerator

is a sum of weighted votes for label 1, and the denominator is a sum of

weighted votes for label 0. For this problem setup, the MAP classifier is

the same as the Bayes classifier, which we established optimality for in
Proposition 2.2.1, in terms of minimizing probability of misclassification.

In practice, we do not know the cluster centers pq, . . ., p,. We assume
that we have access to n training data sampled i.i.d. from the latent
source model for time series classification, where we have access to
all time steps of each training time series, as well as every training
time series’ label. Denote D = {—Apax,---,0,..., Amax . Then we
approximate the MAP classifier by using training data as proxies for
the cluster centers. Specifically, we take ratio (5.4), replace the inner
sum by a minimum in the exponent, replace each cluster center time
series with training time series, drop the proportions 1, ..., that we
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do not know, and replace D4 by D to obtain the ratio

- —X; © AT
nexp (— mitacp X=X, OATEY 1 {y; = 1}

Z?:l exp ( _ [minaep HX;h);Z ©A|™)2 )11{1/; — 0}
_ V(X A ) 55)
Ve (X Aaxs h)- '

in place of Rl(\f /lp in classification rule (5.3) yields ker-

RO (X; Amax, h) 2

Plugging R(™)

nel time series classification (5.2), which as we have already discussed
becomes 1-NN classification when h — 0. That 1-NN and kernel classifi-
cation approximate the oracle MAP classifier suggest that they should
perform better when this approximation improves, which should happen
with more training data and not too much noise as to muddle where
the true decision boundaries are between labels 0 and 1. Also note that
exponential decay in squared Euclidean distances naturally comes out
of using Gaussian noise. Euclidean distance will thus appear in how we
define the separation between time series of opposite labels.

As a technical remark, if we didn’t replace the summations over time
shifts with minimums in the exponent, then we have a kernel density
estimate in the numerator and in the denominator (Fukunaga, 1990,
Chapter 7), where the kernel is Gaussian, and the theoretical guarantee
for kernel classification to follow would still hold using the same proof.
We use a minimum rather a summation over time shifts to make the
method more similar to existing time series classification work (e.g., Xi
et al. 2006), which minimize over nonlinear time warpings rather than
simple shifts.

5.1.4 Nonasymptotic Theoretical Performance Guarantees

We now present nonasymptotic performance guarantees for 1-NN and
kernel time series classifiers, accounting for the number of training
data n and the number of time steps T that we observe of the time
series to be classified. This result depends on the following separation:
ST X, Vit Amax) & min I1X; ©A-X; © 4D,

i,7€{1,...,n} s.t. Y;#Yj,
AvAIE{_Amaxw--yAmax}
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which we abbreviate by just writing S(*). This quantity measures how
far apart the two different label classes 0 and 1 are if we only look
at length-T" chunks of each time series and allow all shifts of at most
Amnax time steps in either direction. There are different ways to change
the separation, such as increasing how many time steps T' we get to
observe of time series X, and changing what quantity the time series
are tracking. The main result is as follows.

Theorem 5.1.2 (Chen et al. 2013, Theorems 1 and 2 slightly
rephrased). Let mppm = min{my,..., 7.}, m = P(Y = 1) =

g=1 Tg1l{Ag = 1}, and m = 1 = O) = > g=1Tgl{As = 0}.
Under the latent source model for time series classification with
n training data points:

(a) The probability that the 1-NN time series classifier (5.1)
misclassifies time series X with label Y satisfies the bound

P(Y N (X5 Amax) # Y)
NTmin

S(T) 2
L (S%) )

1602
(5.6)

Srexp(— ) +(2Amax+1)nexp(—

(b) The probability that the kernel time series classifier (5.2)
with bandwidth h > /20 misclassifies time series X with
label Y satisfies the bound

PV (X5 Amax, h) # Y)
nﬂmin)

8

§rexp(—

(h? — 202)(5<T>)2>

+ (2Amax + 1)nexp ( - o

(5.7)
In particular, for any pre-specified probability tolerance ¢ € (0, 1),
by choosing bandwidth A = 20 for kernel classification, the two
misclassification probability upper bounds (5.6) and (5.7) match,
and by choosing number of training data n > % log(2r/§), and

in
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if the separation grows as ST > 40./1og(2(2Amax + 1)1/9),
then both of the upper bounds are at most ¢, i.e., 1-NN and
kernel classification each correctly classify test data point X with
probability at least 1 — §.

The proof is provided by Chen (2015, Section 3.7.1).

For the two misclassification probability upper bounds presented,
the first term r exp(—""2) can be thought of as the penalty for not
having at least one training example time series from all r clusters. The
second term can be thought of as the penalty for the nearest training
point found being from a cluster with the wrong label.

The linear dependence on n in the second term for both upper
bounds (5.6) and (5.7) result from a worst-case analysis in which only
one training time series comes from the same cluster as the test time
series, and the other n — 1 training time series have the wrong label.
If we have some estimates or bounds on 7, Tmin, Amax, and 02, then
one way to prevent this linear scaling in n is to randomly subsample
the training data. Specifically, if we have access to a large enough pool
of labeled time series, i.e., the pool has Q(% log ) time series, then
we can subsample n = @(% log §) of them to use as training data,
in which case 1-NN classification (5.1) correctly classifies a new time
series X with probability at least 1 — ¢ if the separation grows as

1
SO =qfo log(2Amax + 1) + log < log r) .
0T min o

For example, consider when the clusters occur with equal probability,

SO Tmin = 1/r. Then so long as the separation grows as

ST — q (o'\/log(QAmaX +1) +log <g log g))

=Q (o\/log(QAmaX +1)+log g), (5.8)

then 1-NN classification is correct with probability at least 1 — 4. In
particular, if the separation grows as Q(ov/T) (which is a reasonable
growth rate since otherwise, the closest two training time series of
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opposite labels are within noise of each other?), then observing the first
T = Q(log(2Amax + 1) 4 log ) time steps from the test time series X
would ensure condition (5.8) to hold. Thus, we classify X correctly with
probability at least 1 — §. This corresponds to the informal statement
of Theorem 5.1.1.

Although the misclassification probability upper bounds for 1-NN
and kernel time series classification are comparable, experimental results
in Section 5.1.8 show that kernel classification outperforms 1-NN classi-
fication when T is small, and then as T grows large, the two methods
exhibit similar performance in agreement with our theoretical analysis.
For small T, it could still be fairly likely that the nearest neighbor
found has the wrong label, dooming 1-NN classifier to failure. Kernel
classification, on the other hand, can recover from this situation as
there may be enough correctly labeled training time series close by that
contribute to a higher overall vote for the correct class. This robustness
of kernel classification makes it favorable in the online setting where we
want to make a prediction as early as possible.

5.1.5 Learning the Cluster Centers

If we can estimate the cluster centers accurately, then we could plug
these estimates in place of the true cluster centers in the MAP classifier
and achieve classification performance close to optimal. If we restrict the
noise to be Gaussian and assume A, = 0, then the latent source model
for time series classification corresponds to a spherical Gaussian mixture
model. To simplify discussion in this section, we assume clusters occur
with equal probability 1/r. We could learn a spherical Gaussian mixture
model using the modified EM algorithm by Dasgupta and Schulman
(2007). Their theoretical guarantee depends on the true separation

3For example, consider an extreme case where there are only r = 2 clusters, and
the two cluster centers 1 and p2 associated with opposite labels are actually the same
(which means that distinguishing between them is impossible!). Furthermore, suppose
there are no time shifts (Amax = 0), the noise in the time series is i.i.d. (0, 0?),
and we have exactly two training points X; and X5 that originate from the two
different clusters. Then X; and X2 can actually just be modeled as independent
T-dimensional Gaussian random vectors each with mean p; = p2 and covariance
o?Irxr. Then (S)% = || X1 — X||? has expectation 20°T, meaning that noise
alone makes the squared separation roughly scale as 02T
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between the closest two clusters, namely

g & . - -
gﬂhe{lwrg"l}r}s.t. g#h Hug Mh” >

which needs to satisfy S(T* > ¢T1/4 Then with number of train-

ing time series n = Q(max{l,(s‘(’iigp}r log 5), separation ST+ =

Q(o,/log L), and number of initial time steps observed

otT? r otT?
T = Q(max{l, (S’(T)*)4}10g |:5 max{l, (‘S(T)*)4}:|),

their algorithm achieves, with probability at least 1 — §, an additive
eo\/T error (in Euclidean distance) close to optimal in estimating every
cluster center. In contrast, the result by Chen et al. (2013) is in terms
of separation S(T) that depends not on the true separation between
two clusters but instead on the minimum observed separation in the
training data between two time series of opposite labels. In fact, S
grows as Q(cv/T) even when S1)* grows sublinear in /7.

In particular, while Dasgupta and Schulman’s result cannot handle
the regime where O(o/log%) < S(T)* < T4 the result by Chen
et al. (2013) can, using n = O(rlog §) training time series and observing
the first T = Q(log 5) time steps to classify a time series correctly
with probability at least 1 — §. This follows from Theorem 5.1.3 below,
which specializes Theorem 5.1.2 to the Gaussian setting with no time
shifts and uses separation S(1)* instead of S). We also present an
accompanying corollary (Corollary 5.1.1) to interpret the Theorem 5.1.3.
Both Theorem 5.1.3 and Corollary 5.1.1 still hold if separation S(T)*
were instead replaced by the Euclidean distance between the closest
two cluster centers with opposite labels:

St & : _ (7).
g,hE{l,...,r}Hsl.t. Ag#An g = penl

Intuitively, if cluster centers of the same label are extremely close by (so
that S(M* is small) yet cluster centers of opposite labels are far away
(so that S (Dt g large), then we should expect the classification problem
to be relatively easy compared to learning the cluster centers because
the latter still needs to tease apart the different cluster centers that are
extremely close by.
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Theorem 5.1.3 (Chen 2015, Theorem 3.5.1). Let s; > 0 and
s9 > 0. Suppose that ST)* > s;. Under the latent source model
for time series with Gaussian noise, no time shifts, and n training
data points:

(a) The probability that the 1-NN time series classifier (5.1)
misclassifies time series X with label Y satisfies the bound

P(?l(-jlzl)N(X5 AmaX) #Y

)

NTmin 2 S% ’fl2
grexp(— 3 )—i—ZeXD(—@)‘FZeXP(—@)
( (S(T)*)2 —25:9D* 4 2527 — 442 TSQ)
+nexp | —
1602

(b) The probability that the kernel time series classifier (5.2)
with bandwidth h > v/20 misclassifies time series X with
label Y satisfies the bound

PV (X; Amax, h) £ Y)

Gauss
N min n? S% n?
< oo () . % o () 2 o
(h? — 202?)
+ neXp — T

x ((STM*)2 — 25, §T1* 4 26T — 402\/T52)>.
Both of these guarantees still hold with S(X)* replaced by S(11.

The proof is provided by Chen (2015, Section 3.7.2).

As with Theorem 5.1.2, the two upper bounds are comparable
and can be made to match by choosing bandwidth h = 20 for kernel
classification. To interpret this theorem, we choose specific values for s;
and s and consider the worst case tolerated by the theorem in which
S(T)* = g, arriving at the following corollary.
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Corollary 5.1.1 (Chen 2015, Corollary 3.5.1). Let 6 € (0,1).
Under the latent source model for time series classification with
Gaussian noise, no time shifts, and n > % log %T training data
points, if

/ 2
ST* > 904 /log %7

n? 4n n? 4n n?

T> 4log7 iy 810g7 +2 (310g? —|—810g7) log?,

then 1-NN and kernel classification (with bandwidth h = 20)

each classify a new time series correctly with probability at least
1 — 6. This statement still holds if S(T)* is replaced by ST

The proof is provided by Chen (2015, Section 3.7.3).

When the clusters occur with equal probability (so mmin = 1/7),
then with n = @(02 log g) training data and so long as the separation
grows as S = Q(a,/log %), after observing T = Q(log %) time steps
of X, the two classifiers correctly classify X with probability at least
1—0.

Vempala and Wang (2004) have a spectral method for learning
Gaussian mixture models that can handle smaller S(T)* than Dasgupta
and Schulman’s approach but requires n = Q(T3r2) training data,
where we’ve hidden the dependence on o2 and other variables of interest
for clarity of presentation. Hsu and Kakade (2013) have a moment-
based estimator that doesn’t use a separation condition but, under a
different non-degeneracy condition, requires substantially more sam-
ples for this problem setup, i.e., n = Q((r'* + Tr'1)/e?) to achieve
an e-approximation of the mixture components. These results need
substantially more training data than what we’ve shown is sufficient for
classification.

To fit a Gaussian mixture model to massive training datasets, in
practice, using all the training data could be prohibitively expensive. In
such scenarios, one could instead non-uniformly subsample O(T73/e?)
time series from the training data using the procedure given by Feldman
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et al. (2011) and then feed the resulting smaller dataset, referred to as
a (k,e)-coreset, to the EM algorithm for learning the cluster centers.
This procedure still requires more training time series than needed for
classification and lacks a guarantee that the estimated cluster centers
will be close to the true ones.

We end this section by remarking that there is theory for learning
considerably more complex time series models that use nonlinear time
warps rather than just time shifts. For instance, some work in this
direction includes that of Kneip and Gasser (1992), Wang and Gasser
(1997), and Bigot and Gadat (2010). Extending theoretical guarantees
for nearest neighbor and kernel time series classification to handle
nonlinear time warps under these more elaborate time series models
is an interesting direction for future research. We suspect that even in
these more complex time series models, the number of training data
sufficient for successful time series classification is smaller than that of
learning the time series cluster centers.

5.1.6 Lower Bound on Misclassification Probability

To understand how good the misclassification probability upper bounds
are for 1-NN and kernel classification in Theorem 5.1.3, we present a
lower bound on the misclassification probability for any classifier under
the Gaussian noise setting with no time shifts as in the previous section.
This lower bound depends on the true separation between cluster centers
of opposite labels, namely ST,

Theorem 5.1.4 (Chen 2015, Theorem 3.6.1). Under the latent
source model for time series classification with Gaussian noise
and no time shifts, the probability of misclassifying time series
using any classifier satisfies the bound

P(misclassify)

(SONH2  T((T + D/2AV2 gy z)

2
> TO7T1 Tmin €XP ( - 20_2 - O'F(T/2) 2

where m (probability of label 0 occurring), 71 (probability of
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label 1 occurring), and 7yi, (minimum probability of a cluster
occurring) are defined in the statement of Theorem 5.1.2, and T
is the Gamma function: I'(z) £ [;° 2* e ®dx defined for z > 0.

Note that % grows sublinear in 7.

The proof is provided by Chen (2015, Section 3.7.4).

We can compare this result to the misclassification probability upper
bound of 1-NN classification in Theorem 5.1.3. While this upper bound
does not match the lower bound, its fourth and final term decays
exponentially with separation S(T)T as well as time horizon T, similar
to the only term in the lower bound. The other three terms in the upper
bound could be made arbitrarily small but in doing so slows down how
fast the fourth term decays. We suspect the upper bound to be loose as
the analysis used to derive it is worst-case. Even so, it’s quite possible
that 1-NN and kernel classification simply aren’t optimal.

5.1.7 Relation to Existing Margin Conditions for Classification

We can relate separation S(T)T in Sections 5.1.5 and 5.1.6 to the margin
condition of Mammen and Tsybakov (1999), Tsybakov (2004), and
Audibert and Tsybakov (2007) (note that separation STt between
the true cluster centers can be related to the separation S) in the
training data (Chen, 2015, inequality (3.18))). As discussed previously
in Chapter 4, classification should be challenging if for observed time
series X, the conditional probability P(Y =1 | X) is close to 1/2. When
this happens, it means that X is close to the decision boundary and
could plausibly be explained by both labels. Thus, if the probability
that X lands close to the decision boundary is sufficiently low, then a
prediction algorithm that, either explicitly or implicitly, estimates the
decision boundary well should achieve a low misclassification probability.

We reproduce the margin condition (4.10) below, slightly reworded:

]P’(‘IP’(Y =1|X)- é\ < s) < Chargins®, (5.9)

for some finite Cryargin > 0, ¢ > 0, and all 0 < s < s* for some s* < 1/2.
Note that the randomness is over X. With additional assumptions on
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the behavior of the decision boundary, Tsybakov (2004) and Audibert
and Tsybakov (2007) showed that nonparametric classifiers can have
misclassification probabilities that exceed the optimal Bayes error rate by
as low as O(n~!) or even lower under a far more restrictive assumption
on how label Y relates to observation X.

To sketch how separation ST relates to the above margin condition,
we consider the one-dimensional Gaussian case with no time shifts where
we have two clusters: if X has label Y = 1 then it is generated from
N (p,0?) and if X has label Y = 0 then it is generated from N (—u,0?)
for constants 1 > 0, and o > 0, and where P(Y = 1) =P(Y =0) =1/2.
For this example, an optimal MAP decision rule classifies X to have label
1if X > 0, and to have label 0 otherwise. Thus, the decision boundary is
at X = 0. Meanwhile, the separation is given by ST =y — (—p) = 2u.
To relate to margin condition (5.9), note that for s € [0,1/2),

1
‘IP’(Y:1|X)—§‘§5 & X e[t

where )
142
(27 log( + 8).
2u 1—-2s
Note that log(113%) = 0 when s = 0, and log(1£2%) — oo when s — 1/2.

Interval [—/, ¢] corresponds to the decision boundary X = 0 up to some
closeness parameter s. For this interval to be far away enough from the
two cluster centers —p and p, henceforth, we assume that s is small
enough so that

< .

In other words, the interval doesn’t contain the cluster centers —pu
and pu.
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Then
P =11%) - 5| <)
=P(X € [-£,4])
=P(Y =1)P ( €[-00|Y =1)+PY =0)P(X € [-£,4] | Y = 0)
Upxel-tq|y=1)
= PN (4, 0%) € [-£,4])

()
< 20 N(£; 1, 07)
o 1+ 2s 1 o2 1+ 25\ 2
_u 2ﬂlog(1_2s>exp(—02<u—2ulog(1_23)) ), (5.10)

where step (i) uses symmetry, and step (ii) uses the fact that since
¢ < p, the largest value of the density of N'(u1, 0%) within interval [/, /]
is NV (4; i, 02).

To upper bound the last line in inequality (5.10), let us examine
function f(s) = log (3£2%) in the neighborhood of 0. Specifically,

1-2s
4 for SE[O,%] 16
)= ——— < —. 11
Pl =g < (511)
Since f(0) = 0, it follows that for all s € [0, 1],
16
fls) <=5 (5.12)
Let s* = min{1, 1602} Then, from inequality (5.10) it follows that for
s € [0, s*],
16 p? )
PY =1]X) <s) < - —s. 5.13
(‘ | ‘ 5) ~ 3027 eXp( 102)° (5:13)
That is, the margin condition (5.9) is satisfied with constants ¢ = 1,

_ _16u p? * i
C’rnargin = 3ov2n eXP(—m)a and s* = Hlln{4, 1602}

We note that bound (5.10) decays exponentially with the separation
St = 2. One way to intuit this result is that since the noise is
sub-Gaussian, the probability that X deviates significantly from its

generating cluster center decays exponentially as a function of how
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far X is from this cluster center. When the separation between cluster
centers of opposite labels is large, then it means that to land close to
the decision boundary, X would have to be quite far from even the
two closest cluster centers with opposite labels. This event’s probability
goes to 0 as the separation grows large.

5.1.8 Experimental Results

Synthetic data. Chen et al. (2013) generate r = 200 cluster centers
that occur with equal probability, where each cluster center time series
is constructed by first sampling i.i.d. N'(0, 100) entries per time step and
then applying a 1D Gaussian smoothing filter with scale parameter 30.
Half of the clusters are labeled 1 and the other half 0. Then n = Brlogr
training time series are sampled, for various values of 3, as per the latent
source model where the noise added is i.i.d. N'(0, 1), and the maximum
time shift is Apax = 100. Test data consisting of 1000 time series
are similarly generated. Bandwidth A = 2 is chosen for the Gaussian
kernel. For 8§ = 8, classification error rates on test data for 1-NN,
kernel classification, and the MAP classifier with oracle access to the
true cluster centers are shown in Figure 5.4(a). We see that kernel
classification outperforms 1-NN classification but as T grows large, the
two methods’ error rates converge to that of the MAP classifier. Fixing
T = 100, the classification error rates of the three methods using varying
amounts of training data are shown in Figure 5.4(b); the oracle MAP
classifier is also shown but does not actually depend on training data.
We see that as 3 increases, both 1-NN and kernel classification steadily
improve in performance.

Forecasting viral news topics on twitter. We now summarize
experimental results reported by Nikolov and Shah (2012) and subse-
quently by Chen et al. (2013). From June 2012 user posts on Twitter,
500 examples of news topics that go viral (i.e., were ever within the top
3 on Twitter’s trending topics list) were sampled at random from a list
of news topics, and 500 examples of news topics that never go viral were
sampled based on phrases appearing in posts. As it’s unknown to the
public how Twitter chooses what phrases are considered as candidate
phrases for trending topics, it’s unclear what the size of the “non-viral”
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Figure 5.4: Plots for synthetic data reproduced from (Chen et al., 2013); note that
they refer to kernel classification as weighted majority voting. (a) Classification error
rate vs. number of initial time steps T used; training set size: n = frlogr where
B = 8. (b) Classification error rate at 7' = 100 vs. 8. All experiments were repeated
20 times with newly generated cluster centers, training data, and test data each time.
Error bars denote one standard deviation above and below the mean value.

category is in comparison to the size of the trend category. Thus, for
simplicity, the label class sizes were controlled to be equal, and kernel
classification (5.2) was used to classify time series, where Apax is set
to the maximum possible (all shifts are considered).

Per topic, the time series used for classification is based on a pre-
processed version of the Tweet rate (how often the topic was shared by
users on Twitter). The pre-processing pipeline is detailed in Appendix E
of (Chen et al., 2013). Chen et al. empirically found that the time
series for news topics that go viral tend to follow a finite number of
patterns; a few examples of these patterns are shown in Figure 5.1.
These few patterns could be thought of as the cluster centers. The
viral and non-viral news topics were randomly divided into two halves,
one to use as training data and one to use as test data. Nikolov and
Shah (2012) applied kernel classification, sweeping over h, T, and data
pre-processing parameters. As shown in Figure 5.5(a), with one choice
of parameters, kernel classification detected viral news topics in advance
of Twitter 79% of the time, and on average 1.43 hours earlier, with
a true positive rate (TPR) of 95% and a false positive rate (FPR) of
4%. Naturally, there are tradeoffs between TPR, FPR, and how early
one wants to make a prediction (i.e., how small time horizon T is). As
shown in Figure 5.5(c), an “aggressive” parameter setting yields early
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Figure 5.5: Results from Nikolov and Shah (2012) on Twitter data. (a) Kernel
classification achieves a low error rate (FPR of 4%, TPR of 95%) and detects viral
news topics in advance of Twitter 79% of the time, with a mean of 1.43 hours when it
does for a particular choice of parameters. (b) Envelope of all ROC curves shows the
tradeoff between TPR and FPR. (c) Distribution of detection times for “aggressive”
(top), “conservative” (bottom) and “in-between” (center) parameter settings.

detection and high TPR but high FPR, and a “conservative” parameter
setting yields low FPR but late detection and low TPR. An “in-between”
setting can strike the right balance.

5.1.9 Toward Better Guarantees: Meta Majority Voting

Having to subsample the training data to keep the misclassification
probability upper bounds from scaling with n seems strange. Shouldn’t
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more data only help us? Or is it that by seeing more data, due to
noise, as we get more and more samples, we’re bound to get unlucky
and encounter a training time series with the wrong label that is close
to the time series we want to classify, causing 1-NN classification to
get confused and buckle? In fact, later results in this chapter will also
involve some training data subsampling, yet it’s unclear how critical
this is in practice for nearest neighbor methods.

When the number of training data n is large, a more clever strategy
that still involves subsampling but now uses all the training data is to
randomly partition the training data into groups of size @(Klm log §)
each. Then we can apply kernel classification within each group. A final
prediction can be made by a “meta” majority vote: choose the most pop-
ular label across the different groups’ label predictions. This meta-voting
strategy readily lends itself to analysis. In particular, since the training
data in different groups are independent, kernel classification’s predic-
tions across the different groups are also independent and we know when
we can ensure each of these predictions to be correct with probability at
least 1 — §. Then among the @(lg‘g?;}g)) groups, the number of correct

label predictions stochastically dominates a Binomial(@(&%), 1-9)
random variable. We can then apply a binomial concentration inequality
to lower-bound this meta-voting strategy’s probability of success.

5.2 Online Collaborative Filtering

Recommendation systems have become ubiquitous in our lives, help-
ing us filter the vast expanse of information we encounter into small
selections tailored to our personal tastes. Prominent examples include
Amazon recommending items to buy, Netflix recommending movies, and
LinkedIn recommending jobs. In practice, recommendations are often
made via collaborative filtering, which boils down to recommending
an item to a user by considering items that other similar or “nearby”
users liked. Collaborative filtering has been used extensively for decades
now including in the GroupLens news recommendation system (Resnick
et al., 1994), Amazon’s item recommendation system (Linden et al.,
2003), and the Netflix $1 million grand prize winning algorithm by
BellKor’s Pragmatic Chaos (Koren, 2009; Téscher and Jahrer, 2009;
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Piotte and Chabbert, 2009).

Most such systems operate in the “online” setting, where items are
constantly recommended to users over time. In many scenarios, it does
not make sense to recommend an item that is already consumed. For
example, once Alice watches a movie, there’s little point to recommend-
ing the same movie to her again, at least not immediately, and one
could argue that recommending unwatched movies and already watched
movies could be handled as separate cases. Finally, what matters is
whether a likable item is recommended to a user rather than an unlikable
one. In short, a good online recommendation system should recommend
different likable items continually over time.

Despite the success of collaborative filtering, there has been little
theoretical development to justify its effectiveness in the online setting.
Instead, most work (e.g., Candeés and Recht 2009; Cai et al. 2010;
Candes and Plan 2010; Keshavan et al. 2010a; Keshavan et al. 2010b;
Recht 2011) has been in the “offline” setting, where we freeze time,
have access to all “revealed” ratings users have provided so far, and
predict all “missing” ratings for items users haven’t yet rated. This
offline problem setup perhaps gained enormous popularity among both
academics and practitioners after Netflix offered a $1 million dollar
grand prize for a solution to the problem that outperformed theirs by a
pre-specified performance metric. The setup itself is a matrix completion
problem, where we consider a matrix of ratings where rows index users
and columns index items (e.g., movies), and the (u,%)-th entry is either
the rating that user u gave item i, or marked as missing. The goal
then is to fill in these missing ratings, typically by imposing a low-rank
constraint on the ratings matrix. The theoretical guarantees for such
methods usually assume that the items that users view are uniform at
random, which is not the case in reality and also doesn’t account for the
fact that real recommendation systems should and are biasing users into
rating certain items, hopefully items that they like. Only recently has
this assumption been lifted for theoretical analysis of the offline setting
(Lee and Shraibman, 2013). Of course, none of these model the true
online nature of recommendation systems with time marching forward
and the system continuously providing recommendations and receiving
user feedback.
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Moving to this online setting, most work has been phrased in the
context of the classical so-called multi-armed bandit problem, first
introduced by Thompson (1933). The name of the problem originates
from the “one-armed bandit” slot machine found in casinos in which a
gambler pulls the arm of the machine and receives a random reward.
Naturally, the m-armed bandit problem refers to when the gambler has
m such machines to play and seeks to maximize her or his cumulative
reward over time, playing one machine at each time step. Translated
to the context of online recommendation systems, the m machines are
items, and playing a machine refers to recommending an item. We
remark that in this standard setup of the multi-armed bandit problem,
there is only a single user and hence no concept of collaboration between
users, and only recently has there been work on incorporating a pool of
users (Bui et al., 2012; Gentile et al., 2014).

Even so, justification for why collaborative filtering methods in
particular work in this online setting was only recently established by
Bresler et al. (2014). In this section, we cover their main result, which
relies on an underlying probabilistic model for an online recommendation
system. Note that real online recommendation systems are considerably
complex. Users join and leave, items are added and removed, users’
preferences change over time, certain items abruptly go viral, users
consume items at drastically different rates, and so forth. To contain
this unwieldy mess of possibilities, Bresler et al. introduce a toy model of
an online recommendation system that, despite its simplicity, provides a
clean baseline framework for theoretical analysis and already highlights
the crucial role collaboration plays in recommendation. They refer to
their model as the latent source model for online collaborative filtering.
We present this model and clearly state the recommendation objective
in Section 5.2.1. The main theoretical result is as follows.

Theorem 5.2.1 (Informal statement of Theorem 5.2.2). Under
the latent source model for online collaborative filtering and a
notion of separation between the r user clusters, with number of
users n = ©(rm) where m is the number of items, a variant of the
so-called cosine-similarity collaborative filtering has an essentially
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optimal expected fraction of likable items recommended after an
initial number of time steps scaling as nearly log(rm).

The collaborative filtering method achieving the above result, discussed
in Section 5.2.3, has a crucial algorithmic insight of using two types of
exploration, one that explores the space of items to find likable items
(ask each user to consume and rate a random unconsumed item), and
one that explores the space of users to find similar users (ask users to
consume a common item). When not exploring, the algorithm exploits
by greedily choosing items to recommend based on fixed-radius NN
regression estimates, where a cosine distance is used (hence the name
cosine-similarity collaborative filtering). Experimental results by Chen
(2015), which extend the results by Bresler et al. (2014), are presented
in Section 5.2.4.

5.2.1 A Model and a Learning Problem

Online recommendation system setup. We consider a recommen-
dation system with n users and m items, both fixed constants, so users
are neither joining nor leaving, and items are neither being added nor
removed. We also assume user preferences to be static over time. As
for the actual dynamical process, at each time step ¢t = 1,2,..., exactly
one item is recommended to each user, who immediately consumes and
rates the item as either +1 (like) or —1 (dislike).* We reserve a rating
of 0 to mean that the user has not rated an item yet. Once a user has
consumed an item (e.g., watches a movie), the system is not allowed
to recommend the item to that same user again. Initially, none of the
users have consumed any items, and so up to time 7', each user will
have consumed and rated exactly 1" items. No structure is assumed
over items in that the rating for each item gives no information about
the rating for any other item a priori. So, for example, if Alice likes
Star Wars: A New Hope, we can’t just recommend The Empire Strikes

4In practice, a user could ignore the recommendation. To keep our exposition
simple, however, we stick to this setting that resembles song recommendation systems
like Pandora that per user continually recommends a single item at a time. For
example, if a user rates a song as “thumbs down” then we assign a rating of —1
(dislike), and any other action corresponds to +1 (like).
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Back as we don’t know that these items are related. In Section 5.2.5,
we describe how knowledge of similar items helps us.

Note that the setup described thus far does not have a probability
model associated with it yet, but it already draws out the importance
of collaboration. Consider when there’s only a single user. Then to learn
anything about an item, we have to ask the user to rate the item, but
upon doing so, we can’t recommend that item again! Moreover, because
the rating for an item is assumed to not provide us any information
about other items (so we don’t know which items are similar), we can’t
hope to find what the good items are except through exhaustive trial
and error. However, with a pool of users, and with structure over users,
we should be able to make good recommendations.

Probabilities come into play through user ratings being modeled as
noisy. Specifically, the latent item preferences for user u are represented
by a length-m vector p, € [0,1]™, where user u likes item i with
probability p,;, independently across items. For a user u, we say that
item i is likable if p,; > 1/2 and unlikable otherwise.

Recommendation objective. The goal of the recommendation sys-
tem is to maximize the expected number of likable items recommended:

R AN E[Z4), (5.14)

where Z,; is the indicator random variable for whether the item recom-
mended to user u at time t is likable. Recommending likable items for
a user in an arbitrary order is sufficient for many real recommendation
systems such as for movies and music. For example, we suspect that
users wouldn’t actually prefer to listen to music starting from the songs
that their user cluster would like with highest probability to the ones
their user cluster would like with lowest probability; instead, each user
would listen to songs that she or he finds likable, ordered such that
there is sufficient diversity in the playlist to keep the user experience
interesting.

Clustering structure. If the users have no similarity with each other,
collaboration would not work very well! To this end, we assume a simple
structure for shared user preferences. We posit that there are r < n
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different clusters of users, where users of the same cluster have identical
item preference vectors. These are the r clusters. We denote the r
underlying item preference vectors as pui,...,u, € [0,1]™. If users u
and v are from the same cluster g € {1,...,r}, then p, = p, = pg. The
number of user clusters r represents the heterogeneity in the population.
For ease of exposition, in this section we assume that a user belongs to
each user cluster with probability 1/r. This sort of assumption on the
ratings is a special case of low rank assumptions often used in matrix
completion (e.g., Keshavan et al. 2010a; Keshavan et al. 2010b), where
the rank corresponds to the number of users clusters. To see this, note
that we are assuming each user’s ratings vector to be a noisy version of
one of r possible cluster rating vectors. Low rank matrix completion
is a bit more general since it can, for instance, encode item clusters as
well.

We quantify how much noise there is within the user ratings as
follows. We suppose there exists a constant o € [0,1/2) such that

min{l — pgi, pgi} <o (5.15)

for all user clusters g € {1,...,r} and itemsi € {1,...,m}. In particular,
noise constant ¢ measures how far the probabilities of liking items are
from 0 or 1. If o = 0, then the probabilities are all 0 or 1, so user ratings
are deterministic and there is no noise. If ¢ = 1/2 (which we expressly
disallow), then there is an item with probability 1/2 of being liked, and
we can’t hope to predict whether a user will like this item better than
chance.

Bresler et al. (2014) refer to the overall model for the online rec-
ommendation system, randomness in ratings, and clustering structure
as the latent source model for online collaborative filtering, where each
user cluster corresponds to a latent source of users.

Relation to bandit problems. This problem setup relates to some
versions of the multi-armed bandit problem. A fundamental difference
between this setup and that of the standard stochastic multi-armed
bandit problem (Thompson, 1933; Bubeck and Cesa-Bianchi, 2012) is
that the latter allows each item to be recommended an infinite number of
times. Thus, the solution concept for the stochastic multi-armed bandit
problem is to determine the best item (arm) and keep choosing it (Auer
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et al., 2002). This observation applies also to “clustered bandits” (Bui
et al., 2012), which, however, does incorporate collaboration between
users. On the other hand, “sleeping bandits” (Kleinberg et al., 2010)
allow for the available items at each time step to vary, but the analysis is
worst-case in terms of which items are available over time. In the latent
source model for online collaborative filtering, the sequence of items
that are available is not adversarial. Thus, this model combines the
collaborative aspect of clustered bandits with dynamic item availability
of sleeping bandits, where there is a strict structure in how items become
unavailable.

Relation to learning mixture models. Similar to time series fore-
casting, we can relate the online collaborative filtering setup to that
of learning mixture models (¢f., Chaudhuri and Rao 2008; Belkin and
Sinha 2010; Moitra and Valiant 2010; Anandkumar et al. 2012), where
one observes samples from a mixture distribution and the goal is to
learn the mixture components and weights. Existing results assume that
one has access to the entire high-dimensional sample or that the samples
are produced in an exogenous manner (not chosen by the algorithm).
Neither assumption holds in online collaborative filtering, as we only see
each user’s revealed ratings thus far and not the user’s entire preference
vector, and the recommendation algorithm affects which samples are
observed (by choosing which item ratings are revealed for each user).
These two aspects make online collaborative filtering more challenging
than the standard setting for learning mixture models. However, as
with time series forecasting, the goal considered here is more modest
than learning cluster components. Specifically, rather than learning the
r item preference vectors 1, ..., i, we merely classify items as likable
or unlikable by each cluster.

5.2.2 Collaborative Filtering with Two Exploration Types

For clarity of presentation, we begin by describing a simpler recommen-
dation algorithm SIMPLE-COLLABORATIVE-GREEDY. To make SIMPLE-
COLLABORATIVE-GREEDY more amenable to analysis, we modify it
slightly to obtain COLLABORATIVE-GREEDY. Both algorithms are syn-
tactically similar to an algorithm called e-GREEDY for the standard
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multi-armed bandit setting, which explores items with probability e
and otherwise greedily chooses the best item seen so far based on a
score function (Sutton and Barto, 1998). The exploration probability
¢ is allowed to decay with time: as we learn more about the different
bandit machines, or items in this online recommendation setting, we
should be able to explore less and exploit more.

Exploitation. The exploitation step of SIMPLE-COLLABORATIVE-GREEDY
chooses the best item for a user via cosine-similarity collaborative filter-
ing. The basic idea of this approach is that at time ¢, for each user w,
we first compute a score 15(;@‘) for every item i. Then we recommend to
user u whichever item has the highest score that user u has not already
consumed, breaking ties randomly. As we explain next, the score ]3(“?
defined using fixed-radius NN regression with cosine distance (which is

just 1 minus cosine similarity).

is

The cosine distance p.os between users is computed as follows. Let

D e {+1,0,—1}" be user u’s ratings up to (and including) time ¢,
so Yu(f) is the rating user u has given item 4 up to time ¢ (recall that 0
indicates that the user has not actually consumed and rated the item
yet). Then for two users u and v, let \111% = supp(Yu(t)) N supp(Yv(t)) be
the support overlap of Yu(t) and Y};(t) (i.e., the items that both users
have rated up to time t), and let (-, >‘1/ffu) be the dot product restricted

to entries in \I’ng Then the cosine distance between users v and v at

time ¢ is
() - (8)
Peos (YD, YD) =1 — m (5.16)
i)
Assuming that the two users have rated at least one item in common,
then the cosine distance ranges from 0 (the two users agree on all the
items that they both rated) and 2 (the two users disagree on all the
items that they both rated).
For user u, item i’s score ﬁffi) is defined to be the fraction of user u’s
neighbors (up to a threshold distance h) that like item i (among those
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who have consumed and rated item i):

o 1{peos (Y, ¥i) < MY = 41}

ﬁgn) = Z:)lzl ]l{pcos(yb(t),yv(t)) S h}]l{)/;;(f) 7& 0}
1/2 otherwise.

(5.17)

This score is a fixed-radius NN regression estimate of the true proba-

bility py; of user w liking item 4. If the estimate exceeds 1/2, then we

if denom. > 0

can classify item ¢ as likable by user w. This mirrors how regression
function estimates can be turned into classifiers back in Section 2.4. By
recommending to user u whichever item has the highest score f)ffi) what
we are doing is sorting these fixed-radius NN regression estimates and
using whichever one hopefully exceeds 1/2 the most, which should be a
likable item for user wu.

Similar to how in the time series forecasting setup, 1-NN and kernel
classifiers approximate an oracle MAP classifier, in online collaborative
filtering, cosine-similarity collaborative filtering approximates an oracle
MAP recommender (Chen, 2015, Section 4.2). Once again, the approxi-
mation is bad when we do not have enough training data, which here
means that we do not have enough revealed ratings, 7.e., not enough
time has elapsed. Thus, early on when we know very little about the

users, we want to explore rather than exploit.

Exploration. The standard multi-armed bandit setting does not have
user collaboration, and one could interpret asking each user to randomly
explore an item as probing the space of items. To explicitly encourage
user collaboration, we ask users to all explore the same item, which
probes the space of users. Accounting for the constraint in our setting
that an item can’t be recommended to the same user more than once,
we use the two following exploration types:

e Random exploration. For every user, recommend an item that she
or he hasn’t consumed yet uniformly at random.

e Joint exploration. Ask every user to provide a rating for the next
unseen item in a shared, randomly chosen sequence of the m
items.
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Two recommendation algorithms. The first algorithm SIMPLE-
COLLABORATIVE-GREEDY does one of three actions at each time step ¢:
With probability eg, we do the above random exploration step. With
probability €5, we do the above joint exploration step. Finally, if we do
neither of these exploration steps, then we do a greedy exploitation step
for every user: recommend whichever item 7 user u has not consumed
yet that maximizes the score @(Z) given by equation (5.17), which relied
on cosine distance to find nearby users.

We choose the exploration probabilities eg and €5 as follows. For
a pre-specified rate a € (0,4/7], we set the probability of random
exploration to be eg(n) = 1/n® (decaying with the number of users),
and the probability of joint exploration to be 5(t) = 1/t* (decaying with
time). For ease of presentation, the two explorations are set to have the
same decay rate «, but the proof easily extends to encompass different
decay rates for the two exploration types. Furthermore, the constant
4/7 > « is not special. It could be different and only affects another
constant in the proof. The resulting algorithm is given in Algorithm 1.

The main technical hurdle in analyzing SIMPLE-COLLABORATIVE-
GREEDY is that it’s not trivial reasoning about the items that two
users have both rated, especially the items recommended by the cosine-
similarity exploitation. In other words, which items have revealed ratings
follows a nontrivial probability distribution. We can easily circumvent
this issue by changing the definition of the neighborhood of a user u
to only consider items that have been jointly explored. Specifically, if
we denote t3 to be the number of joint exploration steps up to time t,
then we're guaranteed that there’s a subset of ¢ items chosen uniformly
at random that all users have consumed and rated (this is the first
ty items in random item sequence £ in Algorithm 1). The algorithm
COLLABORATIVE-GREEDY results from this slight change. Formally,
letting \Ifgt) be the set of jointly explored items up to time ¢ (so |\Ilgt)] =
ty), we replace o) with \Pgt) in the cosine distance equation (5.16) to
come up with the following modified cosine distance:

Vi, v o
T (519
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Algorithm  1: SiMPLE-COLLABORATIVE-GREEDY  (and
COLLABORATIVE-GREEDY)
Input: Parameters h € [0, 1], a € (0,4/7].

Select a random ordering £ of the items {1,...,m}. Define
1 1
er(n) = v and ey(t) = et

for time step t =1,2,...,7 do

With prob. eg(n): (random exploration) for each user,
recommend a random item that the user has not rated.

With prob. e;5(¢): (joint exploration) for each user,
recommend the first item in & that the user has not rated.

With prob. 1 —¢;(t) — er(n): (exploitation) for each user u,
recommend an item ¢ that the user has not rated and that
maximizes score ﬁg? given by equation (5.17), which depends
on distance peos given by equation (5.16) and threshold
distance h. Break ties randomly. (For
COLLABORATIVE-GREEDY, use distance ﬁ(cf))s given by

equation (5.18) instead of peos in computing the score ]3&-);

note that [){CQS depends on the random ordering &).

Note that previously, since \1152 = supp(Yu(t)) N supp(Yv(t)) can directly

be computed from Yu(t) and Yv(t), the distance function p.,s had no
time dependence, whereas ﬁé';)s does since it now depends on the jointly
explored items \Ifgt) up to time ¢, which in general we cannot just
compute from Yu(t) and Yv(t). We give COLLABORATIVE-GREEDY in
Algorithm 1. The experimental results in Section 5.2.4 suggest that the

two algorithms have similar performance.

Noisy distances. The cosine distance ,b{cé)s that the theory developed
depends on is random: through joint exploration, we are uniformly at
random selecting a subset \Iigt) of the m items and computing the cosine
similarity over this random subset. Note that this randomness in the
choice of entries to use in comparing rating vectors is separate from the
randomness in the ratings themselves (i.e., the randomness in which a
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user likes or dislikes an item); this latter source of randomness is not
what makes the distance function random.

To provide some more detail for why the random subset of jointly
explored items \Ifgt) is used, note that for any two users u and v, what we
actually would like to use is the cosine distance between fully revealed
rating vectors of the two users. Formally, by letting Y," and Y, denote
fully revealed rating vectors of users u and v, then the “non-noisy”
distance between users u and v is peos(Y,, Y, ). Again, even though
there is label noise in Y, and Y, the distance function itself p.os is not
random. In practice we will never obtain fully revealed rating vectors
Yy and Y, especially as typically the number of items m is so large
that a user could not possibly consume them all in a lifetime. Thus, we
cannot hope to compute peos(Y,', Y,"). Instead what we would like is a
distance function that only uses partially revealed ratings Yu(t) and Yv(t),
and that is an unbiased estimate of distance peos(Y,’,Y,’). By choosing
a subset \Ifgt) uniformly at random out of the m items in defining
random (and thus “noisy”) distance f){cz)s in equation (5.18), we ensure
that ﬁ{cf))s(Yu(t), U(t)) is an unbiased estimate of the true distance peos.
The theoretical analysis crucially depends on this uniform randomness
in \Ifgt) and, thus, does not easily extend to an analysis of SIMPLE-
COLLABORATIVE-GREEDY, which uses the full subset \Ifq(fg of commonly
rated items between users u and v.

5.2.3 A Theoretical Performance Guarantee

We now present the main result of this section that characterizes the
performance of COLLABORATIVE-GREEDY, which depends on the fol-
lowing cosine separation condition between the clusters: There exists a
constant S* € (0, 1] such that for two different user clusters g and h,

1- %ng — 1,2, — 1) > 4(0’(1—0’)4—5*(%—0)2). (5.19)

expected cosine distance between user clusters g and h

where 1 is the all ones vector, and noise level o € [0, 1) is defined in equa-
tion (5.15). To see why the left-hand side is the expected cosine distance,
let Y7 and Y, be fully revealed rating vectors of users u and v from clus-
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ters g and h respectively. Then E[peos (Y5, V)] = E[1 — (Y, V)] =
1— % (2p19—1, 215, — 1), where the expectation is over the random ratings
of items. (Note that for fully revealed rating vectors, the two distance
functions discussed earlier coincide: peos(Y,',Y,) = ﬁéﬁ?(YJ, Y.").) Thus,
the condition asks that the expected cosine distance be large enough
to combat both noise and a notion of the true separation between user
clusters encoded by the constant S*.

The cosine separation condition ensures that using cosine distance
can tease apart users from different clusters over time. A worry may
be that this condition is too stringent and might only hold when the
expected cosine distance between users clusters is 1 — o(1) (note that
cosine distance is always bounded above by 1), which would mean that
this condition is unlikely to ever hold. We provide some examples after
the statement of this section’s main theoretical result for which the
cosine separation condition holds with probability at least 1 — r2/m.

Next, we assume that the number of users n is neither too small nor
too large. As we make precise in the theorem statement to follow, we
ask n to at least scale as rm (the precise condition is in the theorem
statement to follow). As for n being too large, we ask that n = O(m®)
for some constant C' > 1. This is without loss of generality since
otherwise, we can randomly divide the n users into separate population
pools, each of size O(m) and run the recommendation algorithm
independently for each pool to achieve the same overall performance
guarantee. Importantly we would still need each pool of users to have
size at least scaling as rm.

Finally, we define ¢, the minimum proportion of likable items for
any user (and thus any user cluster):

o S > 1/2)
ge{l,..r} m '

We’re now ready to state this section’s main theorem.

Theorem 5.2.2 (Bresler et al. 2014, Theorem 1 slightly rephrased).
Let § € (0,1) be a pre-specified tolerance. Under the latent source
model for online collaborative filtering, suppose the cosine sepa-
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ration condition holds with parameter S* € (0, 1], the parameters
to COLLABORATIVE-GREEDY are set to be h = 1 —2(3 — ¢)25*
and a € (0,4/7], and the number of users n satisfies upper bound
n = O(m®) and lower bound

n = Q(rmlog% 4F (%)1/0).

Then for any Tiearn < T < (m, the expected proportion of likable
items recommended by COLLABORATIVE-GREEDY up until time
T satisfies )
Ry’

Tn

(1-20)0
Tearn = = .
an=0((=ayige)  *+G))

The proof is provided by Chen (2015, Section 4.5), which includes
precise conditions (without using big O notation) on the number of
users n and learning duration Tjeam in the theorem.

2(1—%)(1—6),

where

The above theorem says that there are Tie,, initial time steps for
which COLLABORATIVE-GREEDY may be giving poor recommendations.
Afterward, for Tiearn < T < (m, the algorithm becomes near-optimal,
recommending a fraction of likable items 1 — ¢ close to what an optimal
oracle algorithm (that recommends all likable items first) would achieve.
Then for time horizon T' > (m, we can no longer guarantee that there
are likable items left to recommend. Indeed, if the user clusters each
have the same fraction of likable items, then even an oracle recommender
would use up the {m likable items by this time. To give a sense of how
long the learning period Tieam is, note that when o = 1/2, we have
Tiearn Scaling as log2(rm), and if we choose « close to 0, then Tjearn
becomes nearly log(rm). In summary, after Tje,y initial time steps,
which could be made nearly log(rm), and with number of users scaling
as rm, COLLABORATIVE-GREEDY becomes essentially optimal in that
it recommends a fraction of likable items that can be made arbitrarily
close to what the oracle algorithm achieves. This reasoning recovers the
informal statement of Theorem 5.2.1.
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To provide intuition for the cosine separation condition, we calculate
parameter S* for three examples that build on top of each other. In
every case, the condition holds with probability at least 1 — 72 /m. In
reading the derivations in these examples, it may be helpful to note
that the cosine separation condition (5.19) can also be equivalently
expressed in terms of expected cosine similarity between every pair of
user clusters g and h:

1

E<2ug —1,2u, — 1) <(1—8%(1-20)°

expected cosine similarity between user clusters g and A

Example 5.2.1. Consider when there is no noise, i.e., o = 0.
Then users’ ratings are deterministic given their user cluster. We
construct the true underlying item preference vectors pu1, . .., i, €
[0,1]™ by sampling every entry pg (¢ € {1,...,r} and ¢ €
{1,...,m}) to be i.i.d. Bernoulli(1/2). In this case, the cosine
separation condition, with true separation S* = 1— l“%, holds
with probability at least 1 — r2/m.

To show this, note that for any item ¢ and pair of distinct
user clusters g and h, the product (2ug — 1)(2pp — 1) is a
Rademacher random variable (41 or —1 each with probability
%), and thus the dot product (24 — 1,2u;, — 1) is equal to the
sum of m i.i.d. Rademacher random variables, each of which is
sub-Gaussian with parameter 1. Hence, the sum is zero-mean
sub-Gaussian with parameter \/m, implying that

2

s
P((2ug — 1,2u, — 1) > s) < exp ( - %>
Plugging in s = m 1"%, we see that

1 1 1
]P’((ng —1,2u,—1) > ogm) < —.
m m m
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Union-bounding over all distinct pairs of user clusters,

R )

g,h€{1,...,r} s.t. g#h m

(7‘)1 r2
< — < —.
—\2/m T m

Hence, with probability at least 1 — 72 /m, we have

logm

1
—2ug —1,2up — 1) <
m< Kg s 4k > m
for every distinct pair of user clusters g and h. Noting that o = 0,
the cosine separation condition holds with parameter S* to be

1—,/lem,

Example 5.2.2. We expand on the previous example by in-
troducing noise with parameter o € (0,1/2). Now let the item
preference vectors pi1,. ..,y € [0,1]" have i.i.d. entries that are
1 — o (likable) or o (unlikable) with probability 1 each. Then
for a distinct pair of user clusters g and h, if jg; = pp; (which
happens with probability 1/2), then E[(2pg — 1) - (2up — 1)] =
(1-0)2+02—-20(1—0) = (1—20)% and if pg # pp; (so
ftgi = 1—pp; in this example, also occurring with probability 1/2),
then E[(2ug—1)-(2un—1)] = 20(1—0)—(1—0)?—0? = —(1-20).
This means that (2ug —1,2u, — 1) is again a sum of Rademacher
random variables, except now scaled by (1—2¢)2. This sum is sub-
Gaussian with parameter /m(1 — 20)2. By a similar calculation
as the previous example, with probability at least 1 — 72 /m,

logm

1
—(2py — 1,25 — 1) < (1 —20)?
m(ug pn — 1) < ( o) =
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for every distinct pair of user clusters g and h. Thus, the cosine
separation condition holds with parameter S* =1 — \/1“%.

Example 5.2.3. Building off our second example, we now sup-
pose that entries in the item preference vectors pq,...,u, €
[0,1]™ have entries that are 1 — o (likable) with probability
¢ € (0,1/2), and o (unlikable) with probability 1 — ¢. Then
for item ¢ and different user clusters g and h, pg = pp; with
probability ¢ + (1 —¢)?. This implies that E[(2u, —1,2u;, —1)] =
m(1 — 20)%(1 — 2¢)?, and one can verify that the dot prod-
uct (2pg — 1,2pp — 1) is still sub-Gaussian with parameter
vm(l — 20)2. Using a similar calculation as before but now
accounting for the mean of the dot product no longer being 0,
with probability at least 1 — r2/m,

%(2;@ —1,2p, —1) < (1 - 20)2(“ —20)° + \/@)

for every distinct pair of user clusters g and h. Then the cosine
separation condition holds with parameter S* =1 — (1 — 2¢)? —

logm
\ T

5.2.4 Experimental Results

Chen (2015) demonstrates SIMPLE-COLLABORATIVE-GREEDY and COL-
LABORATIVE-GREEDY on recommending movies, showing that the two
algorithms have comparable performance and both outperform two
existing recommendation algorithms Popularity Amongst Friends (PAF)
(Barman and Dabeer, 2012) and Deshpande and Montanari’s method
(DM) (Deshpande and Montanari, 2013). At each time step, PAF finds
nearest neighbors (“friends”) for every user and recommends to a user
the “most popular” item, i.e., the one with the most number of +1
ratings, among the user’s friends. DM doesn’t do any collaboration
beyond a preprocessing step that computes item feature vectors via
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matrix completion. Then during online recommendation, DM learns
user feature vectors over time with the help of item feature vectors and
recommends an item to each user based on whether it aligns well with
the user’s feature vector.

The experimental setup involves simulating an online recommenda-
tion system using real ratings from the MovieLens 10M (Harper and
Konstan, 2015) and Netflix (Bennett and Lanning, 2007) datasets, each
of which provides a sparsely filled user-by-movie rating matrix with
ratings out of 5 stars. Unfortunately, existing collaborative filtering
datasets such as the two movie rating datasets considered, do not offer
the interactivity of a real online recommendation system, nor do they
allow us to reveal the rating for an item that a user did not ever rate.
For simulating an online system, the former issue can be dealt with by
simply revealing entries in the user-by-item rating matrix over time.
The latter issue can be addressed by only considering a dense “top users
vs. top items” subset of each dataset. In particular, by considering only
the “top” users who have rated the most number of items, and the “top”
items that have received the most number of ratings, we get a dense
part of the dataset. While this dense part is unrepresentative of the rest
of the dataset, it does allow us to use actual ratings provided by users
without synthesizing any ratings. A rigorous validation would require an
implementation of an actual interactive online recommendation system.

An initial question to ask is whether these dense movie ratings ma-
trices exhibit clustering behavior. Automatically learning the structure
of these matrices using the method by Grosse et al. (2012) reveals that
Bayesian clustered tensor factorization (BCTF) accurately models the
data. This finding isn’t surprising as BCTF has previously been used
to model movie ratings data (Sutskever et al., 2009). BCTF effectively
clusters both users and movies so that we get structure such as that
shown in Figure 5.2 for the MovieLens 10M “top users vs. top items”
matrix.

Following the experimental setup of Barman and Dabeer (2012),
ratings of 4 stars or more are quantized to be +1 (likable), and ratings
of 3 stars or less to be —1 (unlikable). The dense subsets considered
still have missing entries. If a user v hasn’t rated item j in the dataset,
then the corresponding true rating is set to 0, meaning that in the
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simulation, upon recommending item j to user u, we receive 0 reward,
but we still mark that user v has consumed item j; thus, item j can no
longer be recommended to user u. For both MovieLens 10M and Netflix
datasets, the top n = 200 users and m = 500 movies are considered. For
MovieLens 10M, the resulting user-by-rating matrix has 80.7% nonzero
entries. For Netflix, the resulting matrix has 86.0% nonzero entries.
For an algorithm that recommends item 1,; to user u at time ¢, the
algorithm’s average cumulative reward up to time T is measured by

1 XT: Sy
n t=1u=1 whut?
where we average over users.

For all methods, items are recommended until we reach time T" = 500,
i.e., we make movie recommendations until each user has seen all
m = 500 movies. The matrix completion step for DM is not allowed
to see the users in the test set, but it is allowed to see the same items
as what is in the simulated online recommendation system in order to
compute these items’ feature vectors (using the rest of the users in the
dataset). Furthermore, when a rating is revealed, DM is provided with
both the thresholded and non-thresholded ratings, the latter of which
DM uses to estimate user feature vectors.

Parameters h and o for SIMPLE-COLLABORATIVE-GREEDY and
COLLABORATIVE-GREEDY are chosen by sweeping over the two pa-
rameters on training data consisting of 200 users that are the “next
top” 200 users, i.e., ranked 201 to 400 in number of movie ratings they
provided. The search space is discretized to grids h € {0.0,0.1,...,1.0}
and o € {0.1,0.2,0.3,0.4,0.5}. The parameter setting achieving the
highest area under the cumulative reward curve is chosen per algorithm.
For both MovieLens 10M and Netflix datasets, this corresponded to
setting h = 0.9 and o = 0.5 for SIMPLE-COLLABORATIVE-GREEDY, and
h = 1.0 and a = 0.5 for COLLABORATIVE-GREEDY. In contrast, the
parameters for PAF and DM are chosen to be the best parameters for
the test data among a wide range of parameters. The results are shown
in Figure 5.6. SIMPLE-COLLABORATIVE-GREEDY and COLLABORATIVE-
GREEDY have similar performance, and both outperform PAF and DM.
We remark that the curves are roughly concave, which is expected since
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Figure 5.6: Average cumulative rewards over time for the MovieLens 10M and
Netflix datasets (figure source: Chen 2015, Figure 4.2).

once the algorithms have finished recommending likable items (roughly
around time step 300), they end up recommending mostly unlikable
items until they have exhausted all the items.

5.2.5 Accounting for Item Similarity

So far, we did not assume knowledge of which items are similar. In
fact, if we knew which items are similar, then a simple observation
reveals that we can drastically improve recommendation performance.
Specifically, suppose that we have rjen, item clusters, where within each
item cluster, either all the items are likable or all the items are unlikable
by each user cluster. Thus, an entire item cluster is either likable or
unlikable by each user cluster. Moreover, suppose for simplicity that
we actually knew what these item clusters are. For example, perhaps
we estimated these from mining item descriptions (e.g., in a movie
recommendation system, we can scrape information about movies such
as their genres and cluster items based on genre).

Then we can use COLLABORATIVE-GREEDY to explore item clusters
(basically we apply the same algorithm but instead track scores for the
Titem it€m clusters rather than the m items, where recommending item 4
to user u tells us what user u thinks of item 4’s cluster). Next, we can
introduce a new exploitation step in which we recommend items from
an item cluster that we already are confident that a user finds likable,
assigning some probability to this exploitation. If the item clusters are
large, then this strategy substantially increases the number of likable
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items we are able to recommend! This intuition not only suggests how
to incorporate knowledge of item clusters but also why they can improve
a recommendation system’s performance.

Whereas our exposition has focused on online collaborative filtering
by looking at which users are similar, recently, Bresler et al. (2016) have
established theoretical guarantees for online collaborative filtering by
looking at which items are similar. Karzand and Bresler (2017) take a
step further, extending the theory to handle simultaneously using both
user and item structure.

5.3 Patch-Based Image Segmentation

Delineating objects in an image is a fundamental task that feeds into
a flurry of analyses downstream, from parsing what is happening in a
scene to discovering indicators for disease in the case of medical image
analysis. To learn what a particular object looks like, whether a cat
or a tumor, we rely on seeing examples of the object. Luckily, we now
have access to enormous, ever-growing repositories of images of virtually
everything, for example, on photo sharing websites like Flickr, contained
within videos on YouTube, or privately stored in hospitals in the case
of medical images. Often we could easily procure in excess of thousands
of training images for a particular object, perhaps with the help of
crowdsourcing manual labeling via Amazon Mechanical Turk.

At the outset though, thousands or even millions of images might
seem small since the space of possible images is enormous. Consider a
two-dimensional image of 100-by-100 pixels, where at each pixel, we store

210000 which happens to

one of two values. The number of such images is
be larger than the estimated number of atoms in the observable universe
(~ 10%). Nearly all of these possible images would be completely
implausible to us as naturally occurring based on what we see with our
eyes day-to-day. What structure is present in an image that makes it
“plausible”, and how do we exploit this structure for prediction?

In this section, we focus on the simple setting of segmenting out
where a foreground object of interest is from the background, a problem
referred to as binary image segmentation. Our running example is the
task of finding a human organ in a medical image. Specifically for
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medical image segmentation, nearest neighbor and kernel classifiers
have been widely used, originally at the pixel (or voxel, for 3D images)
level (Depa et al., 2010; Sabuncu et al., 2010) and more recently for
image patches (Coupé et al., 2011; Rousseau et al., 2011; Bai et al.,
2013; Wachinger et al., 2016; Wachinger et al., 2017; Zandifar et al.,
2017). Of course, in the extreme case, a patch can just be a single pixel,
so patch-based approaches subsume pixel-based approaches.

We specifically study patch-based binary image segmentation, which
sits at a middle ground between other patch-based prediction tasks and
the earlier time series forecasting problem. To relate to patch-based
prediction tasks beyond binary image segmentation, note that rather
than predicting a binary label per pixel, we could predict real-valued
labels or patches of such labels leading to patch-based methods for image
denoising, reconstruction, restoration, and synthesis (e.g., Buades et al.
2005; Rousseau and Studholme 2013; Konukoglu et al. 2013; Iglesias
et al. 2013). As these patch-based methods are all syntactically similar,
analysis of the binary image segmentation setting could possibly be
extended to handle these more sophisticated tasks as well. To relate to
the earlier time series forecasting work, consider a myopic approach to
patch-based segmentation, where we predict the label of each pixel using
only the observed image patch centered at that pixel. This patch, when
flattened out into a single dimension, could be thought of as a time
series! Thus, the theoretical results for times series forecasting could
help explain the performance of myopic nearest neighbor segmentation.
In doing so, however, we want to account for image rather than temporal
structure: pixels nearby, as well as their associated patches, are similar.

For medical image segmentation in particular, perhaps the primary
reason for the popularity of nonparametric patch-based methods is
that the main competing approach to the problem, called label fusion,
requires robust alignment of images, whereas patch-based methods
do not. Specifically, standard label fusion techniques begin by first
aligning all the images into a common coordinate frame and henceforth
effectively assuming the alignment to be perfect. Because alignment
quality substantially affects label fusion’s segmentation performance,
alignments are typically computed by so-called nonrigid registration
that estimates a highly nonlinear transformation between two images.
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When nonrigid registration works well, then label fusion also works
well. The main issue is that nonrigid registration often fails when the
images exhibit large anatomical variablity as in whole body CT scans,
or when the images have other quality problems commonly found in
clinical scans taken at hospitals, such as low resolution and insufficient
contrast (Sridharan et al., 2013). Unlike standard label fusion, patch-
based methods do not require input images to be aligned perfectly,
making them a promising alternative when the images we encounter
present significant alignment challenges.

Of course, another reason for patch-based methods’ growing popu-
larity is their efficiency of computation, due to increasing availability of
fast approximate nearest-neighbor search algorithms both for general
high-dimensional spaces and tailored specifically for image patches (as
discussed back in Chapter 1). Thus, if the end goal is segmentation or
a decision based on segmentation, for many problems solving numerous
nonrigid registration subproblems required for standard label fusion
could be a computationally expensive detour that, even if successful,
might not produce better solutions than a patch-based approach.

Many patch-based image segmentation methods are precisely vari-
ants of nearest neighbor classification. In the simplest case, to determine
whether a pixel in an input image should be labeled as the foreground
object of interest or background, we consider the patch centered at that
pixel. We compare this image patch to patches in a training database
that are labeled labeled either foreground or background depending on
the pixel at the center of the training patch. We transfer the label from
the closest patch in the training database to the pixel of interest in the
new image. A plethora of embellishments improve this algorithm, such
as, but not limited to, using more than just the first nearest neighbor
(e.g., k-NN for k > 1, fixed-radius NN, kernel classification) (Coupé
et al., 2011; Rousseau et al., 2011; Wachinger et al., 2016), incorporat-
ing hand-engineered or learned feature descriptors (Wachinger et al.,
2016; Wachinger et al., 2017), cleverly choosing the shape of a patch
(Wachinger et al., 2016), and enforcing consistency among adjacent
pixels by assigning each training intensity image patch to a label patch
rather than a single label (Rousseau et al., 2011; Wachinger et al., 2016)
or by employing a Markov random field (Freeman et al., 2000).
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Despite the broad popularity and success of nonparametric patch-
based image segmentation and the smorgasbord of tricks to enhance
its performance over the years, nonasymptotic theory for such methods
was only recently developed by Chen et al. (2015) for 1-NN and kernel
patch-based segmentation. In this section, we cover their main result. As
with the other applications, the theory here depends on an underlying
probabilistic model, which once again assumes clustering structure. In
particular, each patch within an image is assumed to be accurately
modeled by mixture model with at most r components (note that
different patches can be associated with different mixture models).
Chen et al. (2015) refer to their model as the latent source model for
patch-based image segmentation.

Theorem 5.3.1 (Informal statement of Theorem 5.3.2). Let
d € (0,1) be an error tolerance, and |Z| be the number of pixels
in the full image (and not just a patch). Under a special case of
the latent source model for patch-based image segmentation, if
the training patches centered at nearby pixels with opposite labels
“foreground” and “background” are sufficiently different (depends
on §), image patches satisfy a “jigsaw condition” that imposes
local smoothness, and the number of labeled training images
satisfies n = ©(rlog(|Z|r/d)), then 1-NN and kernel patch-based
classifiers each achieve average pixel mislabeling rate at most 4.

Importantly, the training data are full images and not just the patches.
For medical images, the number of training data n corresponds to the
number of human subjects in the training set.

We begin in Section 5.3.1 with a simple case of the model that
corresponds to classifying each pixel’s label separately from other pixels;
this setup is referred to as pointwise segmentation. The theoretical
guarantees for 1-NN and kernel patch-based segmentation are for point-
wise segmentation. The analysis borrows heavily from the time series
forecasting theory and crucially relies on a local structural property
called the jigsaw condition, which holds when neighboring patches are
sufficiently similar.

The pointwise setup only incorporates local structure, and can
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be extended to incorporate global structure, resulting in the model
presented in Section 5.3.2, which in turn leads to an iterative patch-based
image segmentation algorithm that combines ideas from patch-based
image restoration (Zoran and Weiss, 2011) and distributed optimization
(Boyd et al., 2011). This algorithm alternates between predicting label
patches separately and merging these local estimates to form a globally
consistent segmentation. Various existing patch-based algorithms can
be viewed as special cases of this proposed algorithm, which, as shown
in Section 5.3.3, significantly outperforms the pointwise segmentation
algorithms that theoretical guarantees are provided for. However, the
new iterative algorithm currently has no known theoretical guarantees.

We remark that in practice, patch-based image segmentation meth-
ods often do not achieve close-to-zero error. A corollary of the main
theoretical result above is that if the error cannot be made arbitrarily
small, then the assumptions made do not hold across the entire image,
e.g., if the assumptions fail to hold for 10% of the image, then the
mislabeling rate will similarly not be guaranteed to go below 10%. Thus,
segmentation algorithms should be designed to be robust even in parts
of the image where the structural assumptions of Chen et al. (2015)
collapse.

5.3.1 Pointwise Segmentation

For an image A, we use A(7) to denote the value of image A at pixel i,
and A[i] to denote the patch of image A centered at pixel i based
on a pre-specified patch shape; A[i] can include feature descriptors
in addition to raw intensity values. Each pixel i belongs to a finite,
uniformly sampled lattice Z.

Given an intensity image X, we aim to predict its label image Y that
delineates an object of interest in image X. In particular, for each pixel
i € Z, we predict label Y (i) € {0,1}, where 1 corresponds to foreground
(object of interest) and 0 to background. To make this prediction, we
use patches of image X, each patch of dimensionality d. For example,
for a 2D image, if we use 5x5 patches, then d = 25, and for a 3D image,
if we use 5x5x5 patches, then d = 125.

We model the joint distribution p(Y (i), X[i]) of label Y (i) and image
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patch X [i] as a generalization of a Gaussian mixture model with diagonal
covariances, where each mixture component corresponds to either Y (i) =
1 or Y (i) = 0. This generalization is called a diagonal sub-Gaussian
mizture model, to be described shortly. First, we provide a concrete
example where label Y (7) and patch X[i] are related through a Gaussian
mixture model with r; mixture components. Mixture component ¢ €
{1,...,7r;} occurs with probability m;. € (0,1] and has mean vector
tic € R and label \;. € {0,1}. In this example, we assume that all
covariance matrices are 02154, and that there exists constant mmin > 0
such that m;. > 7y for all ¢,c. Thus, image patch X|[i] belongs to
mixture component ¢ with probability m;., in which case X[i] = p;c+Wj,
where vector W; € R? consists of white Gaussian noise with variance
02, and Y (i) = \;.. Formally,

p(Y (), X[i]) = i:ﬂicN(X[i]; fic, 0 g ) L{Y (i) = Nic},
c=1

where NV (+; 1, 2) is a Gaussian density with mean p and covariance Y.
Each pixel ¢ has its own mixture model with parameters (7, ftic, Aic)
for c = 1,...,r;. The diagonal sub-Gaussian mixture model refers to
a simple generalization where noise vector W; consists of entries that
are i.i.d. zero-mean sub-Gaussian with parameter o. This generaliza-
tion precisely corresponds to the latent source model for time series
classification where we disallow time shifts (so Amax = 0) and the time
horizon T is replaced by the patch dimensionality d.

We assume that every pixel is associated with its own diagonal
sub-Gaussian mixture model whose parameters are fixed but unknown.
Similar to recent work on modeling natural imagery patches (Zoran
and Weiss, 2011; Zoran and Weiss, 2012), the model only looks at
each individual patch separately; no assumptions are made about how
different overlapping patches behave jointly. In natural imagery, image
patches turn out to very accurately behave like samples from a Gaussian
mixture model (Zoran and Weiss, 2012). We refer to this model as a
pointwise latent source model for patch-based image segmentation.

As with time series forecasting and online collaborative filtering,
rather than learning the mixture model components, we instead take
a nonparametric approach, using available training data in nearest
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neighbor and kernel classifiers to predict label Y (i) from image patch
X[i]. To this end, we assume we have access to n i.i.d. training intensity-
label image pairs (X1,Y1),...,(X,,Y,) that obey our probabilistic
model above. These are full images and not just the patches.

Algorithms

We translate the 1-NN and kernel time series classifiers from Section 5.1.1
to the patch-based image segmentation setting. Here, there are no time
shifts, so the distance function used is just Euclidean distance, and the
kernel function used is again the Gaussian kernel K (s) = exp(—3s?).
Unlike before, we now have to carefully keep track of which training
intensity image a patch comes from, and also what the center pixel
coordinate is for a patch. Similar to the online collaborative filtering
setup, we index training data with dummy variables u,v € {1,2,...,n},
which had referred to people in a recommendation system earlier, and
now each training intensity image X, is associated with a person wu in
the medical imaging context.

The following methods operate on each pixel ¢ separately, predicting
label Y (7) only based on image patch X[i]:

Pointwise 1-NN segmentation. We first find which training intensity
image X, has a patch centered at pixel j that is closest to observed
intensity patch X[i]. This amounts to solving

(@,j)=  argmin [|Xy[j] - X[i]|*,
where || - || denotes Euclidean norm, and N (i) refers to a user-specified
finite set of pixels that are neighbors of pixel i. Label Y (7) is estimated
to be the same as the closest training patch’s label:

Yinn (il X [i]) = Y5(7).

Pointwise kernel segmentation. We use Euclidean distance and a
Gaussian kernel with bandwidth h. Then label Y (i) is estimated to be
the label with the higher vote:

1A Vi GIX [l h) > Vo (X[ ),

Yeauss (1| X [i]; h) =
Gauss (1| X [i]; ) {—1 otherwise,
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where the weighted votes for labels 0 and 1 are

X =3 Y e (- X0y ) — o),
u=1jEN(3)

Vi(i| X[i]; h) = zn: > exp(— “X“[j]QZQX[i]|’ )11{Yu(j) =1},
u=1jeN(i)

and N (7) again refers to user-specified neighboring pixels of pixel i.

We obtain pointwise 1-NN segmentation with h — 0. For an identical
reason as in the time series forecasting (cf., Section 5.1.3), the prediction
made at each pixel ¢ by pointwise kernel segmentation approximates
an oracle MAP classifier that knows the parameters for the diagonal
sub-Gaussian mixture model at pixel i. This oracle MAP classifier is
myopic, predicting label Y (i) only given patch X[i].

Pointwise kernel segmentation has been used extensively for patch-
based segmentation (Bai et al., 2013; Coupé et al., 2011; Rousseau
et al., 2011; Wachinger et al., 2016), where we note that the formulation
above readily allows for one to choose which training image patches
are considered neighbors, what the patch shape is, and whether feature
descriptors are part of the intensity patch vector X[i]. For example, a
simple choice of feature at pixel i is the coordinate for pixel i itself.
Thus, we can encode as part of the exponentially decaying weight
exp(—gz || Xu[j] — X[i]||?) how far apart pixels i and j € N(i) are,
yielding a segmentation algorithm previously derived from a Bayesian
model that explicitly models this displacement (Bai et al., 2013).

Theoretical Guarantees

The model above allows nearby pixels to be associated with dramatically
different mixture models. However, real images are smooth, with patches
centered at two adjacent pixels likely similar. We incorporate this
smoothness via a structural property on the sub-Gaussian mixture
model parameters associated with nearby pixels.

To build some intuition, we consider two extremes. First, it could
be that the |Z| mixture models (one per pixel) are actually all identical.
This means that every intensity patch comes from the same distribution.
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If we know this, then when we do pointwise 1-NN or kernel segmentation,
we could compare an observed intensity patch X[i] with a training image
patch centered anywhere in the training image, since the patches all
follow the same distribution. On the opposite extreme, the |Z| mixture
models could have no commonalities, and so when we use pointwise
1-NN or kernel segmentation, it only makes sense to compare intensity
patch X[i] with training image patches also centered at pixel i. We can
interpolate between these two extremes by saying how far away two
pixels have to be while still sharing mixture component parameters,
which we formalize as follows:

Jigsaw condition. For every mixture component (e, fic, Aic)
of the diagonal sub-Gaussian mixture model associated with
pixel i, there exists a neighbor j € N*(i) such that the
diagonal sub-Gaussian mixture model associated with pixel
j also has a mixture component with mean p;., label A,
and mixture weight at least myi,; this weight need not be
equal to ;.

The name of this structural property is inspired by a jigsaw puzzle,
where the pieces of the puzzle somehow need to fit with nearby pieces
to produce the final picture.

The shape and size of neighborhood N*(i), which is fixed and
unknown like the mixture model parameters, control how similar the
mixture models are across image pixels. For the two extremes discussed
previously, the true neighborhood N*(i) corresponds to the full space
of pixels in the first case, and N*(i) = {i} in the second case. As we
already hinted at, what N*() is affects how far from pixel i we should
look for training patches, i.e., how to choose neighborhood N (i) in
pointwise 1-NN and kernel segmentation, where ideally N (i) = N*(3).

As with the main result for time series forecasting, the main result
here depends on the separation between training intensity image patches
that correspond to the two different labels:

S £ min [ Xuli] = Xo[4]1-

u,ve{l,...,n},
1€Z,jEN(3) s.t. Yu(i)#Ys(4)

Intuitively, a small separation corresponds to the case of two training
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intensity image patches that are very similar but one corresponds to
foreground and the other to background. In this case, a nearest neighbor
approach may easily select a patch with the wrong label, resulting in
an error.

We now state the main theoretical result of this section.

Theorem 5.3.2 (Chen et al. 2015, Theorem 1 slightly rephrased).
Let N(i) be the user-specified neighborhood of pixel i. Denote
r & maxierri, |N| £ maxer |[N(i)|, mo(i) £ P(Y (i) = 0) =
Zz;l ﬂ'ic]l{)\ic = 0}, and

m@) 2P(Y(i)=1) = iwicn{Aic =1}.
c=1

Under the model above with n training intensity-label image pairs
and provided that the jigsaw condition holds with neighborhood
N* such that N*(i) C N(i) for every pixel i:

(a) Pointwise 1-NN segmentation has expected pixel labeling

error rate
1 S Py :
E| - S 1{Tin Xl £ Y (0)]
| | i€l
2
NTmin
< |Z|rexp < - T> + | N|nexp ( - 160’2) (5.20)
(b) Pointwise kernel segmentation has expected pixel labeling
error rate
1 S — .
E| 2 51 {Fouse(il X[ ) # V()
iz
- B2 — 252)§2
< |Z|r exp ( - n7r8 ) + |N|nexp (— (2};)S>
(5.21)

In particular, for any pre-specified error tolerance 6 € (0,1), by
choosing bandwidth h = 20 for pointwise kernel segmentation,
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the two expected pixel labeling error rate upper bounds (5.20)
and (5.21) match, and by choosing number of training data n >

Wmm 10g(2|I| 2|N|n)

then each method achieves expected pixel label error rate at

), and if the separation grows as S > 40/log(
most 6.

The proof is provided by Chen (2015, Section 5.4) and is a small
modification of the proof for the main time series forecasting theorem
(Theorem 5.1.2). The jigsaw condition plays a crucial role in enabling
the time series forecasting proof ideas to be imported.

There are different ways to change the separation, such as changing
the shape of the patch and including hand-engineered or learned patch
features. For example, if the mixture models are all Gaussian mixture
models, then provided that no true mean vectors of opposite labels are
the same, then as shown in inequality (3.18) of (Chen, 2015) (where
time horizon T corresponds to dimensionality d here), separation S
turns out to grow as 2(c2d). Intuitively, using larger patches d should
widen the separation. But using larger patches also means that the
(maximum) number of mixture components r needed to represent a
patch increases, possibly quite dramatically.

As with the main time series forecasting result, to prevent the second
terms in the upper bounds in Theorem 5.3.2 from scaling linearly with
n, we could subsample the training data so that n is large enough to
capture the diversity of mixture model components yet not so large that
we start encountering cases of noise causing patches of one label to look
like it is coming from another. In other words, with estimates or bounds
on 7, 02, and Ty, we can collect n = @(% log(|Z|r/d)) training image
pairs, and if the separation satisfies S = Q(0 log (75 |N‘ 5 log (‘Il ))), then
each algorithm achieves an expected pixel error rate of at most 0. This
recovers the informal statement of Theorem 5.3.1.

5.3.2 Multipoint Segmentation

We generalize the basic model for pointwise segmentation to predict
label patches Y[i] rather than just a single pixel’s label Y (7). Every
label patch Y[i] is assumed to have dimensionality d’, where d and d’
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need not be equal. For example, X[i] could be a 5-by-5 patch, whereas
Y'[i] could be a 3-by-3 patch. When d’ > 1, estimates of label patches
must be merged to arrive at a globally consistent estimate of label
image Y. This case is referred to as multipoint segmentation.

In this general case, we assume there to be R underlying latent label
images A1,...,Agr that occur with probabilities IIy, ..., IIz. To gener-
ate intensity image X, we first sample label image A € {A1,...,Ar}
according to probabilities IIq,...,IIz. Then we sample label image Y
to be a perturbed version of A such that p(Y | A) x exp(—ad(Y,A))
for some decay factor @ > 0 and differentiable “distance” function
d(-,). For example, d(Y, A) could relate to volume overlap between the
segmentations represented by label images Y and A with perfect overlap
yielding distance 0. Finally, intensity image X is generated so that for
each pixel i € Z, patch X|[i] is a sample from a mixture model patch
prior p(X[i][Y[é]). If @ = 0, d’ = 1, and the mixture model is diagonal
sub-Gaussian, we obtain the earlier model for pointwise segmentation.
We remark that this generative model describes, for every pixel ¢, the
joint distribution between intensity image patch X[i] and the full label
image Y. As with the pointwise segmentation model, we do not specify
how overlapping intensity image patches are jointly distributed.

Chen et al. (2015) refer to this formulation as a latent source model
for patch-based image segmentation since the intensity image patches
could be thought of as generated from the latent canonical label images
A1, ..., AR combined with the latent mixture model clusters linking Y'[i]
to X[i]. This hierarchical structure enables local appearances around a
given pixel to be shared across the canonical label images. Put another
way, there are two layers of clustering happening, one at the global level,
and one at the local patch level.

An lterative Algorithm Combining Global and Local Constraints

We derive an iterative algorithm based on the expected patch log-
likelihood (EPLL) framework (Zoran and Weiss, 2011). First, note
that the full latent source model that handles multipoint segmentation
prescribes a joint distribution for label image Y and image patch X|[i].
Thus, assuming that we know the model parameters, the MAP estimate
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for Y given X[i] is

Y = argmax { log (Z I  exp(—ad(Y, A ))) + logp(X[iHY[i])}.
Ye{0,1}I7I g=1

If we average the objective function above across all pixels i, then we

obtain the EPLL objective function, which we approximately maximize

to segment an image:

Y =argmax {log (ZH exp(—ad(Y, Ay) ) Zlogp D}
Ye{0,1}17] o] 17| =
The first term in the objective function encourages label image Y to
be close to the true label images Aq,..., Agr. The second term is the
“expected patch log-likelihood”, which favors solutions whose local label
patches agree well on average with the local intensity patches according
to the patch priors.
Since latent label images Aq,..., Ar are unknown, we use training
label images Y1,...,Y,, as proxies instead, replacing the first term in
the objective function with

F(Y;a)=1o ( Z exp(—ad(Y,Y, ))>
u=1
Next, we approximate the unknown patch prior p(X[i]|Y[i]) with a
kernel density estimate

X[ 3 Y N (X[il; Xuli], h M) 14V [i] = a5},

u= l]EN )

where the user specifies a neighborhood N (i) of pixel i, and Gaussian
kernel bandwidth h > 0. We group the pixels so that nearby pixels
within a small block all share the same kernel density estimate. This
approximation essentially assumes a stronger version of the jigsaw con-
dition from Section 5.3.1 since the algorithm operates as if nearby
pixels have the same mixture model as a patch prior. Hence, we maxi-
mize objective F(Y;«a) + ﬁ > icr log p(X[i]|Y'[i]; h) to determine label
image Y.
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Similar to the original EPLL method (Zoran and Weiss, 2011), we
introduce an auxiliary variable & € R for each patch Y[i], where &
acts as a local estimate for Y'[i]. Whereas two patches Y[i] and Y[j]
that overlap in label image Y must be consistent across the overlapping
pixels, there is no such requirement on their local estimates §; and §;.
In summary, we solve

¥ = argmin {~F(Y;a)~ 2 Y lowp(Xillei )5 3 V11,
Ye{0,1}171] |I| ieT zeI
(&:eR? ieT)
s.t. Y[i|=¢&; for i€Z
(5.22)
where § > 0 is a user-specified constant.

The original EPLL method (Zoran and Weiss, 2011) progressively
increases 8 and, for each choice of (3, alternates between updating the
label image Y and the auxiliary variables &;, ignoring the constraints
Y[i] =& for i € Z. The idea is that as 8 grows large, these constraints
will eventually be satisfied. However, it is unclear how to increase (8
in a principled manner. While heuristics could be used, an alternative
approach is to fix § and instead introduce a Lagrange multiplier 7;
for each constraint Y[i] = ¢ and iteratively update these Lagrange
multipliers. This can be achieved by the Alternating Direction Method
of Multipliers (ADMM) for distributed optimization (Boyd et al., 2011).
Specifically, we form Lagrangian

Ls(Y,&n) = — > log p(X[i]|&:; h)

i€l

+= Z IY[i] = &2+ > nl (Vi) -

ZEZ i€l

where 1 = (1; € RY i e 7) is the collection of Lagrange multipliers, and
& = (&,1 € 7) is the collection of auxiliary variables. Indexing iterations
with superscripts, the ADMM update equations are given by:

¢« argmin L5(Y', ¢,n')  (minimize Lagrangian in direction ¢),
3
Yt+1<—ar in La(Y t+1 ¢ ce . . . . .
gmin Lg(Y,£"7",n") (minimize Lagrangian in direction Y),
Y

't 4 BET — Y'Y (update Lagrange multipliers 7).
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By looking at what terms matter for each update equation, we can
rewrite the above three steps as follows:

1. Update label patch estimates. We update estimate &; for label patch
Y'[i] given observed image patch X[i] in parallel across i € Z:

1
¢« argmin { — = log p(Xi]|&;; h)
& 1]

+ gllytm — &P+ () (V'] - &) }-

This minimization only considers & among training label patches
for which p is defined. Thus, this minimization effectively scores
different nearest neighbor training label patches found and chooses
the one with the best score.

2. Merge label patch estimates. Fixing &;, we update label image Y:

Y « argmin { —F(Y;a)+ g Z |Y[i] — 5;““2
v i€T
+ 3D (Y[ - €}
1€
With the assumption that F' is differentiable, gradient methods
could be used to numerically solve this subproblem.

3. Update Lagrange multipliers. Set 77?1 —nl+ 5(§f+1 — Y).
This penalizes large discrepancies between &; and Y'[i].

Parameters «, 8, and h are chosen using held-out data or cross-validation.

Step 2 above corresponds to merging local patch estimates to form
a globally consistent segmentation. This is the only step that involves
expression F(Y;«). With o = 0 and forcing the Lagrange multipliers
to always be zero, the merging becomes a simple averaging of overlap-
ping label patch estimates &;. This algorithm corresponds to existing
multipoint patch-based segmentation algorithms (Coupé et al., 2011;
Rousseau et al., 2011; Wachinger et al., 2016) and the in-painting tech-
nique achieved by the original EPLL method. Setting o = g = 0 and
d' = 1 yields pointwise kernel segmentation. When o > 0, a global
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correction is applied, shifting the label image estimate closer to the
training label images. This should produce better estimates when the
full training label images can, with small perturbations as measured by
d(-,-), explain new intensity images.

MV INN WMV ADMM

Liver

Spleen

Left kidney

Right kidney

Figure 5.7: Example image segmentation results (figure source: Chen 2015, Fig-
ure 5.1). Green denotes the ground truth label and red denotes the estimated label,
where a good segmentation result has the green and red overlaid on top of each
other.

5.3.3 Experimental Results

Chen et al. (2015) empirically explore the above iterative algorithm
on 20 labeled thoracic-abdominal contrast-enhanced CT scans from
the Visceral ANATOMY3 dataset (Hanbury et al., 2012). The model is
trained on 15 scans and tested on the remaining 5 scans. The training
procedure amounted to using 10 of the 15 training scans to sweep over
algorithm parameters, and the rest of the training scans to evaluate
parameter settings. Finally, the entire training dataset of 15 scans is
used to segment the test dataset of 5 scans using the best parameters
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found during training. For each test scan, a fast affine registration is
first run to roughly align each training scan to the test scan. Then four
different algorithms are applied: a baseline majority voting algorithm
(denoted “MV?”) that simply averages the training label images that are
now roughly aligned to the test scan, pointwise 1-NN (denoted “1NN?”)
and kernel (denoted “WMV?” abbreviating weighted majority voting)
segmentation that both use approximate nearest patches, and finally
the proposed iterative algorithm (denoted “ADMM”), setting distance
d to one minus Dice overlap. Dice overlap measures volume overlap
between the true and estimated pixels of an object, where 1 is perfect
overlap and 0 is no overlap. It can be written as a differentiable function
by relaxing the optimization to allow each label to take on a value in
[—1, 1], in which case the Dice overlap of label images Y and A is given
by 2(Y,A)/({Y,Y) + (A, A)), where Y = (Y +1)/2 and A = (A +1)/2.

-
=]
-
=3

Dice overlap

o
©

4
o

e
S

(c) Left kidney

Dice overlap

-

E

el

osf [
0.6+ E 04
0.3}
05f
02 .
04l ‘ ‘ [ — ‘ ‘
MV NN WMV ADMM MV INN WMV ADMM
(a) Liver (b) Spleen
1.0 T 1.0 T T T
_ - - -
0.9} - = i
- — 08} ‘ |
08t [ - + : ‘
1
5 0.7} 806 E i . d
o o _ |
: 09 ‘ A
5 05 - 5 04 ! — !
0.4} -
02}
0.3} ! .
L
0.2 . . . I 0.0 . . . I
MV NN WMV ADMM MV INN WMV ADMM

(d) Right kidney

Figure 5.8: Dice volume overlap scores (figure source: Chen 2015, Figure 5.7).
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The liver, spleen, left kidney, and right kidney were segmented.
Example segmentations are in Figure 5.7, and Dice overlap scores are in
Figure 5.8 using the four algorithms. In all cases, the proposed iterative
algorithm outperforms pointwise kernel segmentation, which outper-
forms both pointwise 1-NN segmentation and the baseline majority
voting. For the organs segmented, there was little benefit to having
a > 0, suggesting the local patch estimates to already be quite consistent
and require no global correction.

5.4 More Training Data, More Problems?

A limitation across the three main theoretical results of this chapter
is that they become weak when the number of training data n grows
too large. The workaround each time was to subsample n to be smaller
but in a way that depended on the number of clusters r. Is this really
necessary? Is the worst-case analysis too pessimistic? The main reason
why this behavior appears is that the analysis techniques used to
establish the guarantees in this chapter effectively do a 1-NN analysis.
These techniques do not easily extend to looking at multiple nearest
neighbors at once. Instead, when looking at k > 1 nearest neighbors,
the analysis would assume that the nearest neighbor found is potentially
good, but that the 2nd, 3rd, ..., k-th nearest neighbors are generated
from the cluster with the wrong label! In fact, the analysis in the time
series classification case assumes that the n — 1 training examples that
are not the nearest neighbor come from a cluster with the wrong label
(Chen, 2015, Section 3.7.1).

One way to see why larger n can cause 1-NN classification to struggle
is to consider a simple setup where data are generated i.i.d. with equal
probability from one of two Gaussians, either N(0,0?) or N(u,o?)
for constants p > 0,0 > 0. The goal is to predict which of these
two Gaussians a new data point is from with the help of training
data Xq,...,X, drawn i.i.d. from the same model with known labels
Y1,...,Y, € {0,1}, where 1 corresponds to A'(0,02), and 0 corresponds
to N(u,0?). This is the time series forecasting setting with 7' = 1,
no time shifts, and Gaussian noise. When n grows large, with high
probability, we will encounter training data generated from N(0,02)
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that exceed p and thus plausibly appear to come from the second
Gaussian, and vice versa! This is disastrous as it means that with large

amounts of training data, the separation S(T)

could become vanishingly
small.

To sketch why this mishap happens, first note that as per Lemma 2.2.2
of Chen (2015), by collecting n > 161log(2/4) training data, then with
probability at least 1 — d, we have more than n/4 samples from each
of the two Gaussians. Assuming this event holds, we next rely on the
fact that for random variables X1,..., Xy drawn i.i.d. from N(0,02)

(Kamath, 2015),

o/ logd <E[ max X,] <oy/2logd.
mlog 2 u=1,...,d

Hence, we know that the maximum of the training data generated
from the first Gaussian N (0,0?) (for which there are more than n/4

such training data) has an expected value of at least o hfl(:g/g), which
for large enough n exceeds p. One could then apply a concentration
inequality to argue that as n grows large, with high probability, there
will be at least one training data point generated from A (0, 02) that is

larger than p, and thus is more plausibly explained as being generated

from the second Gaussian. A similar calculation could be used with the
two Gaussians swapped. Increasing n makes it more likely that more of
these “bad” training data appear.

The key observation that provides a promising solution to the
disaster scenario above is that the “bad” training data that stray far
from their corresponding clusters are outliers. We could thus screen
for and remove outliers and still have 1-NN classification work. For
example, one simple nonparametric way to do this is for a training
data point to look around it to find its nearest neighbors (e.g., up to a
certain number of them or within a ball of pre-specified radius), and
then to ask whether its label agrees with the most popular label among
its nearest neighbors; if not, we classify the point as an outlier and
discard it (Wilson, 1972).

Making nearest neighbor methods robust to outliers or adversarial
training examples is an active area of research (e.g., Sdnchez et al.
2003; Smith and Martinez 2011). Wang et al. (2017) recently defined
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robustness measures and proved that 1-NN classification is not robust.
They modify 1-NN classification so that it is robust, resulting in a
method called ROBUSTNN. We suspect that incorporating this sort of
modification of 1-NN classification into the algorithms presented in this
chapter should improve their theoretical performance guarantees. The
training data would still be getting subsampled as outliers or adversarial
examples are removed but the subsampling is targeted rather than
completely random.
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Computation

Thus far, we have discussed nearest neighbor prediction methods and
their statistical guarantees for a variety of problem setups. This chapter
takes a look under the hood at the main workhorse underlying all of
these prediction methods: nearest neighbor search. As this subroutine
is executed repeatedly, often in parallel, the computational advances for
nearest neighbor search have been vital to the popularity and success
of nearest neighbor prediction. This chapter provides an overview of
these advances, keeping the discussion high level and highlighting the
recurring motifs. Thus, unlike other chapters in this monograph, we
largely refrain from delving into specifics of any of the algorithms,
deferring to references provided. We also provide links to a variety of
open-source nearest neighbor search software packages at the end of
this chapter.

6.1 Overview

We focus on discussing k-NN search. Following our usual notation and
setup, we assume we have access to prior observations or training data
(X1, Y1), (X2,Y2),...,(X,,Y,) € XxR. The feature space X is endowed
with a metric p : X x X — R,.. Let P,, denote the set of training feature

200
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vectors {X1,...,X,}. For a data point x € X, our goal is to find the
k € {1,...,n} nearest neighbors of x within the n training feature
vectors Pp,. We denote (X(; (), Y(;)(z)) to be the i-th closest training
data point among the training data (X1,Y1),...,(Xn,Ys). Thus, the
distance of each training data point to x satisfies

p(z, X(1)(@)) < p(z, X2)(2)) < -+ < pla, Xn)(2)).

As discussed earlier, ties are broken at random.

A naive algorithm would compute distances of x to all n training
data, sort the distances, and choose the k smallest distances. Using
this naive approach, a single search query has running time O(nlogn)
if we use an efficient comparison sort such as merge sort. A clever
implementation that does not care about the ordering of smallest &
elements but simply finds them, e.g., using the Quickselect algorithm
(Hoare, 1961), can find the k nearest neighbors with effectively O(n)
comparisons (on average). With a large number of training data n, as is
common in modern applications (e.g., social networks, online recommen-
dation systems, electronic health records), having each nearest neighbor
search query take O(n) time can be prohibitively expensive, especially
when we have to repeatedly execute these queries. Furthermore, modern
applications regularly involve ever-growing (and sporadically shrinking)
training data.

With the above discussion in mind, ideally we would like nearest
neighbor data structures with the following properties:

1. Fast. The cost of finding k nearest neighbors (for constant k)
should be sublinear in n, i.e., o(n); the smaller the better.

2. Low storage overhead. The storage required for the data structure
should be subquadratic in n, i.e., o(n?); the smaller the better.

3. Low pre-processing. The cost of pre-processing data to build the
data structure should not require computing all pairwise distances
and should thus be o(n?); the smaller the better.

4. Incremental insertions. It should be possible to add data incre-
mentally to the data structure with insertion running time o(n).
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5. Generic distances and spaces. The data structure should be able
to handle all forms of distances p and all forms of spaces X.

6. Incremental deletions. The data structure should allow removal
of data points from it with deletion running time o(n).

In this chapter, we discuss various data structures that have been
developed over more than five decades to precisely address the above
desiderata. To date, there is no known data structure that can address
all of the above simultaneously. However, substantial progress has been
made to provide solutions that satisfy many of properties listed above,
both in theory and in practice. In particular, many theoretically sound
approaches have been developed for a variety—but not all—of distances
primarily over Euclidean space (i.e., X C R?) that provide efficient
running time, efficient storage, and low pre-processing time. Meanwhile,
many nearest neighbor data structures have been proposed that work
well in practice and support all but the incremental deletion property,
but they currently lack theoretical guarantees.

As the number of nearest neighbors developed over many decades is
vast, we will not be able to do justice to covering all approaches in any
detail. Instead, we focus on key representative approaches. We start in
Section 6.2 by describing one of the earliest data structures that supports
finding ezact nearest neighbors, the k-d tree (“k-dimensional” tree) data
structure (Bentley, 1979), which has remained a guiding principle for
developing approzimate nearest neighbor search data structures in
recent years. A k-d tree operates in a Euclidean feature space X C R¢
with FEuclidean distance as the metric p. It has search query time
O(d2°@ + logn), O(n) storage cost, and O(nlogn) pre-processing
time—all of which are efficient provided that the number of dimensions d
is sufficiently small, namely d2°(@) < n. In general, it suffers from an
exponential dependence on dimension d, also known as the curse of
dimensionality.

"Here, we talk about curse of dimensionality from a viewpoint of computational
efficiency. The phrase “curse of dimensionality” also more generally encompasses
other phenomena that arise when data reside in high-dimensional spaces. For example,
in high-dimensional feature spaces, more training data may be required to see enough
combinations of different feature values appearing.
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Considerable progress has been made on scaling exact nearest neigh-
bor search to high dimensions such as with the cover tree data structure
(Beygelzimer et al., 2006), which can remove the exponential dependence
on d completely. Cover trees exploit the fact that even though the data
might be high-dimensional, they often have low-dimensional structure
and thus have low so-called “intrinsic” dimension. The running time
dependence on intrinsic dimension is nontrivial, however. To date, exact
nearest neighbor search can still be prohibitively expensive in practice.

Next, we turn to approximate nearest neighbor search in Section 6.3.
We begin with locality-sensitive hashing (LSH) for designing approxi-
mate nearest neighbor data structures, pioneered by Indyk and Motwani
(1998). LSH has been the primary approach in literature for systemat-
ically developing approximate nearest neighbor data structures with
theoretical guarantees. The known results provide efficient query time,
storage, and pre-processing time for a Euclidean feature space X C R?
with various metrics including but not limited to ¢2 (Euclidean) or more
generally ¢,,p € (1,2], Hamming, Jaccard, and cosine distance.

Finally, we turn to approaches that are different from LSH that
have partial or no theoretical guarantees but have been successful in
practice. Specifically, we describe the approach of random projection or
partition trees (Kleinberg, 1997; Liu et al., 2005; Dasgupta and Freund,
2008) and boundary trees (Mathy et al., 2015). Random projection trees
can be viewed as a randomized variant of k-d trees. It is suitable for a
Euclidean feature space X C R? and a Euclidean metric. Theoretical
analysis shows that a single random projection or partition tree can find
exact nearest neighbors with nontrivial probability if the underlying
data has low intrinsic dimension (Dasgupta and Sinha, 2015). However,
in practice these trees are used for approximate nearest neighbor search.
Extending the theory to this approximate case as well as to strategies
that combine the results of multiple trees remains an open problem.
We also present the recently proposed boundary trees and forests that
handle all of the desiderata stated above except for incremental deletions.
They work very well in practice but currently lack any sort of theoretical
guarantees.

We conclude this chapter by pointing out some open source nearest
neighbor search software packages in Section 6.4.
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E (17,10)  F (25,6)

() (b)

Figure 6.1: Example of a k-d tree in two dimensional space, where panel (a) shows
the original feature space, and (b) shows the tree with the split points (labeled A
through F). Each split is shown by a line, vertical for nodes with split along x axis,
and horizontal for nodes with split along y axis. The root note splits the space into
two parts; its children further divide the space into smaller parts.

6.2 Exact Nearest Neighbors

We consider the question of finding the exact nearest neighbor (so, 1-NN)
for any given query point x with respect to set of n points P,, using a
k-d tree (Bentley, 1979). The data structure works with a Euclidean
feature space X = R? for any number of dimensions d > 1 and the
Euclidean distance as the metric p.

The k-d tree corresponding to n points, P, is a binary tree-structured
partition of R? that depends on the data. Each partition corresponds
to hyper-rectangular cell based on the n data points. The tree structure
is constructed as follows. The root corresponds to the entire space. The
two children of this root are created by first choosing one of the d
coordinates and then partitioning the space along this coordinate at the
median value of this coordinate across all n points. This way, the two
partitions corresponding to left and right children have effectively half
of the points. This procedure recurses within each partition, rotating
through the d coordinates along the depth of the tree to decide which
dimension to split data along, until the number of points in a “leaf”
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partition is at most ng, where ng is some pre-determined constant. Since
the median of n numbers can be found in O(n) time and the depth of
the tree is O(logn) (due to balanced partitioning at each stage), the
cost of constructing k-d tree is O(nlogn). An example k-d tree in d = 2
dimensions is shown in Figure 6.1.

Now let’s consider how to find the nearest neighbor for a given
query point z € R? in P,, using the k-d tree that is built from the n
data points P,,. To do this, we simply follow the path along the tree
starting from the root to reach a leaf (partition) by determining at
each stage which of the two branches one should take based on the
coordinate value of x and the median value along that coordinate that
determined the partition in the k-d tree at that stage. Upon reaching
the leaf partition, we do a brute-force search to find the nearest neighbor
of x among the points that belong to the leaf partition. As each leaf
partition has at most ng points, this takes O(dng) time. Now to make
sure that this is indeed the nearest neighbor of z, we need to search
for the nearest neighbor through the neighboring leaf partitions of the
leaf partition to which z belongs. In d dimensional space, the number
of such neighboring partitions can be 204 Therefore, the effective
query time scales as O(d2°@Dng). When d is small (d2°@ = o(n)), this
results in an efficient algorithm (o(n) query time). However, the query
cost grows exponentially in d, which can become prohibitively expensive
even when d is moderately large.

To escape this exponential dependence on d, more recent exact
nearest neighbor search algorithms take advantage of the observation
that in practice, data often have low intrinsic dimension (e.g., Karger
and Ruhl 2002; Beygelzimer et al. 2006). For example, the cover tree
data structure by Beygelzimer et al. (2006) has query time O(logn) and
space usage O(n), while even supporting point insertions and deletions
that each take time O(logn)—these depend on the intrinsic dimension
rather than the original feature space dimension d. While these time
and space complexities look quite attractive, they hide the fact that
the dependence on intrinsic dimension is nontrival. The data points
currently in the cover tree data structure have an associated expansion
constant ¢. Querying for nearest neighbors scales as ¢!2, which could
be prohibitively large. To date, while exact nearest neighbor search
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algorithms have made considerable progress since k-d trees, they can
still be too slow for a variety of applications. Switching over to some of
the latest approximate nearest neighbor search algorithms can lead to
dramatic speedups.

6.3 Approximate Nearest Neighbors

We now present a few prominent approaches for approximate nearest
neighbor search, some with strong theoretical guarantees and some that
are simply heuristics at this point.

6.3.1 Locality-Sensitive Hashing

The first approach we discuss is locality-sensitive hashing (LSH), which
appears in numerous approximate nearest neighbor methods, especially
ones with theoretical guarantees. LSH was first introduced by Indyk and
Motwani (1998) and works for a variety of feature spaces and metrics.
As the name suggests, LSH is about hash functions for which items that
are similar produce similar hashes. The hashes themselves are short
and can be easily compared. Thus, an approximate nearest neighbor
search can be done by first hashing items and then comparing hashes.
As an aside, very recently evidence has emerged that fruit fly brains
use a variant of LSH to find similar odors (Dasgupta et al., 2017)!

For ease of exposition, we only discuss a basic version of LSH
for approximate nearest neighbor search where the feature space is
Euclidean X = R? and the metric p is Euclidean distance. For more
detailed descriptions as well as recent state-of-the-art developments, we
refer the reader to surveys by Andoni and Indyk (2008) and Har-Peled
et al. (2012), and to recent work by Andoni and Razenshteyn (2015a)
and Andoni et al. (2015).

Key concepts. To begin with, we need to be precise about exactly
what we mean by an “approximate” nearest neighbor. Two related
commonly used definitions are below.
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Definition 6.3.1 (c-approximate nearest neighbor). Given ¢ >
1, we call a point 2/ € P, = {Xy,...,X,} a c-approximate
nearest neighbor for a query point z with respect to P, if
p(z,2") < cp(w, X(1)(x)). A randomized c-approximate nearest
neighbor data structure outputs a c-approximate nearest neigh-
bor with probability at least 1 — § for any query point, for given
parameter § > 0.

Next we define a related notion of a near neighbor, which will be what
LSH helps us find. At first, it seems weaker than the c-approximate near-
est neighbor, but as we discuss shortly, the two notions of approximation
are effectively equivalent.

Definition 6.3.2 (¢, R-approximate near neighbor). Given pa-
rameters ¢ > 1, R > 0 and 6 € (0,1), a randomized ¢, R-
approximate near neighbor data structure for an n point set
Pn = {Xy,...,X,} is such that for any query point z it re-
turns 2’ such that p(z,2’) < ¢R with probability 1 — 4, if
p(z, X1)(z)) < R.

While the ¢, R-approximate near neighbor definition seems weaker than
that of the c-approximate nearest neighbor, a clever reduction of c-
approximate nearest neighbor to ¢, R-approximate near neighbor shows
that by incurring a factor of O(log?n) in space and O(logn) in query
time, an approximate near neighbor data structure can help in finding
approximate nearest neighbors (Har-Peled et al., 2012).

The basic algorithmic idea for this reduction is that it suffices to
build O(logn) near neighbor data structures. Then for a query point z,
we find a near neighbor for = using each of the O(logn) near neighbor
data structures and then pick the closest one found. First suppose that
the minimum distance of any point in P, to query point x is at least
Ry > 0 and no more than poly(n)Ry. Now for values of R that are of
form (1 + v)¥Ry/c with 0 < k < O(logn) for some v > 0, we build
O(logn) different ¢, R-approximate near neighbor data structures. Using
this, one can find a ¢(1 4 7)-approximate nearest neighbor for any query
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point by querying all of these O(logn) data structure simultaneously
and choosing the closest among the returned responses. The argument
that considering such a setting is sufficient is clever and involved; we
refer the interested reader to the paper by Har-Peled et al. (2012).

Approximate near neighbor using LSH. The reduction of approx-
imate nearest neighbor to approximate near neighbor suggests that it
is sufficient to construct randomized approximate near neighbor data
structures. A general recipe for doing so is given by LSH. Consider a
family of hash functions, say H. Any hash function in H takes as input
a feature vector in the feature space X and outputs a hash in a space we
call U. In what follows, the randomness is in choosing a hash function
uniformly at random from hash family H. What we want is that for two
feature vectors that are close by, the probability that they produce the
same hash value is sufficiently high, whereas if the two feature vectors
are not close by, the probability that the produce the same hash value
is sufficiently low.

Definition 6.3.3 ((c, R, Pi, P»)-locality-sensitive hash). A dis-
tribution over a family of hash functions H is called (¢, R, P1, P»)-
locality-sensitive if for any pair of x1,z9 € X and randomly
chosen h,

o if p(x1,x2) < R then P(h(z1) = h(x2)) > P,

o if p(x1,x2) > ¢R then P(h(z1) = h(zz)) < Ps.
Before proceeding, let us consider a simple example.

Example 6.3.1 (LSH for Hamming distance.). Suppose X =
{0,1}% and p is Hamming distance, i.e., for z,2’ € X

d
ple,a') = 3 1z # ).
=l

Consider a family of d hash function H = {hy,...,hq}, where
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for any i € {1,...,d}, we have h; : X — {0,1} with
hz(l’) = Xy,

for any z € X. Thus, a uniformly random chosen hash function,
when applied to a point in X, effectively produces a random
coordinate of the point. Given this, it can be easily checked
that for any =1,z € X, for a uniformly at random chosen hash
function h from H,

p(x1, 2)

7
Therefore, we can conclude that this family of hash functions H
is an LSH with P, =1 — % and P, =1 — %. In particular, as
long as ¢ > 1 and R € [0, 4], we have that P; > P.

P(h(z1) = h(z2)) = 1 —

Clearly, our interest will be in LSH where P; > P» just as in the above
illustration. Ideally, we would like to have P; ~ 1 and P, &~ 0 so that
any hash function h from the family H can separate relevant pairs of
points (7.e., distance < R) from irrelevant ones (i.e., distance > cR).
In practice, we might have values of P, and P, that are away from
1 and O respectively. Therefore, we need an “amplification” process
that can convert a “weak” LSH into a “strong” LSH. But having a
strong LSH alone is not sufficient. We also need a clever way to store
an “index” using this LSH family H so that we can query the data
structure efficiently to solve the near neighbor search problem for any
query point.

To this end, we now describe a generic recipe that does both “am-
plification” and “indexing” (Andoni and Indyk, 2008). Suppose that
we have an LSH family H with parameters (¢, R, Py, Py). We create L
hash functions, where each hash function is actually the concatenation
of d’ simpler hash functions from the family H (e.g., for the Hamming
distance example above, there would be L hash functions that each
take as input a feature vector and outputs a d’-bit string). In partic-
uar, we choose d'L hash functions by drawing them independently and
uniformly at random from the hash family H. We collect them into a
a d’ x L matrix denoted as [h; jlic(1,.a},jeq1,...L}, Where h;j: X — U
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Figure 6.2: A generic recipe to build a near neighbor data structure using weak
LSH family. Here, each point z is mapped to d’ x L matrix with (i, j)-th entry
of the matrix denoted h; ;(z). Here, h; ;’s are drawn from a given LSH family for
ie{l,...,d'}, j€{l,...,L}. Each column (red) of the matrix is denoted by g;(z)
for j € {1,...,L}.

for all ¢,j. We denote the j-th column of the matrix as a function
gi: X =U 4 Now any point 2 € X is mapped to L different buckets
where j-th bucket corresponds to g;(x). This process is depicted in
Figure 6.2. The desired data structure is simply created by mapping
each of the n points in P, to L such different buckets. Depending upon
the size of the universe of hash values U, the number of possible buckets
for each j € {1,..., L} may be much larger than n. Therefore, it may
make sense to store only the nonempty buckets by further indexing the
mapped value under g; for each of the n points. This further indexing
can be done by choosing another appropriate hash function. This way,
the overall storage space is O(nL).

To find a near neighbor for query point x, we hash it using each of
the functions g1, ..., gr. The j-th hash g;(z) corresponds to a bucket
that has some subset of the n training data points in it. Thus, across all
the L buckets that x lands in, we look at the training points in those
buckets and pick the closest one to x to output as the near neighbor.

Why should this procedure work? As it turns out, for any query point
x, if there is a point 2’ in training data P, that is within distance R,
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then the procedure will find 2’ with high probability if we choose the
number of buckets L appropriately. Let’s work out how we should set
L. Let point 2’ € P, be such that p(x,z’) < R. Then by definition of
‘H being an LSH,

P(g;(z) = gj(2')) > P, forje{1,...,L}.

This means that
(U{ga ) = gj(x >}) >1—-(1-P)"

If we set the number of buckets to be

1

L=1 ;wPl_dllogg,

o8 log(1 — P{)
then we have that 2z’ is found as part of the above algorithm with
probability at least 1 — §. Note that we have used the approximation
log(1 — z) = —z when real number z is close to 0.

But what is the query time and storage cost? These depend on how
many points from P, are mapped to each of the L buckets to which
x gets mapped to. Intuitively, we want to choose d’ large enough so
that the number of such points is not too large (precisely o(n/L)), and
L is not too large so that O(nL) = o(n?). At some level, this boils
down to making ratio (P;/P;)% large enough. The optimized choice

of parameters d’ and L leads to query time ©(dn¥) and storage cost

log(1/P,
O(n' %), where ¢ = E/T.
In the context of Example 6.3.1, for the Hamming distance with

feature space X = {0,1}¢,

9

o log(1—¢) _ 1

log(1 — <) c
again using the approximation log(1l — z) ~ —z for z close to 0. This
means that for the Hamming distance, we have an approximate near
neighbor data structure with query time ©(n!'/¢) and storage cost
O(n'*t1/¢). Clearly, it makes sense that if approximation ratio ¢ > 1 is
large (corresponding to tolerating near neighbors to be farther away
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from the true nearest neighbor), then the data structure becomes more
efficient.

A few remarks are in order. To begin with, as long as P, > P we
have that ¢ < 1. Therefore, the query time is sublinear in n with a
linear dependence on dimension d, and the storage cost is o(n?). But
what metrics p can we construct an LSH with, and what is the best ¢
that we can achieve for these different metrics? For Hamming distance,
as discussed above, we have a simple solution. If metric p is Euclidean
distance over feature space X = R?, the answer is also reasonably well
understood. In particular, to achieve approximation ratio ¢ > 1, the
best ¢ is ¢ = C% (Datar et al., 2004; Andoni and Indyk, 2008). The
matching lower bound was established by Motwani et al. (2007) and
O’Donnell et al. (2014). However, these guarantees assume that the
algorithm is data agnostic and does not exploit structure specific to
the given training feature vectors P,. In a recent development, it turns
out that by using a data dependent construction, the optimal ¢ for
Fuclidean distance turns out to be ﬁ for achieving approximation
ratio ¢ > 1. The construction of such an LSH is provided by Andoni
and Razenshteyn (2015a). The matching lower bound is provided by
the same authors in a different paper (Andoni and Razenshteyn, 2015b).
For other metrics such as ¢, distances for p € [1,2), Jaccard, cosine,
and {5 distance on sphere, there are various LSH constructions known.
We refer interested readers to the survey by Andoni and Indyk (2008).

To wrap up our discussion of LSH, we note that at a high level,
LSH is reducing the dimensionality of the data, after which we ex-
ecute exact search with the lower-dimensional representations (the
hashes). Other fast dimensionality reduction approaches are possible.
The challenge is doing this reduction in a way where we can still
ensure low approximation error. One such approach is given by the
celebrated Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss,
1984), which reduces dimensionality while roughly preserving Euclidean
distances. For a user-specified approximation error tolerance ¢ € (0, 1),
the Johnson-Lindenstrauss lemma provides a way to transform any
set of n points in d-dimensional Euclidean space down to O(log )
dimensions (of course, for this to be useful we need d 2 log ). Then
for any two points ;1 and xo among the original n points, denoting their



6.3. Approximate Nearest Neighbors 213

resulting low-dimensional representations as x) and z, respectively,
(1= e)lzr — zal” < [Ja] — 23> < (1 + &)1 — 22

A fast Johnson-Lindenstrauss transform has been developed for doing
this transformation that works for both ¢; and ¢ distances (Ailon and
Chazelle, 2009). Of course, if n is massive, then the lower-dimensional
space could still be too high-dimensional, in which case we could do
an approximate—rather than exact—nearest neighbor search in the
lower-dimensional space, such as using LSH.

6.3.2 Random Projection Trees

The k-d tree data structure is very efficient in terms of pre-processing
data to build the data structure and in terms of the storage required.
However, the query time can become prohibitively expensive due to
its exponential dependence on the dimension of the data. As discussed,
for the Euclidean metric, due to the Johnson-Lindenstraus lemma
(Johnson and Lindenstrauss, 1984), we can effectively assume that the n
high-dimensional data points lie in a O(logn)-dimensional space albeit
incurring an approximation error in computing distances. Thus, the
query time can be poly(n) with potentially a very large albeit constant
exponent for n. However, what we would really like is for the query
time to be o(n).

The k-d tree readily offers a simple approximate nearest neighbor
search known as a defeatist search. Recall that to search for an exact
nearest neighbor for a query point z, we first find the leaf node in
the k-d tree that x belongs to. However, not only do we look for the
closest training point within this leaf node, we also look at all the
closest training point inside all the adjacent leaf nodes. We did this
because within the leaf node that x belongs to, which corresponds to
a partition of the feature space, x can be near the boundary of this
partition. In particular, its nearest neighbor may be a training point just
on the other side of this boundary in an adjacent leaf node. The search
over neighboring leaf nodes, however, is what results in the exponential
explosion in dimension for query time. The defeatist search takes an
optimistic view: let us assume that the nearest neighbor is within the
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Figure 6.3: A comparison between how a k-d tree and a randomized partition tree
divide up the feature space for two dimensional data (figure source: Dasgupta and
Sinha 2015). Left: a k-d tree uses axis-aligned splits. Right: a randomized partition
tree uses splits with directionality that is randomized (such as being drawn randomly
from a unit ball).

same leaf tree node as that associated with the query point. Therefore,
we simply return the nearest neighbor found within the leaf node that
x belongs to and search no further.

Clearly, this is a heuristic and suffers from the worst-case scenario
where the true nearest neighbor is on the other side of the boundary.
This can lead to an unbounded approximation error. However, the silver
lining in such a method is that potentially such a worst-case scenario
can be overcome via randomization. Specifically, instead of choosing
the median along each coordinate to partition data in constructing the
tree, it may make sense to do the partition using “random projection”.
We now consider one such heuristic to construct a random projection
tree or a randomized partition tree. The high-level idea is that unlike
in k-d trees where the feature space is divided by axis-aligned splits,
in random projection trees, the split directions are randomized. This
difference in split directions is shown in Figure 6.3.

Given n data points P,, as before the root corresponds to all the
points (and also the entire feature space X'). To partition points into two
groups, choose a random vector v € R%. The choice of random vector
can be done as per various distributions. Here, we choose v so that
each of its component is Gaussian with mean 0 and variance 1/d. We
compute the median of n values, vT X; for i € {1,...,n}. If a point X;
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is such that v7 X; is less than the median, then it goes to one partition
(say left) and if it is greater or equal to the median than it goes to the
other partition (say right). We use this method to recursively partition
the training data until each leaf is left with at most ng points associated
with it.

To find an approximate nearest neighbor, we use the defeatist search
and hope that randomization would make sure that the query point of
interest actual lies well within the interior of the leaf partition that it
belongs to. In terms of computation, we traverse down the tree, which
takes O(logn) steps corresponding to the tree depth, where at each
step of this traversal, we compute an inner product, which takes O(d)
time. When we reach the leaf node, we compare distances with at most
no leaf data points. Treating ng as a constant, overall the query time is
O(dlogn).

In summary, the above algorithm provides an efficient approximate
nearest neighbor data structure in terms of query time, storage cost,
and pre-processing time. For such a data structure, there are no crisp
theoretical results known. However, Dasgupta and Sinha (2015) provide
a nice theoretical analysis for variations of such an approach. Effectively,
Dasgupta and Sinha argue that the probability of error in terms of
finding an ezact nearest neighbor scales as ®log(1/®), where ® is a
function of the query point x and the n data points P, = {X1,..., X, },
defined as

n
b7 & Lyn 2= X0 @)l

n = lle— X @)

which can be thought of as an average ratio of the distance of x to its
nearest neighbors vs its distance to the n — 1 other training points.

To understand the behavior of the above quantity, let’s consider
the following simple setting. Suppose the distance from the nearest
neighbor to the query point is 1, i.e., [|x — X(1)(z)|| = 1. Moreover, let’s
assume that all the other points are at integer distances > 1 from the
query point x of interest. Let N(z) be the number of points at distance
z > 2,z € N from the query point x among P,. Then

O(x,Pp) = S Z M

ni 2
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To get sense of the above quantity, further suppose that all the points in
P,, are laid on a regular d-dimensional grid around z. Then N (z) ~ 2471,
This would suggest that

®(x, Py) ~n 4,

That is, if indeed data P, were laid out nicely, then the error probability
is likely to decay with n, i.e., the probability of finding the exact
nearest neighbor goes to 1 for large n. Alas, such a guarantee does not
hold in arbitrary point configurations for P,. However, as long as the
underlying feature space corresponds to a growth-restricted metric space
or has bounded doubling dimension (Karger and Ruhl, 2002), then the
probability of success is nontrivially meaningful. We refer an interested
reader to the paper by Dasgupta and Sinha (2015) for details.

A variation of the randomized partition tree is to simply use many
such trees and merge their answers to produce a better answer than what
any single tree can provide. This naturally lowers the error probability
and has found reasonable success in practice.

6.3.3 Boundary Trees

The two approaches described above have a few limitations. The ap-
proach based on LSH, while theoretically sound in the most generality
known in the literature, is restricted to specific metrics for which LSH
constructions are known. In a similar manner, the randomized partition
tree approach, because of the use of random projections with inner
products, is fundamentally restricted to Euclidean distance (although
the theory here could potentially extend to other inner-product induced
norms). Moreover, both of the approaches have an inherent requirement
that prevents them to be truly incremental in nature—all n points
need to be present before the data structure is constructed, and as
new data points are added, one needs to re-start the construction or
perform expensive adjustments. Recently, various heuristics have been
suggested (e.g., Sundaram et al. 2013) which tries to exploit the inherent
parallelism in LSH-based constructions while providing an incremental
insertion property in an amortized sense. However, such approaches are
inherently clunky workarounds and not truly incremental. They also do
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query

root root root

Figure 6.4: Example of a boundary tree (figure source: Zoran et al. 2017). Left
panel: the current state of a boundary tree. Middle panel: an example approximate
nearest neighbor search; we begin at the root and traverse the tree greedily looking
for a nearest neighbor among the current nodes (in this example, the approximate
nearest neighbor found is the top-right shaded white node, and the query point is
denoted in blue). Right panel: the query point from the middle panel can be inserted
into the boundary tree. For classification, a new data point is inserted into a tree
only if its label differs from that of the approximate nearest neighbor found. Hence,
neighboring nodes in the boundary tree have different labels (white vs. red nodes
across the three panels). Points added tend to be near the decision boundary.

not support deletion. In that sense, out of all the desiderata stated in
the beginning of this chapter, only the first three are satisfied by the
approaches that we have discussed thus far.

We now discuss the recently proposed boundary tree data structure
by Mathy et al. (2015) that overcomes some of these limitations. Multiple
such trees can be collectively used to form a boundary forest. Each
boundary tree takes O(n) storage space, supports query time that
is expected to be o(n) (in an optimistic scenario O(logn)), supports
incremental insertion, and works for any distance or metric. It does
not support incremental deletion. Unfortunately, to date, boundary
trees and forests lack theoretical guarantees. Initial empirical evidence
suggests them to have outstanding performance (Mathy et al., 2015;
Zoran et al., 2017).

In a nutshell, a boundary tree is constructed as follows. At the very
beginning, there are no data points in the boundary tree. The very first
data point that gets added is just assigned as the root node. Then for
a subsequent data point x to be added, we start a tree traversal from
the root node. At each step of this traversal, we compute the distance
between z and the current node we are at, and also the distances
between x and all the children of the current node we are at (recall that
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each node corresponds to a previously inserted training data point).
For whichever node is closest, we recurse and continue the traversal.
We stop recursing when we either get to a leaf node or stay at the
same node (i.e., this node is closest to the query point = than any of
its children). Note that the node that we stop at, say z’, serves two
purposes. First, it is the approximate nearest neighbor for x. Second,
it is where z gets inserted: node = gets added as a child of z’. Thus,
if we are merely querying for an approximate nearest neighbor for z
that is already in the boundary tree rather than doing an insertion,
then we would output x’ without inserting z into the tree. An example
boundary tree, along with a search query and subsequent insertion of
the query point into the tree, is shown in Figure 6.4. Using multiple
trees enables us to choose the closest point found across the different
boundary trees.

We remark that there is a slight refinement on the above description
to enforce that the maximum number of children per node is a pre-
specified constant, which empirically improves the speed of the algorithm
without much impact on the quality of approximate nearest neighbors
found provided that k is not too small. See the original boundary tree
paper for details on this modification (Mathy et al., 2015).

Note that a boundary forest can readily be used for regression or
classification. For example, for classification, to predict the label of x, we
pick the most popular label among the labels of the approximate nearest
neighbors found across the boundary trees. In this case of classification,
an algorithmic edit to make the boundary tree data structure more
efficient is that when a data point x is to be added, if its approximate
nearest neighbor has the same label, then x is simply discarded rather
than added to the tree. The boundary tree is named after the fact that
in doing this algorithmic edit, the training points that are added tend to
be points near the decision boundary. This is depicted in all three panels
of Figure 6.4, where neighboring nodes have different colors because
they have different class labels.

In the case of multiple boundary trees, it is worth noting that if
each tree receives the data points for insertion in the same order then
the trees will be identical. Thus, to obtain diversity which can improve
the quality of approximate nearest neighbors found as well as regression
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or classification performance, randomizing the order of insertion helps.
In practice, it may suffice to randomize the insertion order of an initial
batch of points.

6.4 Open Source Software

We now point out a few open source nearest neighbor software packages
that have been developed over the past decade or so. The packages
below are provided in an arbitrary order.

The Fast Library for Approximate Nearest Neighbors (FLANN)
(Muja and Lowe, 2013) provides access to a collection of approximate
nearest neighbor search algorithms. The system claims to use the best of
the available options for approximate nearest neighbor search. Through
experiments conducted on specific datasets, Muja and Lowe (2014) found
that random partition trees described above and the priority K-means
approach seem to work very well. The priority K-means effectively builds
a tree data structure as follows. The root corresponds to the entire
dataset. We partition the data into clusters using the K-means algorithm.
The clusters become the children of the root and we recurse. The query
process effectively boils down to doing a greedy search along the tree
to find the right leaf. A variation of this search that involves some
backtracking through “priority” leads to a refined search algorithm. The
FLANN library is implemented in C++ and is available with Python
and MATLAB bindings.?

The library for Approximate Nearest Neighbor Searching (ANN)
(Mount and Arya, 2010) provides another alternative with a collection
of approaches implemented in C++.3

The Python-based scikit-learn package provides an implementation
of various exact and approximate nearest neighbor algorithms.* The
package is quite popular and is very robust.

A recent release by Erik Bernhardsson starting from when he was
still at Spotify and subsequently improved by an open source effort
has resulted into the Annoy package (with the backronym “Approxi-

*https://www.cs.ubc.ca/research/flann/
3https://www.cs.umd.edu/~mount/ANN/
“http://scikit-learn.org/
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mate Nearest Neighbors Oh Yeah”).® Annoy implements a variation
of randomized projection trees and works well in practice. Annoy has
also been implemented in Scala to work with Apache Spark in package
called Ann4s.%

The FAst Lookup of Cosine and Other Nearest Neighbors (FAL-
CONN) is based on LSH (Andoni et al., 2015).” Tt is developed by
Ilya Razenshteyn and Ludwig Schmidt. FALCONN has grown out of
a research project with their collaborators Alexandr Andoni, Piotr
Indyk, and Thijs Laarhoven. This open source project not only comes
with theoretical guarantees but also works very well in practice. It is
implemented in C++ with a Python wrapper.

Specifically for dealing with sparse data, Facebook Research has
released a package called Approximate Nearest Neighbor Search for
Sparse Data in Python (PySparNN).®

To the best of our knowledge, there is currently no fast, highly
reliable open source nearest neighbor library that can scale to massive
amounts of data using a distributed implementation and that handles
fast, real-time queries.

Shttps://github.com/spotify /annoy
Shttps://github.com/mskimm /ann4s
Thttps://github.com/FALCONN-LIB/FALCONN
Shttps://github.com/facebookresearch /pysparnn
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7

Adaptive Nearest Neighbors and Far Away
Neighbors

Up until now, the problem setups and algorithms considered each have
some notion of distance that is treated as chosen independently of
the training data. However, adaptively choosing distance functions
based on training data can be immensely beneficial for nearest neighbor
prediction. The literature on distance learning is vast and beyond the
scope of this monograph. For example, two popular approaches include
Mahalanobis distance learning methods (see the survey by Kulis 2013)
and, on the deep learning and neural network side, Siamese networks
(Bromley et al., 1994; Chopra et al., 2005).

Rather than covering Mahalanobis distance learning and Siamese
networks, we instead show in Section 7.1 that decision trees and various
ensemble learning methods based on bagging and boosting turn out
to be adaptive nearest neighbor methods, where we can derive what
the similarity functions being learned from training data are. Examples
include AdaBoost (Freund and Schapire, 1997) with specifically chosen
base predictors, the C4.5 (Quinlan, 1993) and CART (Breiman et al.,
1984) methods for learning decision trees, and random forests (Breiman,
2001). Thus, for any test feature vector z € X', by computing the learned
similarity function between x and each of the training data points, we

221



222 Adaptive Nearest Neighbors and Far Away Neighbors

Blue points:
training data

Far away neighbors that can help predict n(z)

Figure 7.1: An example regression problem where the regression function 7 is
periodic. For the test point z € X in gray, to predict n(x), we can look at training
data integer multiples of the period away.

know exactly which training data have nonzero similarity with the
point x. These training points with nonzero similarity to x are precisely
the nearest neighbors of z. Thus, the number of nearest neighbors
k = k(z) chosen depends on z. However, not only are we automatically
selecting k(x), we are also learning which similarity function to use.
This is in contrast to the earlier methods discussed in Section 3.7 that
adaptively select k(x) or the bandwidth h(x) for k-NN; fixed-radius NN,
and kernel regression but do not also learn a similarity or distance
function.

We conclude this monograph in Section 7.2 by looking at when
potentially far away neighbors can help with prediction. For example, in
the periodic regression function 7 shown in Figure 7.1, it is immediately
apparent that for test point 2 shown in gray, to predict n(x), we can
benefit from looking at labels of training data that are roughly at integer
multiples of 7’s period away. This example is of course overly simplistic
but raises the question of how we could automatically find training data
from disparate regions of the feature space that can help each other with
prediction. We discuss how recently proposed blind regression methods
for collaborative filtering exploit this idea when only given access to
labels of data and not their feature vectors (Lee et al., 2016; Borgs
et al., 2017). By transferring ideas from blind regression back to the
context of standard regression, we arrive at a two-layer nearest neighbor
algorithm that takes the label output of one k-NN search query to feed
as input to another. The latter search enables finding different parts of
the feature space X with similar regression function values.
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7.1 Adaptive Nearest Neighbor Methods: Decision Trees and Their
Ensemble Learning Variants

We now discuss how decision trees and a wide class of ensemble methods
turn out to all be nearest neighbor methods albeit where the distances
are implicitly learned from training data. In particular, these methods
actually learn nearest neighbor relationships and similarity functions,
from which we can back out distance functions. For ease of exposition,
we focus on regression. Of course, going from regression to binary
classification can be done by thresholding. We talk about three main
components frequently used in ensemble learning and how they relate
to nearest neighbor or kernel regression: decision trees, bagging, and
boosting. For example, decision trees combined with bagging results
in random forests (Breiman, 2001). Our coverage here builds on the
observation made by Lin and Jeon (2002) that random forests can be
viewed as adaptive nearest neighbor prediction. We effectively extend
their observation to a much wider class of ensemble learning methods.

7.1.1 Decision Trees for Regression

A decision tree T partitions the feature space X into J disjoint regions
X1, X, ..., X;. Each region X; is associated with a leaf of the tree T
and has an associated label \; € R. Given a feature vector x € X, the
tree 7 simply finds which region & contains x and outputs A;. In other
words,

J
T({E) = Z)\j]l{l‘ S Xj},
j=1
where only one term in the summation is nonzero since the &;’s are
disjoint.

Everything above is actually true for decision rules in general. What
makes T a decision tree rather than just a general decision rule is that
the disjoint regions exhibit tree structure. For example, if the tree is
binary, the J regions initially cover the entire space. Then there are two
disjoint subsets of the J regions that correspond to the two child nodes
of the root node, and so forth. While we could always assign some tree
structure to the J regions, this observation ignores a key computational
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aspect for decision trees.

Fundamentally, decision tree training procedures construct a tree
and assigns every training data point to a leaf node of the tree. At
the start of training, there is a single leaf node corresponding to the
entire feature space X and that consists of all n training data. Then we
recursively split the feature space (e.g., the first split divides the single
leaf node into two leaf nodes). The recursive splitting happens until
some termination criterion is reached, such as each leaf node having
fewer than some pre-specified number of training data associated with it.

We skirt discussing training details (e.g., choice of splitting rule,
when to stop splitting); a variety of methods are available such as
C4.5 (Quinlan, 1993) and CART (Breiman et al., 1984). For the purposes
of this monograph, what matters is that after training, there are J
leaf nodes, where the j-th leaf node precisely corresponds to disjoint
region X, has associated with it some subset N € {1,...,n} of the
training data, and also has a label A; based on training data in N,
which for regression we can take to be the average label:

1
Aj=— Y;.
TP
Then to predict the label for a test feature vector x € X, the decision
tree quickly finds the leaf node j that = belongs to (so that z € X;) and
outputs the leaf node’s label A;.

The key observation is that we can think of nearest neighbors as
feature vectors that belong to the same leaf node. In particular, for a
test feature vector x, if it is inside X, then the decision tree effectively
tells us that the nearest neighbors of x are the training points in N,
and the predicted value for = is the average label among the nearest
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Figure 7.2: Example of a decision tree with 6 leaf nodes corresponding to disjoint
regions AX1,...,Xs that altogether make up the feature space X. Each region X;
contains a subset N of the training data (blue points) and has an associated label \;
(e.g., the average label among points in N;). Here, test point z (gray point) is in X,
so its nearest neighbors are precisely the training data in Ng. Left: an annotated
picture of the feature space. Right: the decision tree with its branching decisions; at
the leaves are the predicted values A1, ..., As.

neighbors. This observation is shown in Figure 7.2. In formulae,

1 n
- Z [H ZYZ]I{QJ and X; are both in Xj}]
Il i=1

I
NE
i

-

=)~

|]l{x and X; are both in Xj}},
J

similarity between x and Xj;

which could be thought of as a kernel regression estimate. Training data
point X; has weight K(z, X;) £ Zle Wi']l{x and X; are both in A}

Phrased another way, the nearest neighbors adaptively chosen for x
are precisely the training data points X; with nonzero learned weight

K(x, X;). Thus, the number of nearest neighbors k() chosen for test
feature vector x is

k(z) = ﬁjn{]ﬁ(x, X;) > 0}.

=1
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7.1.2 Bootstrap Aggregating (“Bagging”)

For a specific supervised learning method that learns predictor 7 based
on training data (X1,Y1),...,(Xn,Y,) € & x R, where T (x) is the
predicted label for a given feature vector x, one way to improve pre-
diction is to use what is called bootstrap aggregation (popularly called
“bagging”). Bagging yields a new predictor that can have lower variance
than the original predictor 7. Note that 7 need not be a decision tree
although this notation foreshadows our discussion of random forests
at the end of this section. It turns out that bagging of nearest neigh-
bor predictors (whether adaptive or not) results in adaptive nearest
neighbor predictors. Thus, a random forest, which we obtain by bagging
many decision tree predictors (which are adaptive nearest neighbor
predictors), is yet another adaptive nearest neighbor method.

Bagging works as follows. We first produce B sets of bootstrap
samples Z', ..., ZB where each bootstrap sample Z° comprises of n
labeled data points drawn uniformly at random with replacement from
the original n training data. Then for each b € {1,..., B}, we use the
same supervised learning method to learn function 7 for each bootstrap
sample Z°. Finally, given feature vector z, the predicted label for z is
the average output across the 7p’s:

1 B
Thag(T) = B Z%(w)
b=1

Using ensemble predictor 7y, instead of a single predictor 7Tj keeps the
expected value of the prediction the same but can decrease the variance,
depending on how correlated a randomly chosen pair of 7’s are (Hastie
et al., 2009, Sections 8.7 and 15.2). Computationally, bagging is also
trivially parallelizable: we can run B training procedures in parallel to
obtain the decision rules 71, ..., 7T5.

The connection to nearest neighbor methods is that if each 7, has
the form of a kernel regression estimate, namely

n
To(z) = ) YiKp(z, Xi),
i=1
where Kp(z, X;) is some sort of similarity between feature vectors x and
X; that predictor T uses (either manually specified or learned), then
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the ensemble predictor is still a kernel regression estimate:

1 B
E ;Kb(x, Xz):|

T () new similarity between z and X;

1 B n n
Toae(@) = 5 3 [ S vialo, 0| = 30%
=1 =1

b=1

This observation along with our observation in Section 7.1.1 explain
why random forests, which are decision trees used with bagging, are
actually doing kernel regression using a learned similarity function.
Again, training data points that have nonzero learned similarity with x
can be thought of as the adaptively chosen nearest neighbors of x.

7.1.3 Boosting

Boosting is another popular ensemble learning method for which using
it with nearest neighbor predictors (adaptive or not) results in adaptive
nearest neighbor predictors. For a collection of predictors 71,...,7Tn
where given a feature vector = € X, the b-th predictor outputs 75(z),
boosting at a high level learns a weighted sum of these predictors to
form a stronger predictor over a course of 1" iterations:

T
’E)oost(x) = Z O‘t’nt) (37)7
t=1

where at iteration ¢, we select a predictor 7 among the collection
of predictors {T1,..., T} and give it a weight oy > 0. Thus, we start
with using a single predictor and then keep adding predictors until we
have T predictors. We omit the exact details of how to select the next
predictor to use at each iteration and how to weight it. A popular way
for selecting these over the 7" iterations is called AdaBoost (Freund and
Schapire, 1997).

For the purposes of this monograph, the key observation is that if
each predictor 7y selected has the form of a kernel regression estimate,
namely

T(@) =D YK (z, X)),
=1

where K (z, X;) is some sort of similarity between feature vectors x
and X; that predictor 7;) uses (either manually specified or learned),
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then the boosted predictor Tpoost 210 has the form of a kernel regression

estimate
T n n T
Tooot (1) = 3o [Z Vi (3, X»] =3V S Wk (o, X»} |
t=1  Li=1 =1 ‘e=1
Ty () new similarity between x and Xj

In particular, this observation along with that of Section 7.1.1 explains
why AdaBoost used with decision trees as the base predictors are
actually doing kernel regression with a learned similarity function. Once
more, training data points that have nonzero learned similarity with x
can be thought of as the adaptively chosen nearest neighbors of x.

7.1.4 Similarity Learning Aware of Nearest Neighbor Prediction
Guarantees?

A promising avenue of research is to understand how to modify sim-
ilarity or distance learning methods like the above decision tree and
ensemble methods to take better advantage of nearest neighbor predic-
tion error bounds like those presented in Chapters 3, 4, and 5. The goal
here is to make the learned distance function particularly well-suited
for downstream nearest neighbor prediction. In the case of modifying
decision tree learning or boosting algorithms, which are typically greedy,
to account for prediction error bounds, a possible technical challenge is
that we may want to enforce a constraint over the entire tree or boosted
classifier to be learned. Such a global constraint may be difficult to
incorporate into the greedy local decisions made by the learning algo-
rithms. A framework that could enforce global constraints was recently
proposed by Bertsimas and Dunn (2017), who show that we can now
train classification trees with mixed-integer optimization that constructs
an entire decision tree all at once rather than greedily.

7.2 Far Away Neighbors

In this last part of the monograph, we consider nearest neighbor methods
in which potentially far away neighbors can help us in prediction. Some
straightforward ways to achieve this include cleverly choosing a distance
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function that makes specific parts of the feature space appear closer
together, or expanding a data point’s neighbors to include nearest
neighbors of nearest neighbors and recursing. What isn’t straightforward
is how to do either of these in a way that has theoretical performance
guarantees. As it turns out, under reasonably general settings, these
two strategies yield nearest neighbor methods that are guaranteed to
have their prediction error vanish to 0 (Lee et al., 2016; Borgs et al.,
2017). These approaches solve a problem referred to as blind regression.

Blind regression can be phrased in terms of standard “offline” collab-
orative filtering (unlike in online collaborative filtering from Section 5.2
that aims to make good predictions over time, the offline version aims to
accurately predict all missing user ratings at a frozen snapshot in time).
Recall that in collaborative filtering, the partially revealed ratings ma-
trix Y is also what we use to obtain “feature vectors”: rows of Y index
users and columns of Y index items, and for two users u and v, we can
compare the row vectors Y, and Y, to identify which users are nearest
neighbors (e.g., using cosine distance). Each user u does not have some
feature vector X, separate from her or his revealed ratings Y, to help
us predict Y,. This is in contrast to the standard regression setting
(Section 2.1), where the i-th data point has both a feature vector X;
and a label Y; that are different objects. Blind regression posits that
there are latent feature vectors X,,’s for users (and more generally also
latent feature vectors for items) that are related to revealed ratings Y,,’s
through an unknown function f. However, we do not get to observe
the latent feature vectors X, ’s. In this sense, we are “blind” to what
the true latent feature vectors are and instead make predictions (using
regression) based on ratings revealed thus far (and hence the name blind
regression). The key idea is to exploit the structure of the unknown
function f to identify nearest neighbors.

In Section 7.2.1, we provide an overview of this blind regression setup
along with the nearest neighbor blind regression algorithms by Lee et al.
(2016) and Borgs et al. (2017). These recently developed algorithms
are promising, but they invite the question of whether we can use the
same insights in the standard “sighted” regression setting, where we get
to observe both the feature vectors and the labels. It seems like blind
regression is solving a harder problem by hiding the feature vectors. In
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Section 7.2.2, we make an attempt at porting blind regression ideas
to standard regression, which results in a two-layer nearest neighbor
algorithm that we believe warrants further investigation.

7.2.1 Collaborative Filtering using Blind Regression

Consider an n x m matrix A = [A,;] € R"™™ that can be thought of as
the true albeit unknown expected ratings in the recommendation context,
where rows u € {1,...,n} index the users, and columns i € {1,...,m}
index the items. We observe an n x m matrix Y = [Y,,;] where all entries
are independent. Specifically, we assume there is a probability p € (0, 1]
such that each entry of Y is revealed with probability p, independently
across entries. If Y,; is unobserved (with probability 1 — p), then it
takes on the special value “x”. Otherwise (with probability p), it is a
random variable where E[Y,;] = Ay;." We assume Y,; = A,; + €, where
€4i 'S are noise random variables. The goal is to recover matrix A from
observed matrix Y.

We remark that this setup extends beyond recommendation systems.
For example, in the problem of graphon estimation for learning the
structure of graphs (cf., Lovasz 2012), the rows and columns both index
the same collection of nodes in a graph (so the matrix is symmetric),
and each revealed entry Yj; € {0,1} indicates whether an edge is present
between nodes ¢ and j. Different models of randomness for Y are possible.
For example, in an Erdds-Rényi model (Erdds and Rényi, 1959), each
possible edge is present with some fixed probability ¢ € [0, 1], so the
matrix A has off-diagonal entries that are all q.

A nonparametric view of the general problem setup of recovering
matrix A is as follows. For each row u and column 7 of A, there are row
and column feature vectors zI®% € X% and z$°' € X!, where AV
and X! are row and column feature spaces. We assume that there is a

'For our online collaborative filtering coverage (Section 5.2), we assumed that the
observed Y,;’s could only take on one of two values +1 or —1, and the unobserved
entries took on value 0. In contrast, the general setup here allows for the observed
Y.:’s to, for example, take on any value on the real line (e.g., if the observed Y,;’s are
Gaussian). As such, we now introduce the special value “x” for unobserved values.
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function f: X™% x X! — R such that

Aui = f(l,row, l'(;Ol)'

u K3

Thus, for any observed entry Yy,

E[Vii] = Aui = f(x™%, 25,

u 2

A typical assumption would be that f satisfies some smoothness condi-
tion such as being Lipschitz. This assumption is reasonable as it says

that if its inputs change slightly (e.g., consider users u and v with very

row
u

row

and z

, or items ¢ and j with very
;?Ol and 1:5‘-01), then the expected rating f

should not change much. Importantly, the algorithms to be presented

similar row feature vectors z
similar column feature vectors x

do not know f.

The nearest neighbor approach would suggest that to estimate A,
we first find nearest row and column neighbors. For instance, row u’s
nearest neighbors can be found by looking for other rows with similar
row feature vectors as that of row wu:

NV ={vell,...,n}: 2V ~ a2}

Similarly, column 4’s nearest neighbors can be found by looking for
other columns with similar column feature vectors as that of column 7:

Nl =Le{l,...,m}: o5 ~ :L';Ol}.
Then, we produce estimate A = [A,;] of matrix A where

A\ Z’UENéowJE/\/’fOI ]l{YU] Observed}YUj
ur — Zve./\/’rowd'ej\[pol ]].{Yv] Observed}

The challenge is that the row and column feature vectors are unknown
(and thus latent). This is why the above model is known as a latent
variable model (Chatterjee, 2015).2 The problem of blind regression

2Latent variable models arise as canonical representations for two-dimensional
exchangeable distributions. There is a very rich literature on this topic starting with
work by De Finetti (1937) for one-dimensional exchangeable distributions, followed
by the generalization to higher dimensions by Aldous (1981) and Hoover (1981). A
survey is provided by Austin (2012). Latent variable models have also been connected
to the asymptotic representation of graphs (Lovasz and Szegedy, 2006).
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refers to this task of recovering the matrix A without observing any of
the latent feature vectors (Lee et al., 2016).

In terms of solving this problem using a nearest neighbor approach,
the issue is how to find the nearest row and column neighbors A%

and /\/'f01 to produce the estimate ﬁm Since we do not know the latent

row?

row’s, the standard collaborative approach (such

row feature vectors x
as what was done in Section 5.2) just uses rows of the revealed ratings
matrix Y instead, and compares them using, say, cosine distance to
identify nearest row neighbors. Similarly, since we do not know the
s, the standard approach is to compare

columns of Y to identify nearest column neighbors. However, the quality

coly
i

latent column feature vectors x
of nearest neighbors we find is degraded not only by label noise for
revealed entries in Y but also by the fact that only a random subset of
items is revealed per user.

Could exploiting some structure in f improve the quality of nearest
neighbors we find? The key observation is that what we really want is to
find nearest row or column neighbors in the expected ratings matrix A
rather than the revealed ratings matrix Y (if Y were completely noiseless
and all entries of it were revealed, then it would equal A). Put another
way, since A,; = f(x col
or column neighbors with similar f value rather than nearest row or

row

i ), what matters is finding nearest row

, T
column neighbors of the revealed ratings values Y, or even the nearest
row or column latent feature vectors that we can’t observe. Hence, we
want to somehow obtain the following sets of nearest neighbors for
row u and column :

NV ={ve{l,...;n}: fF(@&,) = f(zi™,) },
——— ———
u-th row of A v-th row of A
Net={je{l,...om}: f(a) =~  f(,25°) )
N—— ———
i-th column of A j-th column of A

As we do not know f, some approximation is of course needed but we
can do better than simply taking the raw values that we find in revealed
ratings matrix Y.

To exploit the structure of f, Lee et al. (2016) present two key twists
on the standard collaborative filtering approach. We state these twists
in terms of user-user collaborative filtering (so we only find similar users
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and not similar items), although these ideas easily translate over to
item-item collaborative filtering. Suppose that user w has not yet rated
item ¢, meaning that Y,; = x. We aim to predict A,; as to figure out
whether we should recommend item ¢ to user u. The two twists are as
follows:

1. Let’s say that user v has rated item ¢ and is “similar” to user
u, and that both users have rated item j # i (we comment on
how to define “similar” momentarily). The standard approach
would be to guess that perhaps A,; =~ Y,; (we are only considering
a single similar user v; of course if there are multiple similar
users then we could average their revealed ratings for item 7).
However, Lee et al. instead show that we should use the estimate
Ayi = Yy +Y,; — Y,; based on a Taylor approximation of f. In
other words, if f is appropriately smooth, then we should add a
correction term Yy ; — Y.

2. We can actually bound how bad the new suggested estimate
Y + Yy — Yy, is at estimating A,; = f(:z:zow,xg"l) by looking
at the variance of the difference in rows Y, and Y,; details for
precisely how to compute this variance is in equation (7) of Lee
et al. (2016). In particular, to estimate A,;, we can first identify
which user v # u has the lowest error bound in estimating A,;
and declare this user to be the nearest neighbor of user u. Then
we use the newly suggested estimate Y,; +Y,; —Y,; for A,;. Thus,
the distance function used to identify nearest neighbors is now
based on an estimation error bound for f rather than a heuristic

such as cosine distance.

These changes to the standard collaborative filtering approach reduce
error in estimating A,; by accounting for smoothness in f. As for what
smoothness structure is enough, Lee et al. (2016, Theorem 1) provide a
theoretical guarantee on their algorithm’s prediction accuracy for which
the only assumption on f is Lipschitz continuity.

To empirically validate their algorithm, Lee et al. predict movie rat-
ings in the MovieLens (Harper and Konstan, 2015) and Netflix (Bennett
and Lanning, 2007) datasets. Their algorithm outperforms standard
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collaborative filtering (that finds nearest neighbors based on comparing
rows or columns of Y using cosine distance), and also performs as well
as iterative soft-thresholded SVD-based matrix completion (Mazumder
et al., 2010) that exploits low rank structure in A (whereas Lee et al.’s
algorithm does not assume A to be low rank).

By assuming that f is Lipschitz and A has low rank r, Borgs et
al. (2017) present a collaborative filtering method that again exploits
structure in f and, now, also the rank of A. Their method looks at
nearest neighbors of nearest neighbors and recurses. Two users can
be declared as neighbors even if they have no commonly rated items!
Borgs et al. provide analyses to explain when to stop the neighborhood
expansion, and how to aggregate the now larger set of neighbors’ re-
vealed ratings appropriately to yield an algorithm with a theoretical
guarantee on prediction accuracy (Theorems 4.1 and 4.2 in their pa-
per; they have two theorems since they analyze their algorithm using
two difference distance functions). Their algorithm is particularly well-
suited to scenarios in which the number of revealed ratings per user
is extremely small, where traditional collaborative filtering approaches
may simply not find enough or any nearest neighbors as the users have
extremely rare commonly rated items. Specifically, when A and Y are
both n x n, and the probability of whether each entry in Y is revealed
satisfies p = w(r®n), Borgs et al. can guarantee that their algorithm’s
mean squared prediction error goes to zero. In contrast, the theoretical
guarantee for the algorithm by Lee et al. (2016) requires p = Q(n3/ 5,
i.e., dramatically more revealed ratings are needed when n > r.

7.2.2 A Two-Layered Nearest Neighbor Algorithm

The nearest neighbor blind regression algorithms suggest that potentially
far away neighbors in the latent row or column feature spaces but that
are close in f value could be useful for prediction. Could this same idea
be applied to the original “sighted” regression setting of Section 2.1,
where the feature vectors are directly seen? In what follows, we provide
an attempt at crafting a “nearest” neighbor regression algorithm in
which nearest neighbors could be in distant parts of the feature space but
are declared to be close by since they have similar regression function
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values.

Recall that in the standard regression setting, our goal is to esti-
mate the regression function n(x) = E[Y | X = z] given training data
(X1,Y1),... (X, Yn) € X x R. Note that n here corresponds to func-
tion f in the previous section. Then k-NN regression estimates 7y nn ()
as:

_ 1 &
Mk-NN(T) = z > Y (),
i—1

where (X(; (), Y(;) (7)) denotes the i-th closest training data pair to
point x among the training data, where the distance function used
between feature vectors is p.

Note that the labels of the k nearest neighbors (Y1) (), Y(2)(z), ..., Y(i)(2))
altogether can be treated as a proxy for n at point x, capturing some
neighborhood information about 1 at the point x (where the size of
this neighborhood depends on the choice of k). Thus, we construct the
following k-dimensional proxy feature vector

m (@) & (Yo (@), Vi) (@), -, Yigy ()

Then instead of using feature vectors in the feature space X’ to determine
the nearest neighbors, we can instead use proxies for the 7 values to
determine the nearest neighbors. In particular, for a point z, we find
the k¥’ (which need not equal k) nearest training points by using their
proxy n vectors instead of their feature vectors, where we compare the
proxy n vectors with, say, FEuclidean distance, i.e., the distance used
between z and training data point Xj is

P (@, Xa) = [l () — ™ (Xa)

Let’s denote the training feature vectors of the k' nearest neighbors
found for z using the above distance as NS, (z). Then the resulting
k'-NN regression estimate for x using these proxy 7 nearest neighbors is

N 1
i/ -NNP™ () = o Z Y ('),
' eNP (z)

k—k/

>

where by Y (z') we mean the label associated with training feature
vector z’.
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This two-layered nearest neighbor algorithm has a few seemingly
attractive properties. To start with, choosing a distance over proxy 7
vectors is straightforward since they consist of actual label values, so if,
for example, the goal is to minimize squared label prediction error, then
one should use Euclidean distance for proxy vectors. However, the choice
of distance function p specified for the feature space X remains more
of an art. Next, the method can potentially have better performance
compared to standard k-NN regression because parts of the feature
space X that lead to similar function values 1 can now help each other
with prediction. In particular, in searching for nearest neighbors, this
algorithm should be able to automatically jump across periods in the
example in Figure 7.1. But to what extent can the algorithm achieve this
for much more elaborate regression functions, and when does it bridge
together parts of the feature space that should be left disconnected? A
proper understanding of when and why this algorithm may work better
than standard k-NN regression remains an open question.
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